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CONTINUATION PRINCIPLES FOR COINCIDENCES

RADU PRECUP

1. Introduction

This paper is devoted to the solvability of semi-linear operator equations of
the form Lx=N(x) in Banach spaces. We use the basic idea of the continuation
methods: embed the equation in a one-parameter family of equations Lx= H(x,\),
A €[0,1] , where H(.,1)=N and H(, 0) is suitably simple, and try to deduce the
solvability of the equation for A =1 from that corresponding to A =0. There are
two main approaches to this problem. One is based on topological invariants like
the coincidence degree, see [1], [3] and (6], while the other uses the notion of an
essential map. Our discussion follows the second approach.

The literature on this subject is now quite extensive, see [4], [5], [7] and [9].
In the present paper we refine and complement the existing results and we also
obtain “no degree” versions of some continuation theorems by Capietto-Mawhin-
Zanolin [1].

2. Continuation principles for families of operators
having the same domain

Let X and Y be Banach spaces and [ : D(L) < X — Y alinear Fredholm
map of index zero, that is .

Im L is closed and dim ker L = codim Im <.

Let X=X, ®X,and Y =Y, ®7,, where X, = ker L and ¥, = Im L. Let
P:X — X, and Q:Y — Y, be continuous linear projectors and J- X, —>VY a
fixed linear isomorphism. Then L+JP isa bijective linear map.

If Z is a metric space and N: Z — Y, we say that N is L-compact (on 2)
provided that (L + JP)-IN is compact, i.e. it is continuous from Z into X"and maps
Zinto a relatively compact subset of X. We say that Nis L-completely continuous
(on Z) if Nis L-compact on each bounded subset of Z.

Remarks 1. The definition of an L-compact or L-completely continuous map
does not depend on the choice of J (see [3]).

2. The map JP: X — Y is L-completely continuous.

3 N:ZcX—> Yis L-completely continuous, then N+ JP is L-completely
continuous too.
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4. Each L-compact map is L-completely continuous. The converse is true in
case that Z is bounded. '

5. If D(L) is closed (when we may suppose that D(L)=X without loss of
generality) and L is bounded, then (L+JP)™! is a bounded linear map and
consequently, a map is L-compact or L-completely continuous if and only if it is
compact or completely continuous, respectively (this case was considered in [4]).

Finally, we take a subset K, of X, a nonempty open bounded subset U of K,
and a nonempty convex set K c Y. We denote by U and oU the closure and the
boundary of U with respect to K. Let

M ={F:U — K; F is L — compact and Lx # F(x)ondU}.
We say thatamap F e M is essential in M provided that for each G € M with
Glsy = Flou - there exists at least one x € U such that Lx = G(x).

THEOREM 1 ([5]). Assume H:U x [0, 1] S K is L-compact on U x [0,1]
and denote H, = H(.,\). Also suppose
(@) Lx # H(x,\) for all x € U and X €[0,1];

(b) H, is essential in M.
Then there exists x € U suchthat Lx = H(x,1). Moreover, H, is essentialin M too.

Remark 6. For X=Y, K,=K and L=1 (the identity of X), Theorem 1 is the
classical topological transversality theorem.
For an example of essential map, we have the following proposition.

PROPOSITION 1. Suppose that K, is convex and

M (L+JP)"(K +JP(T)) < Ky .-

Let F,:U — Y, be L-compacton U and x, € U . Assume

) Lx, + Fy(T) c K

(3) Fy(x) # 0 for any x € (x, + X,)NOU

4 <F0(x), J(x - x0)> < 0 for any x € (x, + X;)\oU

where ( , ) denotes the euclidean scalar product on Y,. Then the map Lx+ F, is

essential in M.

Proof. Let G € M and Gloy = Lxg + Folay - We have to prove the
solvability in U of equation Lx = G(x), or equivalently, x = (L+JP)}(G+JP)(x).
For this, we define H:U x [0,1] - K,

H(x,A) = (1= A)x, + ML + JP) (G + JP)x)
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Since K, is convex, H is well defined and, by Remarks 3 and 4, H is cormpact on
U x[O,lﬁ. In addition, x # H(x,A) for all x € dU and A e [0,1]. To see this,
suppose the contrary, thatis x = H(x, ) for some x € 8Uand A [0, 1] dAf A =0,
we should have x = x,, a contradiction since x, e U.If & = 1, then Lx= G(x)
or, equivalently, Lx = Lx,+F(x). This means that L(x-x,)=0 and F(x)=0,
that is x €(x, + X,)N6U and Fy(x)=0, which contradicts (3). If 0 < A <1,
then x — x, = k[H(x, 1) - xo] , or

(L +JPY(x ~ xg) = A[(G + JPYx) - (L + JP)xg] = MFy(x) + MIP(x - xg).

This yields L(x —x,) =0, that is x &(x,+X,)NU , and AFy(x) = (1= MJ(x - x,).
Consequently, 7&< Fy(x),J(x—x, )> =(1- x)lj (x—x, )|2 >0, which contradicts (4).
Thus our claim is proved. Finally, by the classical topological transversality theory,
since H,=x, is essential, we get that H, is essential too. Thus, there is x €U
with x=H (x), that is Lx = G(x). ’

Remarks 7. If

Lx, —JP(U—xO)C K,

then the map F (x)=—-JP(x—x,) satisfies (2)—(4). Therefore, if K, is convex
and (1), (5) hold, then the map Lx,— JP(x —X,) is essential in M.

8. In case that x, eU c K=K c X =Y and L=/, conditions (1) and (5) are
satisfied and Lx,— JP(x - x,) is just the constant map Xy

9. Suppose F:U —» Y is L-compact. Then QF:U — Y, isalso L-compact.
This follows by (L+JP)"'QF = P(L+JP)-'F. Thus, in Proposition 1, we can set
Fy=QF, where F:U — Y isany L-compact map.

Concerning the solvability of the equation Lx = N(x) we have

__ THEOREM 2. Assume K, is convex and (1) holds. Let x, €U and let
N:U — K is L-compact. In addition suppose

6 Lx, + ON(U) c K,

7 ON(x) #0 for any x € (xg + X;)N U,

(8) (ON(x),J(x - %)) < 0 for any x € (x, + X,)N U,
) Lx # (1= M)Lxy + MN(x) for all x € 8U and A&0,1].

Then there exists x € U such that Lx=N(x).

Proof. By Proposition 1 and Remark 9, the map Lx,+ QN is essential in M.
Now suppose the conclusion would be false, that is

(10) Lx # N(x) for any x € U.
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Consider H:U x [0,]] & K, H(x,)) = ( A)[Lx, + QN(x)] + AN(x) , which is
well defined by (6) and N(U)c K. If Lx # H(x,A) for all x € 8Uand
A €[0,1], then since Hy= =Lxy+ ON is essent1a1 in M, by Theorem 1, it would
follow that H =N is essentlal in M, which contradicts (10). Thus, there exist
x € 80U and x o, 1] such that Lx = H(x, A). Clearly, by (10), A > 0. Next
Lx = H(x,\) is equivalent to the following system

Lx = (1~ A)Lx, + A[N(x) - ON(x)], ON(x) = 0.

Hence Lx = (1 - A)Lx, + AN(x) for some x € 8U and A€ 0, 1], which contra-
dicts (9). Thus Theorem 1 is proved.

Remark 10. 1t is clear that, under the hypotheses of Theorem 2, for each
L-compact map G:U — K satistying Lx, + QG(U) < K and Gl,y = N|yy
there exists x € U with Lx = G(x). Thus, if in Theorem 2, K=Y, then it follows
that N is even essential in M.

3. Continuation principles for families of operators
having different domains

Let % < K x [0,1] be a nonempty open bounded subset of K x [0,1]
and H:% — K amap on % . If ¥ is any subset of X x [0,1], we write
v, ={xeX;(x,.) e} foreach A €[0,1]. Denote Hy: %), — K, Hy(x)= H(x,}).
In this section we study the family {H,; % e [0,1]} of operators H, with different
domains %x The main idea is to reduce the study of this family to that of a
certain family {7{“, M E [0 1]} of operators from the same domain
AU intoK x[0,1]. Thus, we pass from maps ‘acting between spaces X and Y, to
maps acting between the product spaces X x R and ¥ x R.

Letusdenote X = X xR, ¥ = ¥ xR, K, = K, x [0,] X = K x [0,1] and
£:D(£) € X — o, where D(£) = D(L) x R, and £(x,1) = (Lx,\). It is easy
to check that £ is a linear Fredholm map of index zero and

ker£ = X; x {0}, Im£ =%, xR.
Further, let us consider
®. X > X; x{0}, (x,A) =(Px,0),

QY = 1y x{0}, Q{x.1) =(x,0),

and
7:X, x{0} > % x {0}, 9(x,0) = (Jx,0).
Notice that
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(1) (£ + 20)"(3,4) = (L + JP)" », ) for any (y,4) 7.
Let
M= {4‘:@7 — K;Fis L -compact and L(x,A) # F(x, K)ona%}.

THEOREM 3. Assume H: % — K is L-compact on U and

(©) L(x) # H(x,\) for any (x, A) € 0%,

(d) Ho: U — K, Ho(x,}) = (H(x, A),0) is essential in M.
Then there exists x € 4y such that Lx=H(x, 1). Moreover, the map
3,(x,2) = (H(x,)),1) is essential in M.

Proof. Apply Theorem 1 with X, ¥, K, K, WU, L, M and # instead of X, Y,
K,K ULM and H, where

H:U x[0]] > K, H(x,h )= (H(x, %), w.

The map # is £-compact in virtue of (11).

Remarks 11. In case that % has the form % =U %[0, 1], condition (d) implies
(b) (use a similar argument with that in [7, Remark 1]).

12. For X=Y, K=K and L=1, Theorem 3 becomes Proposition 2 in [7].

The next result is concerned with a sufficient condition for that (d) holds,
namely that H, be homotopic on %, with a map of the form Lx,+F(x), like thatin
Proposition 1.

THEOREM 4. Suppose that K is convex and

(12) (L +JPY (K + JP(K,)) < Ko

Let Fy:K, — Y, be L-completely continuous on Ko, xy € U and the following
conditions hold

13) Lx, + Fy(K,) € K,
(14) " Fy(x)# 0 for any x € (% + X1)0 Uy,
(15) <F0(x), J(x - x0)> <0 for any x €(xy + X1)N0%,.

If H:% — K is L-compact, satisfies (c) and
(16)  Lx = (1- p)(Lxg + Fo(x)) + nH(x,0) for (x,0) € 0%, pnelo, 1,
then there exists x € U with Lx = H(x,1) .

Proof. We show that condition (d) is satisfied and then we apply Theorem 3.
For this, let us define :
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H:U x[0]] > X, H(x, A, p) = ((l — p)(Lxg + Fy(x)) + pH(x, X),O).
We have that % is £-compact on % x [0,1]. On the other hand,
£(x,\) # H(x, A, p) for (x,\) € 6% and p € [0.1]

(use (16) in case that pe]0,1], (14) when pu = 0, and (c) for p = 1).
For =0, (x,\)=(Lxg + Fo(x),0)=L(x0,0)+ %y, where Fy:% — Y; x{0},

,(x,1)=(Fy(x),0). Now we can easily check that all hypotheses of Proposition 1
are satisfied for

X% Ko, K, U, £, 5, ® Fy, M and (xo,0)
instead

X,Y,K,,K,UL J,P,Fy,M and x,.
It follows that ﬁo is essential in M and so, by Theorem 1, 771 = ¥, is essential
in ¢ too. Thus, (d) holds and Theorem 3 applies.

Remarks 13. For K= X and K =Y conditions (12), (13) hold.

14. The map F(x) = — JP(x —x,) satisfies (14) and (15).

15. For X=Y, K,=K and L=, Theorem 4 becomes Corollary 1 in [7] (in
that case F,=0). i

The last result of this section concerns the equation Lx = N(x), being of the
type of Theorem 2.

THEOREM 5. Assume K, is convex and (12) holds. Let xy € AUy and let
N:K, — K be L-completely continuous. In addition suppose

17 ON(x) # 0 for any x € xg + Xy with (x,0) € 0%,

(18)  (ON(x),J(x - %)) <O for any x € xq + X with (x,0) € 0%,
(19)  Lx # (1- AM)Lxg + AN(x) for any (x,)) € &% with L€]0,1].
Then there exists x € 9y with Lx = N(x)-

Proof. Check that all the assumptions of Theorem 2 are satisfied for

X %Ko, K, %, L 58Q N and (xo,0)
instead of
X,Y,K,,K,U, L, J,P,O,N and x,,

where V: % — K, N(x,A) = (N(x),1). Then apply Theorem 2.
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4.No degree versions of some continuation theorems
of Capietto-Mawhin-Zanolin

To make th¢ results of Section 3 useful we need to get methods for the
construction of aset % — K x [0,1] with the desired properties. Such a method
was described in [1], in the frame of the coincidence degree theory. In this section
we give a no degree approach to that method.

Suppose K|, is convex, x, € Ko, Fy:Ky — Y, is L-completely continuous
and (12), (13) hold. In addition assume

(20) Fy(x) # 0 for any x e x, + X, with x = %

(1) <F°(x), J(x - x0)> <0 for any x e x, + X,.

Let H: K, x [O,I] — K be L-completely continuous and denote
S = {(x, L) e Ky x [0,1]; Lx = H(x,A)},

S(xy)= {(x,O);x €K, and Lx =(1-p)(Lx, +’FO (x)) +WH (x,0) for some p 6[0,1]}.
Also consider a continuous functional @ K, x [0, l] —> R.

THEOREM 6. Assume there are constants c_andc,, c <c,, such that if we
denote vV = CD_I(]c_, c,[) the following conditions are satisfied:

@1 SNV is bounded,
(i2) (s)c_,c.} = 2,
@13) S (xo) is bounded and included by v

Then there exists x € vV, with Lx = H(x,1).

Proof. Denote S* = @”([c_, c, INs.By(@@), s = vN.s, while, by @il)
and the continuity of @, §* is compact. Hence §*is a compact set included by the
open set 7. Thus, there exists a bounded open set %' of K, with

STcauc 027 falli%
On the other hand, by (i3), S (x,) is another compact set included by 4/
Thus, there exists a bounded open set %" of K, with
S(xo) CU'CU" "V

Now the conclusion follows by Theorem 4 for YU =Y Uar.

Recall that the functional @ is said to be proper on § provided that
SN CD‘l(]a, B[) is bounded (equivalently, relatively compact) for each bounded
real interval ]a, b[.

COROLLARY 1. Suppose
(11') @ is proper on §,
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(i2") @ is lower bounded on $§ and there is a sequence (cj) of real numbers
with ¢; — o and ¢; & O($) forallj,

(i3") S(x,) is bounded.
Then there exists x € K, such that Lx= H(x, 1).

Proof. By (i3") and the L-complete continuity of F, and H, we have that
S(x,) is in fact compact. Since @ is continuous, there are constants ¢ and b such
that a < ®(x,\) < b for any (x,A) € $(x,). Further, by using (i2), we can
choose c¢_andj sufficiently large that

c.<a, c_< inf{CD(x,X);(x,X) € S}, cy=¢c;2bh
Now we easily check (i1)—(i3) and we apply Theorem 6.
Remark 16. For X=Y, K,=K and L=1, the results of this section reduce to

Theorem 1 and Corollary 2 from [7].
Applications of Corollary 1 will be given in a forthcoming paper [8].
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