Mathematica Balkanica

Editor-in-chief: Blagovest Sendov

ON A CLASS OF LINEAR APPROXIMATING OPERATORS
Octavian AGRATINI

New Series Vol. 11, 1997, Fasc. 3 - 4

Mathematica Balkanica

New Series Vol.11, 1997, Fasc. 3-4

On a Class of Linear Approximating Operators

O. Agratini

Presented by Bl. Sendov

In this paper we introduce a new class of linear approximating operators $(L_{nr})_{n\geq 1}$, $r=0,1,2,\ldots$, for the functions $f\in C^r[0,1]$. In order to construct them we use Taylor's polynom of r degree and a classical class of linear positive operators generated by a probabilistic method. Also, we study approximation degree with the modulus of continuity of first and second order. $(L_{nr}f)_{n\geq 1}$ include as a particular case the generalized Bernstein polynomials defined by G.H. Kirov in [5].

1. Introduction

Any problem concerning the consideration of positive linear approximating operators, on the space of continuous real-valued functions on an interval of the real axis can naturally be interpreted as a problem of probability theory. There are several papers dedicated to this subject.

Let $(X_n)_{n\geq 1}$ be a real sequence of random variables having the following distribution: $P(X_n = x_{nk}) = p_{nk}(x)$ where $x_{nk} \in [0, 1]$, $0 \leq x \leq 1$ represents a parameter, $k \in I \subseteq \mathbb{N}$.

Let $f:[0,1]\longrightarrow \mathbb{R}$ be a continuous function. We consider an operator

$$L_n: C[0,1] \longrightarrow C[0,1], \quad f \longrightarrow L_n f,$$

defined by the following formula:

$$(L_n f)(x) = \sum_{k \in I} p_{nk}(x) f(x_{nk}).$$

This type of operator has been considered in remarkable papers by D.D. Stancu [7],[8] and W. Feller [2] and borrowed by many other authors either to get through a probabilistic way to some classical linear positive operators

(Bernstein, Mirakyan-Favard-Szász, Baskakov, Meyer-König and Zeller) or to get some important generalizations of these operators.

In our previous paper [1] we approached a similar formula for functions of two variables. It is evident that the operator defined by the formula (1) is a positive linear operator and according to the definition of a distribution we have

(2)
$$(L_n e_{\circ})(x) = \sum_{k \in I} p_{nk}(x) = 1.$$

We denote $e_j:[0,1]\longrightarrow \mathbb{R},\ e_j(x)=x^j,\ j=0,1,2,\ldots$

Starting from (1), the purpose of this paper is to form a new sequence of linear operators. We will also evaluate the order of approximation by means of the modulus of continuity of first and second order. As a particular case, a class of the Bernstein polynomials introduced in [5] are to be found.

2. Construction of the operators

By $C^r[0,1]$, $r=0,1,2,\ldots$, we denote the set of all functions $f:[0,1] \longrightarrow \mathbb{R}$ with a continuous derivative of order r on [0,1].

Let $f \in C^r[0,1]$ and $(T_r f)(x_{nk}; \bullet)$ be Taylor's polynomial of r degree associated to the function f on the point x_{nk} :

(3)
$$(T_r f)(x_{nk}; x) = \sum_{i=0}^r \frac{f^{(i)}(x_{nk})}{i!} (x - x_{nk})^i.$$

We define the operators:

$$L_{nr}: C^r[0,1] \longrightarrow C[0,1], \quad f \longrightarrow L_{nr}f$$

where

(4)
$$(L_{nr}f)(x) = \sum_{k \in I} (T_r f)(x_{nk}; x) p_{nk}(x).$$

It is easy to verify that these operators are linear and choosing r = 0, we obtain the operators presented in (1) $(L_{no}f = L_nf)$.

Further on, we consider $r \geq 1$ integer.

3. Approximation degree

First, we need Taylor's modified formula with the rest under integral form:

(5)
$$f(x) = (T_r f)(x_{nk}; x)$$

$$+\frac{(x-x_{nk})^r}{(r-1)!}\int_0^1 (1-t)^{r-1} (f^{(r)}(x_{nk}+t(x-x_{nk}))-f^{(r)}(x_{nk}))dt.$$

Second, we need the modulus of continuity of function f defined by:

(6)
$$\omega_1(f;\delta) = \sup\{|f(x) - f(y)| : x, y \in [0,1], |x - y| \le \delta\}, \ 0 < \delta \le 1.$$

From relations (2),(5),(6) successively applied, for any $x \in [0,1]$ we obtain:

$$|f(x) - (L_{nr}f)(x)| = \left| \sum_{k \in I} f(x) p_{nk}(x) - \sum_{k \in I} \sum_{i=0}^{r} \frac{f^{(i)}(x_{nk})}{i!} (x - x_{nk})^{i} p_{nk}(x) \right|$$

$$= \left| \sum_{k \in I} \frac{(x - x_{nk})^{r}}{(r - 1)!} p_{nk}(x) \int_{0}^{1} (1 - t)^{r-1} (f^{(r)}(x_{nk} + t(x - x_{nk})) - f^{(r)}(x_{nk})) dt \right|$$

$$\leq \sum_{k \in I} \frac{|x - x_{nk}|^{r}}{(r - 1)!} p_{nk}(x) \int_{0}^{1} (1 - t)^{r-1} \omega_{1}(f^{(r)}; t|x - x_{nk}|) dt.$$

Using the following known property of the modulus of continuity

$$\omega_1(f;\lambda\delta) \le (\lambda+1)\omega_1(f;\delta), \quad \lambda > 0,$$

with $\lambda = t|x - x_{nk}|n^{1/2}$ and $\delta = n^{-1/2}$, we can write further:

$$|f(x) - (L_{nr}f)(x)|$$

$$\leq \sum_{k \in I} \frac{|x - x_{nk}|^r}{(r-1)!} p_{nk}(x) \int_0^1 (1-t)^{r-1} (t|x - x_{nk}|n^{1/2} + 1) \omega_1(f^{(r)}; n^{-1/2}) dt$$

$$= \sum_{k \in I} \frac{|x - x_{nk}|^r}{(r-1)!} p_{nk}(x) \omega_1(f^{(r)}; n^{-1/2}) \left\{ |x - x_{nk}|n^{1/2} \int_0^1 t(1-t)^{r-1} dt \right.$$

$$+ \int_0^1 (1-t)^{r-1} dt \left. \right\} = \sum_{k \in I} \frac{|x - x_{nk}|^r}{(r+1)!} p_{nk}(x) \omega_1(f^{(r)}; n^{-1/2}) \left(|x - x_{nk}| \sqrt{n} + r + 1 \right)$$

$$\leq \frac{\sqrt{n} + r + 1}{(r+1)!} \sum_{l \in I} |x - x_{nk}|^r p_{nk}(x) \omega_1\left(f^{(r)}; \frac{1}{\sqrt{n}}\right),$$

because $|x - x_{nk}| \le 1$.

Applying the Cauchy-Schwarz inequality and taking into account the identity (2), we get:

(7)
$$\sum_{k \in I} |x - x_{nk}|^r p_{nk}(x) \le \left(\sum_{k \in I} (x - x_{nk})^{2r} p_{nk}(x) \right)^{1/2}.$$

Definition. ([3], p. 189) The expectation of the variable $(Y - a)^k$ is called the moment of the k-th order about a of the random variable Y:

$$\nu_k(Y; a) = E(Y - a)^k.$$

Consequently (7) can be rewritten:

$$\sum_{k \in I} |x - x_{nk}|^r p_{nk}(x) \le \nu_{2r}^{1/2}(X_n; x)$$

and we find

$$|f(x) - (L_{nr}f)(x)| \le \frac{\sqrt{n} + r + 1}{(r+1)!} \nu_{2r}^{1/2}(X_n; x) \omega_1\left(f^{(r)}; \frac{1}{\sqrt{n}}\right).$$

Now we can state the following proposition:

Theorem. Let be the sequences $(L_n)_{n\geq 1}$ and $(L_{nr})_{n\geq 1}$ defined in (1) respectively in (4). If the following constants $\lambda_r > 0$ and $\alpha \geq \frac{1}{2}$ exist with the property:

 $\nu_{2r}(X_n;x) \leq \lambda_r n^{-2\alpha},$

for any natural number n, then the inequality

(8)
$$|f(x) - (L_{nr}f)(x)| \le \frac{\lambda_r^{1/2}(\sqrt{n} + r + 1)}{(r+1)!n^{\alpha}} \omega_1\left(f^{(r)}; \frac{1}{\sqrt{n}}\right)$$

holds.

Remark. The above result implies:

(9)
$$||f - L_{nr}f|| = \mathbf{0} \left(n^{\frac{1}{2} - \alpha} \omega_1 \left(f^{(r)}; \frac{1}{\sqrt{n}} \right) \right),$$

where | | • | stands for the uniform norm.

It is known that besides ω_1 , the modulus of smoothness ω_2 is frequently used in quantitative approximation. This ω_2 is defined, for $f \in C[a, b]$, by

$$\omega_2(f;\delta) = \sup\{|f(x-h) - 2f(x) + f(x+h)| : x, x \pm h \in [a,b], 0 < h \le \delta\}, 0 < \delta \le b - a.$$

H.H. Gonska [4] established the following inequality:

$$\omega_1(f;\delta) \le \left(3 + \frac{2(b-a)}{\delta}\right)\omega_2(f;\delta) + \frac{6\delta}{b-a}||f||,$$

for all $f \in C[a, b]$ and $0 < \delta \le b - a$.

Our result (8) becomes:

$$|f(x) - (L_{nr}f)(x)| \le c_r(n)\omega_2\left(f^{(r)}; \frac{1}{\sqrt{n}}\right) + d_r(n)||f^{(r)}||,$$

where:

$$c_r(n) = \frac{\lambda_r^{1/2}}{(r+1)!} \left(2n + (2r+5)\sqrt{n} + 3(r+1)\right) n^{-\alpha}$$

and

$$d_r(n) = \frac{6\lambda_r^{1/2}}{(r+1)!} \left(1 + \frac{r+1}{\sqrt{n}}\right) n^{-\alpha}.$$

4. Example

We choose $I = \{0, 1, 2, ..., n\}$, $x_{nk} = \frac{k}{n}$, $p_{nk}(x) = \binom{n}{k} x^k (1-x)^{n-k}$. In this case $L_n f$ coincides with the classical Bernstein polynomial $B_n f$ and $L_{nr} f$ becomes the generalized Bernstein polynomial of the (n, r)-th order for a function $f \in C^r[0, 1]$, introduced and studied in the recent paper [5]. For any $x \in [0, 1]$ we have:

$$\sum_{k \in I} (x - x_{nk})^{2r} p_{nk} = n^{-2r} \sum_{k=0}^{n} (k - nx)^{2r} \binom{n}{k} x^k (1 - x)^{n-k} \le A n^{-r},$$

where A is a constant depending only on r (see e.g. [6], p.248).

If we take $\lambda_r = A$ and $\alpha = \frac{r}{2} \ge \frac{1}{2}$ the condition of the theorem given in Section 3 is satisfied and we have:

$$|f(x) - (B_n f)(x)| \le \frac{A^{1/2} (\sqrt{n} + r + 1)}{(r+1)! n^{r/2}} \omega_1 \left(f^{(r)}; \frac{1}{\sqrt{n}} \right).$$

Consequently we can write

$$||f - B_n f|| = 0 \left(n^{\frac{1-r}{2}} \omega_1 \left(f^{(r)}; \frac{1}{\sqrt{n}} \right) \right).$$

This result is similar with the one obtained by G.H. Kirov in the paper [5] published in this journal.

References

- [1] O. A g r a t i n i, On the construction of approximating linear positive operators by probabilistic methods. *Studia Univ. Babeş-Bolyai* 38, No 4 (1993), 45-50.
- [2] W. Feller, An Introduction to Probability Theory and Its Applications. New York-London, 1957.
- [3] B. V. G n e d e n k o, The Theory of Probability. Mir, Moscow, 1969.
- [4] H. H. G o n s k a, Quantitative Korovkin type theorems on simultaneous approximation. *Math. Zeitschr.* **186** (1984), 419-433.
- [5] G. H. K i r o v, A generalization of the Bernstein polynomials. *Mathematica Balkanica* 6, No 2 (1992), 147-153.
- [6] I. P. N a t a n s o n, Constructive Function Theory (In Russian). Moscow-Leningrad, 1949.
- [7] D. D. S t a n c u, Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roum. Math. Purcs Appl. 14, No 5 (1969), 673-691.
- [8] D. D. S t a n c u. Probabilistic methods in the theory of approximation of functions of several variables by linear positive operators. In: Approximation Theory (ed. A. Talbot), London-New York, 1970, 329-342.

"Babeş-Bolyai" University
Faculty of Mathematics and Informatics
M.Kogălniceanu 1
3400 Cluj-Napoca
ROMANIA

Received: 18.06.1996