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Topological transversality
and boundary problems for
second-order functional
differential equations

1. Introduction

This article deals with boundary value problems

(P1) u"(1) - u@®) € Au@) + (Ku)(®) +f(t, u(®), ae. on 0, 1,
w'(0) € by(u(0), w'(1) € - by(u(1));

and

(P2) u'(r) € Au(r) + (Ku)(r) + g(t, u(z), '), ae.on 10,11,
u'(0) € by(u(0)), u(1) =0,

in a real Hilbert space E, where A,b; and b, are maximal monotone subsets of
ExE, K is a completely continuous operator and f and g satisfy the Carathéodory
conditionsand additional Lipschitzinequalities.

The main tool that we use to establish the existence of solutions is the topological
transversality theorem (the Leray-Schauder principle) for condensing operators (see
the author’s paper [6] or W. Krawcewicz [4]). For completely continuous operators
this theorem is due to A. Granas [2]. In Section 2 we state a much more general
version of the topological transversality theorem which was obtained by the author [8].

In the absence of nonmonotone terms, i.e., when K, f and g are null, Problems
(P1) and (P2) were studied by V. Barbu [1] and N. Pavel (5] in a more general
frame.

2. Generalized topological transversality

Lez X be 2 normal sopological space, let M be a proper closed subset of X, Y and let
N e 2 peoper subset of ¥ Comsider a class of operators

ACiG-XZ>FEGC'nM=-90}



case.

(H) If G~ G, thenthereis H:[0, 1]xX > ¥ such that H(0,-) =G, H(1.)=G,.
(U HA, ) IV Lelo, 1 nM=g,

and H(6(),-) € A for every continuous function 8 : X - [0, 1] satisfying 6(x) = 1
forall xe M.

Theorem 1. Assume that hypotheses (A) and (H) hold. Let G and G, bein A
suchthat G ~ G,. Then G and G, are both essential or both inessential.

For the proof and some applications, see [8].

We shall use Theorem 1 in the particular case: ¥ = B xB, B being a real Banach
space, X = cl(U), where U is a nonvoid bounded open subset of B, M is the
boundary U of U, N = {(x,x); x€ B} and A is the class of all mappings
G :cl(U)-» B xB of the form

Gx = (x, Tx), x € cl(U),

where T:cl(U)» B isa condensing operator, fixed point free on 9U. Also, define
G ~G, ifthereis h:[0, 1]xcl(U)» B condensing, such that 4(0,-) = T, h(1, -) = T,
and h(A, x) # x forall A€ [0, 1] and x € 9U, where Gx = (x,Tx) and Gx =
(x, Tyx). In this case, H(A, x) = (x, (A, x)).

Corollary 1. Let T :cl(U)> B be a condensing operator and xgeU. If
MTx -xp) # x - xg forall xe€ oU and A€ [0, 1], then T has at least one fixed
point.

For the proof it is sufficient to see that Gx = (x, Tx) ~ Gix = (x, Xp) and that Gy
is essential (see [8]).
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3. The existence results

Let E be a real Hilbert space whose norm and inner product are denoted by | | and
<,> A,by and b, maximal monotone subsets of E x E with 0,0)e AN by N b,.
For >0, let Ayx = A1(x - 7 +24)"1x). Asin [5] we require that

<Ayx,y>20 forall (x,y)€b; (i=12). 3.1)

Theorem 2. Let the assumption (3.1) hold for i = 1,2. Suppose that K is a
completely continuous operator from L2(0, 1; E) into itself so that

limsup I Kull/lull<cy as lull> oo, (3.2)
and f:[0, 1]x E- E is a function such that
f(+, x) is measurable for all fixed x € E; (3.3)
If @ xq) - f G, x) I<eqlxy - x,| forall X, x, € E, te0, 1], (3.4)
where ¢y+cq<1;
f(,0) e LX0, E). (3.5)
Then there is at least a solution u € H2(0, 1; E) of Problem (P1).
Proof. Let D and A be the subsets of L(0, 1; E) x L0, 1; E):
D = {(u, -u"); ue HX0, 1; E), u'(0) e biw(0)), w'(1) € - by(u(1))},
A = {(u, v); v(t) € Au(r), a.e. on [0, 1]}
It is known (see [5, pp. 206]) that D +A is maximal monotone and that
(I+D +z§)‘1 is nonexpansive and L2(0, 1; E).

Also, consider the operator F : L%(0, 1; E) » L%(0, 1; E),

Fu)n) = - f (. u(0)), ue LX0, 1; E), te 0, 11

R e, M g 1 CL.4).
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Theorem 3. Let the assumpdion (3.1) bold for i = 1. Sepposc et K ©ma2
completely continuous operator from HY(0, 1; E) im0 L0, 1; E) such thar

limsup 1Kid /Tul <cyas lul ;> 3.6)
andlet g:[0, 1]x E2 > E satisfy
&(+,x,y) is measurable for all fixed x,y € E; 3.7
|8t x4, ) - 8 X9, yp) 1Sy lxy - xy |+ clyg -y, (3.8
for all X1, X3, ¥, ¥2 € E and r€ [0, 1], where
aney + 1)+ 2n ey + e < 1; (3.9)
8(+,0,0) € L0, 1; E). (3.10)
Then there is at lest a solution u € H2(0, 1; E) of Problem (P2).

Proof. Let b, = {0} x E, B = {ue HY(0, 1; E); u(1) = O} andlet F:B »
LX0, 1; E),

(Fu)(®) = u(r) - g(t, u(s), w'(@®), ue B, teo, 1),
For u € B, itis true the Wirtinger inequality is (see [3])
lul<2mtlwl. (3.11)

By (3.8) and (3.11) it follows that F isa (21:‘1(61 + 1) + ¢y)- Lipschitzian operator
from B < H1(0, 1; E) into LZ(O, 1; E). Thus, F -K is (27!:‘1(01 + 1) + ¢y)set-
Lipschitzian. Next we show that (/ +D +,4?1)‘1 is Zn‘l-Lipschitzia.n as an operator
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from L0, 1; E) into H'(0, 1; E). In fact,let v; = (I +D +A)lu, i = 1,2, and let
U=uy-uy and v=v, -v,. Wehave

v(5) € v(®) - u(t) + Avy(r) - Avy(1), ae. on [0, 1].

Since
V@) 12 = '@, v - <v'(@), vy,

this yields

V@) 12 = V'), v)>' - 1v() | 2 + <u), v()>

= <Av{(1) - Avy (), V(D> < V'), v()D' + <u(d), v(D)>.

It follows that

IV IZ<Bullllv I+ <v'(1), v(1)> - <v'(0), v(O0)>

Slhulllvi<2n-tlullvi.

Thus, Il v 111 =max {IvI,Iv' I} <2nlllull, as claimed. Therefore,

T=(U+D +A- 1(F K) is a set-contraction from B into B with respect to the
norm of H!(0, 1 E). ,
In addition, using (3.6) and (3.9), it is easily seen that R >0 such that
ITully <lully for ue B, luly=R.

Thus, we may apply, once again, Corollary 1.
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