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L. The Tamous continuation theorem of Leray-Schauder for equations in
Banach spaces ensures, in its simplest form, the solvability of the equation
o= T(x) with T completely continnous , when the possible solutions of the
honmotopic equations @ = (T(x), t € [0, 1] are a priori bonnded independently
of t. A more general statement of the Leray-Schauder principle is the following:

Proposition 1 (Leray-Schauder[3]).  Let E be a real Banach space,
7 C E an open bounded sct and let 12 [0, 1] x U — E be compact {continuous
with h([0, 1] x U) relatively compact). Assuine the following conditions are
solisfied:

(i) Wl x) # & for all t € [0,1] and x € JU;

(i) deg(1-b(0..), U, 0)# 0.

Thew there crists al least one zero of 1-h(1..) in U, Moreover,
(1) deg(f —h(1,.),U.0) = deg({ - h(0,.),U,0).

(We denole by deg(f. U, ) the Leray-Schauder degree of the map f with respeet
Fo U and 00).

There is also known the following version of the Leray-Schaider principle,
due to Granas [2], in terms of essential mappings instead of topological degree;

Let W be a convex subset of a real Banach space E, UV C K be hounded and
open in A and let I7 and QU denote, respectively, the closnre and the boundary
of [7 in K. A compact mapping [ : 77 — K is said to be essential il it is lixed
poiut free on U and each compact extention g of f |5 has at least one fixed
point in {7,
* Proposition 2 (Granas [2]). Let h: [0,1]x U — K be compact such
that

(i) b(t,x) # x Jor all t € [0, 1] and » € JU;

(ii) h(0..) is csscntial,
Then there caists al least one zero of Lhil.) in 1. Moreover, hil,.} is essential
Lo,

[n addition, there are known a lot of extentions of Propositions 1 and 2 for
single or set-valued mappings with properties more general than the compact-
ness (see [4]). So, a natural question is: what is the common base of all such
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conlinmation theorema 7 1 is e adm ol Cthis paper to [ormulate an answer to
this question. As we shall see, at this level of foundations, the concepts of "sel”,
“mapping” and Textention ol Urysolin type™ will be enough.

2 Let N and ¥ be two sets and A and B two proper snbsets of X and Y

respectively. Consider a mapping /1 [0, []x X — Y and a fwnily 4 whose
elements are funetions from X into [0,1] which are constant on A, Also cousider
a Tunetion d which is defined at least on the following family of subsets of X:

{H(a(-). )7 (B): a€ M}u{d).
The nature of the values of d does not import. Denole
Z = dw e Xi (L) e B loy some L € = [0. 1]},

[y = H(0.). Fy = M) and assume the constant linetions 0 and | belong
to AT

Our main resull is the following abstract continnation theorem:
Theorem 1 Assume thal the follmping condilions are satisficd:
(i) Jor cach a € M there exists a* € M suele that

ipey - W) Jor all E &
alE) = { 0 Jor all ¢ € A;

(i) the wapping 17 = Iy salisfics
(2)  d(H(a(-).-)"(B)) = d(F~(8)) # d(B),
Jor any a € M such that
Hia(-).) 4= Fla.

Then there erists at least one © € X ~ A solution to H(1,x) € B. Moreover,
' = Fy also satisfies (2) and

(3)  d(F7N) = dOFTNBY).

Proof. We start with the praol ol (3). For this, let @™ be associated to the
constant |, according to (i). Obviously., we have

H(n™(-).-) |,.1: Fu I.‘l
H{a™(+),")"(B) = F71(B).

By (i), these yield
AT (BY) = dUH{a(-).) (B)) = d(F7 (B)),
that is (3).

Further, we shall ])r(:vr\ that Fy satisfies (2). To this end. let us consider any
a € M such that H(a(-}.-) |a= I |4 We discuss two cases:
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Case 1. Assume Fy |g4= 1y |4. Then, H(a(-).-) [a= Fo |4 and hence, since
fy satisfies (2) and we have [3):woe dednee

d(H(a(-), )7 B)) = d(FyY(B)) = dF7 (1))

as desired.
Case 2. Assume [y [4# Fy | 4. Take any a* € M associated to « according
Lo (). One has

Hia™(-),") la= Fy |a.

whenee, since Fy satisfies (2). it follows that

A H (a™(-). )Y B)) = d(F7(B)).
On the other hand.

H(a ()" (B) = [ (a(),)"(B).
Hence

d(H{a™(:). )" (B)) = d( H (al-), -} (B)).
These, together with (3), vield
A(H(al-), )TN B)) = d(F7 ' (B) = d(F7(B)).

Thus, £y satisfies (2) and the proof is complete,

A mapping £ ol the form [ (af-), ) with o M, satistving (2), is said to be
d-cssential. If Fis a d-essential mapping, then F=YB) # B, i.e. there oxists
ab least oue solution to the inclusion F(z) € B. Theorem | saies that, under
asswmption (i), the d-essentiality of £y = /(0. spreads to £y = H(l,-). It
is easy to see that, if | —a € M for any a € M, then the d-essenliality of
is in fact equivalent to the d-essentiality of F,. For the proofl, apply Theorem
I onee again, to #(t, r) = HL =) I in addition, ta € M for all a € M
and € [0,1], then the mappings H{(!, ), Le [0, 1], are all d-essential or all
d-inessential.

i applications, Theorem | is used to prove the existence of solutions to the.
inclusion £(w) € B, when it is known that [y is d-essential, It follows that
tis important to have methods to identify the d-essentiality property. Snch
methods arise from the fized point theary and degree the ory. The unetion d is,
for first kind methods, the simple indicator function taking only two values:

wo 1 e cX
r“'((”J‘{nir(*:(fl

while for the second kind methods, its values are integers which are obtained

by means of the degree (see [6], [7]).
As regard condition (i), uotice that, since | € M. there is o* € M such that
a” =1 onZand a® = 0on A Thus, (i) implies Z1 A4 = 0. Condition (1) is,
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al least in some particudar cases. in connexion with the extension thieorems of
Upvsohin type rom the genoral topology. Here are bwo such particular cases for

normal and completely regular spaces (for another example we send to [5]).
|} The continuation principle in normal spaces.

A special version of Theorem 1 is ohtained il we assume that X is a normal

topological space. 1 is continuons and
M ={oe C(XN:[0.1]):a]a is constant }.

Then the condition (i) is satisfied provided that

[ndeed. if we assume (i), then, by the Urysoln’s characterization of normality
{see [1]), there is # € C'(X;[0,1]) such that #(x) = 0 on A and 8(x) = 1 on
7. Now. il we take any a € M, we see that «*(#) = B(x)ale) has the required
properties in (i). Thus (&) implies (i).

Recall that any metric space is normal.

- 2) The continuation principle in completely regular spaces.

Assume, in particular. X is completely regular, i.e. for every p € X and
every closed subset D € X, p ¢ D, there exists 6 € C'(X:[0,1]) such that

B(p) = | and 6(x) = 0on . Take H and M as in the previous example. Then,

a sullicient coudition for (1) is
(') Z(} A =0 and Z or A is compact.

This follows from a Urysoln type characterization of the completely regular

spaces (see [1, Problem X12.11]).
Notice that any HausdorlT locally convex space is completely regular.
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