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ON A FUNCTIONAL EQUATION

OOTAVIAN AGRATINI

Abatraet. This is a survey paper devoted to the following functional equation
Ephu(t -k)mu(z), z€R,
T
which is in connection with the notlon of wavelets. If v(k) vanirhes for k € Z
and if py m 0 for k < 0 and k > m + 1, then, for £ = n, the above equation
leacls us to the well-known general m'-orcer linear recurrence relation. For
v(r) = u(2r), £ € R, we present how this equation appears as a necensity
in the field of mathematics. We also indicate three properties which must
be fulfilled by the function and the sequence so that these equations admit
solutions. When the sequence (px)rgz has a compact support other properties
are revealed and the 'tcchnique to obtain solutions in deacribed.

1. Introduection

Starting from the general m*h-order linear recurrence relation

m
Y Putin-r =0, m22 po#0, pm #0, (1)
hm0
we consider a non-homogencous equation as follows
m
thu(m -k)=v(z), z€R. (2)
hm0

For 2 = n and v(Z) = {0} we reobtain (1).
What happens if the left side of relation (2) contains an infinity of terms? In

this paper we would like to study an equation of the following form

f: puti(z — k) =v(2), z€R. (3)

k=m—-00
This equation raises new challanges such as: in which space of functions must

we search the solutions and what kind of conditions must the sequence (py)rez fulfil
Received by the editors: June 12, 1097,
1991 AMathematice Subject Classification. 42C13, 11B37.

Keay words and phrases. functional equations, reccurence relations.
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to be compatible. Is such a research artificial or already necessary in the mathematical
landscape? In the next section we will detail upon how such an equation can appear
and the importance it takes. For this, we take a trip in the world of wavelets which
represents a happy marriage between the results of the signal proccesing and the results
in multiresolution analysis. Further on, we will list and prove some. properties both of
the function and the sequence which are involved in (3). In the last section we will relate

the annonunced study under the assumption that the sequence has a finite support.

2. A sea of wavelets without water

We try to present the notion of wavelets. The standard references for this topic
are Chui [1], Daubechies [2], Meyer [4] and the literature cited here. If we denote hy
L2(R) the space of square integrable functions defined on R, we will refer to a function
f € La(R) as being a signal with finite energy given by its norm ||f]| = (f, f)!/* We
recall that the inner product of this space is defined by (f,¢) = / f(x)g(x)de. s
well-known [3] that the Fourier transform of a function f € L2(R) ingiven by

ry _ 1 —iéx g,
o) = = /R e~ f(x)dz

and the inverse Fourier transform is

=L [ e
16 = = /R Fleyde.

For a given function f we will use throughout the paper the notation f; () :=

2/2f(Px — k). For any j,k € Z we can write

| o
1@ - k)l = { [ - k)l’dz} = 23y

This implies |{f; x| = lIfIl, j. k € Z.

A multiresolntion analysis (MRA) of La(R) is defined as a sequence of closed
subspaces Vj, j € Z, of Ly(RR) which enjoy the following properties

---cvacvacvic...,

(i) | J V; is dense in Ly(R) and [} V; = {0},

Ji€Z jez
(ively & vi-+1) €V,

veEV; & v(2)€ Vi, j éZ,

{iv) a function ¢ € V, exists such as the set {@ox : k € Z} is a Riesz basis of
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In accordance with this definition, if the subspace V4 is generated by a single
function ¢ € La(R). that is Vo = closurep ,(ry(dox = k € Z). then all the subspaces V;

are also gen-rated by the same ¢ namely Vj = closure; gy (o 0 & € 7Z) o fact, the set
f iunctions {¢j 1 1 € Z} ia s Riesz basis of Vj. We will name ¢ “the scaling function”
o1 more suggestively "the father function”. It is said that ¢ generates an MRA {V}} of
La(R). Since ¢ € V5 C Vi and {1k : k € Z} is a Riesz basis of V), consequently there

exists a unique [*-sequence (71 )xez which describes ¢ that is ¢(r) = Z ey i(r). In

k€Z
other words, the father function satisfies the dilation equation
(o)
$(@)= Y mé(2z-k), reR. (4)
k=—-co

This also called a ”two-scale relation” of the function ¢. The sequence (pi)rez

is not zero. By integrating the relation (4) over R, we can write

a9

(s ¢} l V. .
/qu(.r)d.r = Z pk‘/l;:ﬁ(‘z.r - k)da = 2 L ,,’k~ " d()dy.

k=—co k= -
This leads us to the following identity
(o]
Z Pk = 2 ('r))
k=—o00
At this point, we introduce Wj, the orthogonal complement space of Vi V.

so that Vigy = V; @ V. We deduce that Wj, j € Z, are mutually orthogonal and

Assuming that integer translates of ¢ generate an orthogonal basis (o.n.b.) for
Lo, there exists a fur ction ¥ € Wy such as {yx : k € Z} forms an onh. for Wy, At
this moment the ”mother wavelet” is born. Like the father & generated an o.nb. for Vj,
the mother i generates an o.n.b. for the orthomn‘lp[maﬂts%‘ 4\[,.\4 @ 7Z. It results
that S(ﬁh: (j.k) € Z x Z} is an o.n.b. for L4(R)s Inﬁot ¥ can be camstructed as

follows:
pio= 3 (14 dex- ) 6

k=-—00

- .
wd«&gﬁuc-rnl process to build wavelets hases
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3. Other features of a fath ~r function

Applying the Fourier transform to (4), the dilation equation gives

¢(£ Z [’k\/‘z—[ ¢ —k -'zfdit_ —_ Z pk2 1 "'l‘f/2/ ¢ '/ w(/ dy

k=-—o00 k——oo

] 00
If we set H(z) := 3 z prz*, we obtain the following relation

k=—o00
$(26) = H{e*)B(€). ™
By repeating n times the relation (7) we ot

2k—l

8(26) = T #ie¢/* " die/2»M).

k=1
Since $ is a continuous function on R and assuming that $(0) = 1, we easily

deduce that
(&) - T Heer™),

k=1
pointwise.

Proposition 1. If ¢ defines an o.n.b. in Vy the one has
I + [h(e + m)|* = 1, (8)

where h(€) = H(e %¢).

Proof. We can write successively:

don = (60,0, 0.0) = /Rd’(r)@(r - n)dr = Ae‘i"5|$(5)|2(l£,

where we have used the Parseval identity. On the other hand,

k41w 27
[RaaCGRE )3 / SR TG ‘{ 2 I¢<’+?*">l‘}

R=-c0 k=~r0

2
Because oy / e~ e = ., the above relations lead us to the following
n

identity

o0

- 1
9L 12 —
k_E_mw(& + 2km))* = o

We choose £ := 2€ and according to (7), we have

o= Z|4,25+2ur = L]Il ek)ige 4 kn= Y+ Y =

k=-—0ro k=00 keven gy odd



= |H (e ) D 1B(E + 2km)| + |H (e E+ | 3 166 + (2k + V)m)|* =

kez keZ
1 2 2
= 5 (1RO + [A{E + m)[%).
We have used the fact that & is 2m-periodic.
Taking into. account (5) we get h(0) = H(1) = 1. By using (8), it results

I ) = H(-1) = 0, in other words Z (—1)*px = 0. We are now able to state another
k=—oc0
property in connection with equation (4).

Proposition 2. If ¢ defines an o.n.b. in Vg then the following tdentitss

'ZP% = ZP:H: =1

kez keZ
hold.
Proposition 3. If ¢ is normalized, that is / &(z)dz = 1, then the following
R
identities
Do ble—k) =) b(k)=1
k€Z k€Z
hold.
Proof. If we put s(z) = Z #(z — k), by using the dilation equation, we can
kezZ
write

5(2) = i {an¢(2z—2k—n)}= i { D }=

k=-00 \neZ k=-0c0 {neven . 4dd

=), {Z P2m®(22 — 2(k +m)) + D pams16(2z — 2(k +m) — 1)} =

k=—c0o \meZ meZ

= ) ¢(20-20) (Z p2,,.)+ Z é(2x -21—1) (Z pgm+1) = Z ¢(22-1) = s(2z).
l=—0o0 meZ I=-00 meZ {=--00

We have used Proposition 2. In this way, we have obtained s(¢) = s(2x) which
implies () = 25(2¢). This represents a dilation equation with po = 2 and all other

coefficients are zero. The non trivial solution is s = §, the Dirac delta function ([3], Lecon

n°® 31). We deduce that s is a constant. Taking Z ¢(z — k) = a and integrating over
k=—o00
[0,1] we have

Z / ¢(z — k)dz = Z /l k¢(y)dv—/ dly)dy = 1.

k=—o00 k=-o00

(e 4]
For # =0, it holds 1 = Z o(—k) = Z o(k) which completes the proof.
k=—co keZ
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4. Particular approach

We are going to study a two-scale relation which is described by finite sums. We

suppose that the integers N’ < N’ exist, such as
(i) pn'#0, pNv #£0 (i{) pr=0fork < N' and k > N”, 9

We will only be concerned with scaling functions which are continuous every-
where. Because ¢ € L;(R) N ('(R) we are looking for the solutions ¢ with bounded
support. Firstly, we specify that a general method for constructing the scale function ¢
is by using iterates and which does not involve ¢. In fact, ¢ solves (4) if T(¢) = ¢ where

T(¢) = Zpkqﬁ(Qz — k). We try to find this fixed point as usual: find a suitable ¢,
keZ
define @,, = T" g, and prove that ¢, has a limit. In this way, ¢(z) = lim ¢,(z). Asa
n—+00

consequence of this recursive scheme we can expose
Proposition 4. If the relation (9) is fulfilled then

14 N —N" 1—-N'4+N"
2 ' .2

supp¢ C [N, N"} and suppy C [

hold, where ¢ and  satisfy the equations ({) respectively (6).
Proof. We use the recursive scheme and choose ¢¢ with compact support. Lei’s

take suppén = [N§, NJ]. Successive applications of T' define

Nll
$is1(2) = (T;)(x) = D prdj(22 — k). (10)
k=N"'
N/ NI NII N/I
We have suppé; = 0;— , =2 ; ] and denoting suppg; = [N}, N/| it

results NI, = (N} + N')/2, NI\, = (N{' + N")/2. By computations, it follows

1

Ny (11 1 N (1,1 3
po N (L L WY a2 N (L L e
Ni=% <2+22+ *2:‘>N' “1‘2J‘+<2+22+ +21)N'

and consequently  lim N){ = N’ hn NJ{' = N”. This proves that suppé ¢ [N/, N
Jroo 100

ln order to obtain the second inclusion, in (9) we notice that py_x is only nouzero fo.
0o . N+ kN

kell-N" 1-NIJNZ. On the other hand, we have suppe(2- k) C 5|

=)

relation (6) allows us to obtain the desired result.
Investigating () we :~mark that by a change of index in pg, the relation (1)

be written as follows

.
o(r) =Y pead(2x — k). popn # 0. (1)
k=0
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Of course, the scaling function ¢ must also be shifted accordingly.

Of the previous theorem, supp¢ C [0, N] and knowing that ¢ € C(R) we deduce
#(0) = ¢(N) = 0. Firstly, we need to determine ¢(k), 1 < k < N — 1. Substituting
z=k, 1<k<N-1,into (11) leads to N — I linear equations with the N — 1 unknowns

¢(k). In matrix notation we have
v = Pv, (12)

where v is the column vector (¢(1),$(2),...,6(N —1))T and P the (N — 1) x (N — 1)

matrix

P = (p2j_k)1<ih<N-1 (13)

with j being the row index and k the column index. Recalling that ¢ generates a partition

of unity (see Proposition 3) we can determine the values of ¢(k), k € Z, by finding the
N-1

eigenvector v corresponding to the eigenvalue 1 and imposing Z o(k) = 1. Define ¢q
k=1
to he the piecewise linear function which takes exactly the values ¢(k) at the integers,

that is
$o(z) = B(z)(k+1—2) + ok + 1)z — k), =€ [kk+1].
We compute ¢;, by using (10) and it follows that ¢; are piecewise linear with
nodes at k/27 € [0, N), k € Z.
Let’s make some examples. For N = 3, it is known the quadratic cardinal

B-spline N3 whose two-scale equation is
1 3 3 1 )
Nj(r) = ZN:;(?J’) + ZN;;(?J,‘ -1)+ ZN;;(?:? -2)+ ZN;;(?.:: -3).

However, there is another alternative [2], namely Daubechies’scaling function ¢

governed by

1 + V3 3+ 3- \/' o 1 =VB o
P (2) = V34020 1 ‘[4)"(2 D+ 223090 )4 74" (20 - 3).
In the following, we choose py = st and p; = —— where p = (1 + vff;) /2. In
. M

concordance with Proposition 2, we must take p3 = p and pa = 1 — p. Thus the matrix

P defined, gy (13) becomes

P=

1[1-v5 1+VE
2 146 1=vE

~1



OC'TAVIAN AQNATINI

"

The solution of (12) s v = a ( Pl ) and the normalization condition implies
a=1/2. One obtaing ¢(1) = ¢(2) == 1/2.

Using the golden ratio in the componence of the matrix 17 we get a niee seale
function which is defined on Z as follows
172, ke {1,2}
0, keZ\{1,2).

¢(k) =

Haviug the values of ¢(k) it is now enay to compute ¢(k/2), (k,j) € Z x 2. In
fact, the Interpolatory Graphical Display Algorithm can be applied, see [1], page 93.
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