R. PRECUP

Topological transversality and boundary problems for second-order functional differential equations

1. Introduction

This article deals with boundary value problems

(P1)
$$u''(t) - u(t) \in Au(t) + (Ku)(t) + f(t, u(t)), \text{ a.e. on }]0, 1[, u'(0) \in b_1(u(0)), u'(1) \in -b_2(u(1));$$

and

(P2)
$$u''(t) \in Au(t) + (Ku)(t) + g(t, u(t), u'(t)), \text{ a.e. on }]0, 1[, u'(0) \in b_1(u(0)), u(1) = 0,$$

in a real Hilbert space E, where A, b_1 and b_2 are maximal monotone subsets of $E \times E$, K is a completely continuous operator and f and g satisfy the Carathéodory conditions and additional Lipschitz inequalities.

The main tool that we use to establish the existence of solutions is the topological transversality theorem (the Leray-Schauder principle) for condensing operators (see the author's paper [6] or W. Krawcewicz [4]). For completely continuous operators this theorem is due to A. Granas [2]. In Section 2 we state a much more general version of the topological transversality theorem which was obtained by the author [8].

In the absence of nonmonotone terms, i.e., when K, f and g are null, Problems (P1) and (P2) were studied by V. Barbu [1] and N. Pavel [5] in a more general frame.

2. Generalized topological transversality

Let X be a normal topological space, let M be a proper closed subset of X, Y and let N be a proper subset of Y. Consider a class of operators

restrictions of G and G_1 to M coincide, i.e., $G_{i,j} = G_{i,j,j}$, one has $G_1^{-1}(M) \neq \emptyset$. Otherwise, G is said to be inequality.

Let ~ be an equivalence relation on A such than

(A)
$$G/_M = G_1/_M$$
 implies $G \sim G_1$.

We are interested in the case when the equivalence classes contain either only essential operators or only inessential operators. The next condition is sufficient to have such a case.

(H) If
$$G \sim G_1$$
, then there is $H: [0, 1] \times X \rightarrow Y$ such that $H(0, \cdot) = G$, $H(1, \cdot) = G_1$,

$$\operatorname{cl}(\bigcup \{H(\lambda,\,\cdot)^{-1}(N);\ \lambda\in[0,\,1]\})\cap M=\emptyset,$$

and $H(\theta(\cdot), \cdot) \in A$ for every continuous function $\theta: X \to [0, 1]$ satisfying $\theta(x) = 1$ for all $x \in M$.

Theorem 1. Assume that hypotheses (A) and (H) hold. Let G and G_1 be in A such that $G \sim G_1$. Then G and G_1 are both essential or both inessential.

For the proof and some applications, see [8].

We shall use Theorem 1 in the particular case: $Y = B \times B$, B being a real Banach space, $X = \operatorname{cl}(U)$, where U is a nonvoid bounded open subset of B, M is the boundary ∂U of U, $N = \{(x, x); x \in B\}$ and A is the class of all mappings $G : \operatorname{cl}(U) \to B \times B$ of the form

$$Gx = (x, Tx), x \in cl(U),$$

where $T: \operatorname{cl}(U) \to B$ is a condensing operator, fixed point free on ∂U . Also, define $G \sim G_1$ if there is $h: [0, 1] \times \operatorname{cl}(U) \to B$ condensing, such that $h(0, \cdot) = T$, $h(1, \cdot) = T_1$ and $h(\lambda, x) \neq x$ for all $\lambda \in [0, 1]$ and $x \in \partial U$, where Gx = (x, Tx) and $G_1x = (x, T_1x)$. In this case, $H(\lambda, x) = (x, h(\lambda, x))$.

Corollary 1. Let $T : cl(U) \to B$ be a condensing operator and $x_0 \in U$. If $\lambda(Tx - x_0) \neq x - x_0$ for all $x \in \partial U$ and $\lambda \in [0, 1]$, then T has at least one fixed point.

For the proof it is sufficient to see that $Gx = (x, Tx) \sim G_1 x = (x, x_0)$ and that G_1 is essential (see [8]).

3. The existence results

Let E be a real Hilbert space whose norm and inner product are denoted by $|\cdot|$ and $\langle \cdot, \cdot \rangle$; A, b_1 and b_2 maximal monotone subsets of $E \times E$ with $(0, 0) \in A \cap b_1 \cap b_2$. For $\lambda > 0$, let $A_{\lambda}x = \lambda^{-1}(x - (I + \lambda A)^{-1}x)$. As in [5] we require that

$$\langle A_{\lambda} x, y \rangle \ge 0$$
 for all $(x, y) \in b_i$ $(i = 1, 2)$. (3.1)

Theorem 2. Let the assumption (3.1) hold for i = 1,2. Suppose that K is a completely continuous operator from $L^2(0, 1; E)$ into itself so that

lim sup
$$||Ku|| / ||u|| \le c_0$$
 as $||u|| \to \infty$, (3.2)

and $f: [0, 1] \times E \rightarrow E$ is a function such that

$$f(\cdot, x)$$
 is measurable for all fixed $x \in E$; (3.3)

$$|f(t,x_1) - f(t,x_2)| \le c_1 |x_1 - x_2| \text{ for all } x_1, x_2 \in E, \ t \in [0,\,1], \tag{3.4}$$

where $c_0 + c_1 < 1$;

$$f(\cdot, 0) \in L^2(0, 1; E).$$
 (3.5)

Then there is at least a solution $u \in H^2(0, 1; E)$ of Problem (P1).

Proof. Let D and \overline{A} be the subsets of $L^2(0, 1; E) \times L^2(0, 1; E)$:

$$D=\{(u,-u'');\, u\in H^2(0,\,1;\,E),\ u'(0)\in b_1(u(0)),\, u'(1)\in -\ b_2(u(1))\},$$

$$\bar{A} = \{(u, v); v(t) \in Au(t), \text{ a.e. on } [0, 1]\}.$$

It is known (see [5, pp. 206]) that $D + \overline{A}$ is maximal monotone and that $(I + D + \overline{A})^{-1}$ is nonexpansive and $L^2(0, 1; E)$.

Also, consider the operator $F: L^2(0, 1; E) \rightarrow L^2(0, 1; E)$,

$$(Fu)(t) = -f(t, u(t)), u \in L^2(0, 1; E), t \in [0, 1].$$

Conditions (3.3)-(3.5) imply that F is well-defined. Moreover, according to (3.4), F is a c_1 -contraction and hence F-K is a c_1 -set-contraction. Thus, T=(I+D)

\$1.F01+1.Ex1+c, 1x1.

Whence, by (3.2) and $c_0 + c_1 < 1$, we define that there is R > 0 such that ||Tu|| < ||u|| for $||u|| \ge R$. Thus, we may apply Camillary 1 with $B = L^2(0, 1; E)$, $U = \{u \in L^2(0, 1; E); ||u|| < R\}$ and $x_0 = 0$. It follows that T has a fixed point, i.e., Problem (P1) has a solution.

Theorem 3. Let the assumption (3.1) hold for i = 1. Suppose that K is a completely continuous operator from $H^1(0, 1; E)$ into $L^2(0, 1; E)$ such that

$$\lim \sup \|Ku\| / \|u\|_{1} \le c_{0} \text{ as } \|u\|_{1} \to \infty$$
 (3.6)

and let $g:[0, 1] \times E^2 \to E$ satisfy

$$g(\cdot, x, y)$$
 is measurable for all fixed $x, y \in E$; (3.7)

$$|g(t, x_1, y_1) - g(t, x_2, y_2)| \le c_1 |x_1 - x_2| + c_2 |y_1 - y_2|$$
 (3.8)

for all $x_1, x_2, y_1, y_2 \in E$ and $t \in [0, 1]$, where

$$4\pi^{-2}(c_1+1) + 2\pi^{-1}(c_0+c_2) < 1; (3.9)$$

$$g(\cdot, 0, 0) \in L^2(0, 1; E).$$
 (3.10)

Then there is at lest a solution $u \in H^2(0, 1; E)$ of Problem (P2).

Proof. Let $b_2 = \{0\} \times E$, $B = \{u \in H^1(0, 1; E); u(1) = 0\}$ and let $F : B \to L^2(0, 1; E)$,

$$(Fu)(t) = u(t) - g(t, u(t), u'(t)), u \in B, t \in [0, 1].$$

For $u \in B$, it is true the Wirtinger inequality is (see [3])

$$\| u \| \le 2\pi^{-1} \| u' \|$$
 (3.11)

By (3.8) and (3.11) it follows that F is a $(2\pi^{-1}(c_1+1)+c_2)$ - Lipschitzian operator from $B \subset H^1(0, 1; E)$ into $L^2(0, 1; E)$. Thus, F - K is $(2\pi^{-1}(c_1+1)+c_2)$ set-Lipschitzian. Next we show that $(I+D+\bar{A})^{-1}$ is $2\pi^{-1}$ -Lipschitzian as an operator

from $L^2(0, 1; E)$ into $H^1(0, 1; E)$. In fact, let $v_i = (I + D + \bar{A})^{-1}u_i$, i = 1, 2, and let $u = u_1 - u_2$ and $v = v_1 - v_2$. We have

$$v''(t) \in v(t) - u(t) + Av_1(t) - Av_2(t)$$
, a.e. on [0, 1].

Since

$$|v'(t)|^2 = \langle v'(t), v(t) \rangle' - \langle v''(t), v(t) \rangle,$$

this yields

$$|v'(t)|^{2} = \langle v'(t), v(t) \rangle' - |v(t)|^{2} + \langle u(t), v(t) \rangle$$

$$- \langle Av_{1}(t) - Av_{2}(t), v(t) \rangle \le \langle v'(t), v(t) \rangle' + \langle u(t), v(t) \rangle.$$

It follows that

$$\| v' \|^{2} \le \| u \| \| v \| + \langle v'(1), v(1) \rangle - \langle v'(0), v(0) \rangle$$

$$\le \| u \| \| v \| \le 2\pi^{-1} \| u \| \| v' \|.$$

Thus, $\|v\|_{\frac{1}{2}} = \max\{\|v\|, \|v'\|\} \le 2\pi^{-1}\|u\|$, as claimed. Therefore, $T = (I + D + \overline{A}^{-1}(F - K))$ is a set-contraction from B into B with respect to the norm of $H^1(0, 1; E)$.

In addition, using (3.6) and (3.9), it is easily seen that R > 0 such that

$$\left\| \left. Tu \, \right\|_1 < \left\| \left. u \, \right\|_1 \ \text{ for } \ u \in B, \ \left\| \left. u \, \right\|_1 \geq R.$$

Thus, we may apply, once again, Corollary 1.

References

- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Ed. Academiei, Noordhoof, Amsterdam, 1976.
- A. Granas, Homotopy extension theorem in Banach spaces and some of its applications to the theory of non-linear equations, Bull. Acad. Polon. Sci., 7 (1959), 387-394.
- G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Landon, New York, 1943.

- W. Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Rozprawy Mat., CCLXXIII, (1988).
- 5. N. Pavel, Ecuatii diferentiale asociate unor operatori neliniari pe spatii Banach, Ed. Academiei, Bucuresti, 1977.
- R. Precup, Nonlinear boundary value problems for infinite systems of secondorder functional differential equations, Preprint No. 8, 1988 ("Babes-Bolyai" Univ.), pp. 17-30.
- 7. R. Precup, Measure of noncompactness and second-order differential equations with deviating argument, *Studia Univ. Babes-Bolyai*, *Mathematica*, 34 (1989), 25-35.
- 8. R. Precup, Generalized topological transversality and existence theorems, *Studia Univ. Babes-Bolyai, Mathematica*, 35 (1990), in press.

R. Precup University of Cluj Faculty of Mathematics Str. M. Kogalniceanu, 1 3400-Cluj ROMANIA