Existence Results for Nonlinear Boundary Value

Problems under Nonresonance Conditions

RADU PRECUP
Department of Mathematics
Babeg-Bolyai University
Cluj-Napoca 3400, Romania

ABSTRACT

We give applications of Banach, Schauder, Darbo and Leray-
Schauder fixed point theorems to prove existence results for weak
solutions of the semilinear Dirichlet problem - Au - cu = f(x,u,Vu)
in @, u = 0 on dQ, under the assumption that ¢ is not an eigenvalue
of -A and f(x,u,v) has linear growth on u and v. We obtain
improvements of some known existence results.

1. Introduction

Let Q be a bounded open subset of R". We discuss the
existence of weak solutions (in H;(Q)) of the Dirichlet
problem

-Au-cu = f(x,u,Vu) , xEQ
u=0, x€ Q (1)
where f:QxR¥!'— R is a L* - Caratheodory function (f is a
caratheodory function, i.e. f(x,") is continuous for almost
all x €Q, f(-,z) is measurable for all z € R*™', and f(-,0) €
I?(Q)) and c € R.

Denote by A,, 0 < A < XA s ... S Ay S eae g the
eigenvalues of -A : H;(Q) —H'(Q), i.e. the numbers for which
the problem

“Au - Au =0 in Q, u = 0 on 9Q




has nontrivial weak solotioms. bt

Y

We shall assume ¢ = A, n = 1,2,... and that |

| £f(x,u,v)| < alu] = b|v| « B(x) (2)

for all u €R, v € R" and almost all x € Q, where a2 and b are
nonnegative constants and h € L*(Q).

Problems of this type have been examinated by many
authors over the last twenty years. We refer to [3]1, [8] and
[10] for results related to ours.

In [10, Section 5] it was studied the existence of c=(Q)
solutions for a more general problem

Lu - A(x,Du)u = F(x,Du) in Q, u = 0 on IQ
with L an elliptic operator of order m and |a| = m - 1, where
roughly speaking Wy <A(x,D%u) <u,,, (u; being the eigenvalues of
L) and F(x,z) grows slower than linearly as |z| — .

In [3] the following result was proved via the Schauder
fixed point theorem: Assume f, g and dg/du satisfy the
Caratheodory conditions, there are «, a, € R and Jj such that
1 (3)
for (x,u) € Q x R, and there are f > 0 and h(x) € L*(Q) such
that

h;<as (dg/du)(x,u) <o, <A

| £(x,u,v)[?<B?| v|2+h(x)
for (x,u,v) € Q x R®!, Then, if
B<(min{l-a/A,,, a/h;-1}) /R, (4)
there exists at least one solution u € Hi (Q) to
-Au-g(x,u) = f(x,u,Vu) , xEQ
u=0, x € 0Q. (5)
As we shall see, in many cases, our results will improve
inequality (4).
Recently in [B], it was proved that if ¢ = 0 and
a/h, +b/fh <1 (6)
then (1) has via the Schauder fixed point theorem, at least

one weak solution. Also, if instead of (2) f satisfies the
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Lipschitz condition

| f(x,u,v) - f(x,u,v)| s alu-u] + b|v-V] (7)
for all u,u€R, v,vER' and almost all x € Q, and if ¢ = 0
and (6) holds, then the weak solution to (1) exists and is
unique as follows by the contraction mapping principle.

In the present paper we shall obtain an analogue of
inequality (6) for the general case of an arbitrary constant
e erh,, D =1,2;00% %

For other results and approaches to semilinear boundary

value problems we refer to [2], [6], [9] and [11].

2. Preliminaries

Throughout this paper the notations <',> and |‘| stand
for the usual inner product and Euclidian norm in RY , (-,-)
and ||| are the inner product and norm in L*(Q) while (- ,"),
and ||-|, denote the inner product

(u,v), = | <Vu,Vv>dx (u,vE€ Hy(Q))
and the corresponding norm in H;(Q) (Recall we have supposed
Q bounded).

We shall use basic facts in the I? theory for the linear
operator -A subject to the homogeneous Dirichlet boundary
contraint:

a) The Rellich - Kondrachov theorem. (i) The imbedding of
E}(Q) into I*(Q) is compact.

(ii) If in addition Q has a C' boundary, then the
imbedding of F(Q) imto I7(Q) is compact (see [4] or [7]).
b) The imverse of -A. For each v € I*(Q) there exists a

. o T




AR, = sep{ (A vl ;
and conseguently

1(-A) vl = (1/X))Iv] for all v € I*(Q)-
From (8) and (9) we have
I(-2)"vii = (v, (-A) w) s (1/R) w3,

=~ o TS

hence
1(-A) v, s (1/yA)v] for all v € I(Q). (19)

c) Regularity of weak solutions. 1f Q has a C? boundary,
then (-A)(L*(RQ)) C H?(RQ) and the linear operator (-A)" is
also bounded from I?(Q) into H?*(Q) (see [1]).

d) Eigenfunctions. There exists a Hilbert base (u,) in
I*(Q) such that u, € Hy(Q) and

(a,w), = A(u,w) for all w€ H(Q), k=1,2,... .
Moreover, (u,/\/},) is a Hilbert base in (H;(Q),(',"),) (see
[11).

We shall also use the following well known result:

e) The Nemitskii superposition operator. If g : Q x R* —
R is a Caratheodory function satisfying the growth condition

| g(x,u)| = clu| + h(x)
for all u € R” and almost all x € Q, where C = 0 and h € I*(Q),
then the mapping
u—g(-,u())

is continuous from L*(Q;R™) into IL*(Q) (see [9] or [11]).

3. Results

Lemma. Let ¢ be any constant such that ¢# A, ,n=1,2,...
Then, for each v € L’(Q) there exists a unique weak solution
u € H(Q) to the problem - Au - cu = v in Q, u = 0 on 9,
which we denote by L'v (where Lu = -Au - cu), and we have the

following eigenfunction expansion
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L'1V=E:.1(;‘-k_c)-1(vrux)uk' (11)
where the series converges in H;(Q). In addition,
Izvl =< ydvl for all vE L (), P

where y.= max{l/|h-c|; k=1,2;.--}

proof. We first prove the convergence in H; (Q) of series
(11). since (u/{/X,) is a Hilbert base in (HX(Q), (', )1), we
have

1522, (M-e) (v, u) uld = ZEE (v, ) M/ (Me)? s
= CELE (v, 1, )*

where C is such that A/ (M\-c)?=C for k = 1,2,... - Now the
convergence of (11) follows from the convergence of the
numerical series X, (v,u,)?. Let u € H!(Q) be the sum of
series (11). Next we check that Lu = Vv weakly, i.e. (u,w),; -

c(u,w) = (v,w) for all w € H(Q) . Indeed, we have

(u,w), = T (M—0) (v 1) (W W), =

SHA = E:.]}\k(?\.k—c)—l(lf, Uk) (UK,W)

(u,w) = Tpar (M) (V) (0, W) -

Hence
(u,w),~c(u,w) = L (V,u,) (U, W) =

as desired = (T (Vi) U, w) = (VW)

The uniqueness folows from ¢ = Ay n=1,2,000
To prove (12), observe that
1Z2.. (M) (v, u)ul? — | L7 v|* as n—>
and, on the other hand,
1EL, (A e) (v u)ul?= n(A-0) (v, )i s
2 VEL (v, ) — v wi?* -ag B>,
The proof of Lemma is thus complete.
Theorem 1. Suppose
A< €< Ay (13)
for some j € N (h,= -®) and that f is a I? - Caratheodory

function satisfying (7) with two nonnegative constants a and




na? itheagla Alrey pecloe srises i&i‘
Then problem (1) has a unigue solution uw € = (Q).
Proof. Solving (1) is equivalent to finding a fized
of the following mapping

A+ Q) — LX(Q), A(v) = £(: ,L'v,Viv). (1s)

From (7) and e) it follows that A is well defined.
Now we show that A is in fact a contraction mapping. For
this, let v,,v, € L?(Q). Then
IA(v)-A(v,)Il = al L (v,-v,) |l + bl L (vi-w), -

From (12) we have
I (vi=vy)ll = vl vy-v,l .

On the other hand, using (8) and (12) we get

12 (v=v) 11 = el L7 (vy=v,) |2+ (v,-v, , LY (v,-v,)) =

s oyl vi-v,l 2 + v, -2

and therefore

" L-l(vl_vz)"]s V Yc(l-‘-cl‘i’c) " V:l-vz" L (16)

Consequently
1A(v)-A(v,)| = (ay .+ By (I+ey,) )| v,-v,l 1
which, by (14), shows that A is a contraction mapping on
I3Q).
Remark 1. In case ¢ = 0 we have y,= 1/A, and inequality
(14) reduces to (6). Thus, Theorem 1 generalizes Theorem 1 in
[8].
Notice that in Theorem 1 no smothness assumption on the
boundary dQ is required.
Theorem 2. Suppose Q2 has a C? boundary, (13) holds and
f is a Caratheodory function satisfying (2) with a and b as in
(14). Then problem (1) has at least one solution u € H*(Q)
N B2 (Q).

Proof. To solve (1) we look for a fixed point of mapping

(15). This time, A is completely continuous. Indeed, due to
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the C? smothness of boundary 4Q, L7v€ H*(RQ) N H}(Q) for any
v € I*Q). It follows that vty € H(Q:;RY) and so
(L'v,VL'v) € H'(Q;R"!) . Next, by Rellich - Kondrachov theorem,
the imbedding of H'(Q;R™') into I*(Q;R™) is compact and since
the Nemitskii mapping £(-,u(:)) is continuous and bounded from
1*(Q;R™') into I#(Q), it follows that A is completely
continuous from I?(Q) into itself. Similar estimations to
those in the proof of Theorem 1 show that

la(v)l = alL?v| + bIL v+ [ Al =

s (ay.r /v (Trey ) )lvl + 1ol .
By (14), this shows that there exists a sufficiently large
closed ball in I*(Q) which is mapped into itself by A and so
we may apply Schauder fixed point theorem.

Remark 2. In case ¢ = 0 Theorem 2 reduces to Theorem 2 in
[81-

Corollary. Suppose Q has a C? boundary, f : @ X R — R
and g : Q x R — R are I? - caratheodory functions and there
are o, o,, b € R and j€EN such that (3), (13) hold and

| £(x,u,v)| = blv| + h(x) (17)
for all u € R, v € BR¥ and almost all x € Q, where h € L*(Q).
If inequality (14) is true for a = max{| c-a| ,|c-o,| }, then
problem (5) has at least one solution u€ H(Q) N H(Q) .

Proof. Problem (5) is equivalent to
-Au - cu = f(x,u,Vu) + g(x,u) - cu, xEQ
u=0, x € Q (18)
where, by (3), one has
| g(x,u)-cu| = alu| + | g(x,0)|

for all u € R and almost all x € Q. Now we may apply Theorem
2 to problem (18).

Remark 3. If we denote
S = (Ajﬂ—kj)/(a/kfal/kj,l)

and we choose



Wiy <1, ;

which is in most cases more restrictive than car comditian

(14). For instance, in case that a =@, = (AA. )" w= Eawe

d=c=a,a=0, y,= (a-A;)*, and it is easily seen that
Ry, > JTTeer)

for j large enough.

The smothness of the boundary o2 was required for the
complete continuity of A in case that f depends on Vu. In the
following theorem the mapping A will be only a set-contraction
and the smothness assumption on 92 will be not necessary.

Theorem 3. Suppose (13) holds and f has the decomposition
f(x,u,v) = £f,(x,u) + £f,(x,u,v) with f, and £, L[’-Caratheodory
functions such that

| fi(x,u)| s a|u|l + b(x) (h€EL}Q))
and
| £,(x,u,v) - £,(x,4,v)| = a|u-t| + b|v-v]|
for all u, u€ER, v,vER' and almost all x E Q. If a = a, + a,
and b satisfy (14), then (1) has at least one solution u €
Hy (Q) .

Proof. We have the following decomposition of the mapping

A=A+A4,,A(v)=£f(,LV), A(v) = £,(- ,L'v,VL'v) ,
where A, is completely continuous and A, is a contraction
mapping. Hence A is a set-contraction, which, by (14), maps a
sufficiently large ball of IL?*(Q) into itself. Thus we may
apply Darbo fixed point theorem (see [5, Theorem 2.9.1]) and
find a fixed point of A.

Remark 4. If f = f(u) where f € C(R) and f(u)/u — 0 as
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| u| = «, then we may choose a, = b =0 and a = a, small enough
that ay.< 1. Thus, (14) automatically is satisfied and so
Proposition 2.7.1 in [9] is a special case of Theorem 3.

We conclude with two results concerning the case where a
sign condition is satisfied by a component of f and ¢ = 0
(equivalently ¢ = 0).

Theorem 4. Suppose Q has a C? boundary and f has the
decomposition f(x,u,v) = f(x,u,v) + h(x) where h € *(Q) and
f, is a Caratheodory function satisfying

| £,(x,u,v)| = alu| + b|v| (20)
and
uf (x,u,v) =0 (21)
for all u € R, v € R* and almost all x € Q, with some
arbitrary constants a and b. Then problem (1) has for ¢ = 0 at
least one solution u € H*(Q) N H; (V).

Proof. We look for a fixed point v € I?(Q) of mapping
(15) which, as in the proof of Theorem 2, is completely
continuous. Now we show that the set of the solutions to

v=2MANA(v), 0sAsl (22)
is bounded. Indeed, let v be any solution to (22) and
u = (-A)'v. Then, on using (21), we get

luli= N(£ (- ,u,Vu),u) + A(h,u) = MAh| |ul.
It follows that there exists a constant R, independent ofk
with | (-A)'v],= R, for each solution v to (22). This, by (22)
and (20), implies that there is R independent of A such that
vl < R for each solution to (22). The conclusion now follows
by applying the Leray-Schauder principle for completely
continuous mappings (see [5, 5.18.1]).

Theorem 5. Suppose f has the decomposition f(x,u,v)=
f,(x,u) + £ (x,u,v) where f, and f, are I?-Caratheodory functions
satisfying

|fo(xnu)l = aulul , ufy(x,u) =0,



solution o € E(@). b

Proof. First show as in the proof of Theorem 3 tha: for
a, and b, small enough, A is a set-contraction. Next show the
a priori boundedness of all solutions of (22) and fim=lly

apply the Leray-Schauder principle for set-contractioms.
Notice that in Theorem 5 we need no restrictions on =,

and the boundary of Q.
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