APPROXIMATION AND OPTIMIZATION

Proceedings of ICAOR:
International Conference on Approximation and Optimization
(Romania)
Cluj-Napoca, July 29 – August 1, 1996

Volume I

Edited by

Dimitrie D. STANCU

Gheorghe COMAN

Wolfgang W. BRECKNER

Petru BLAGA

Faculty of Mathematics and Informatics
Babeş-Bolyai University, Cluj-Napoca, Romania

TRANSILVANIA PRESS 1997 APPROXIMATION AND OPTIMIZATION. Proceedings of the International Conference on Approximation and Optimization (Romania) – ICAOR Cluj-Napoca, July 29 – August 1, 1996. Volume I, pp. 157–162

ON SIMULTANEOUS APPROXIMATION BY STANCU-BERNSTEIN OPERATORS

Octavian Agratini⁽¹⁾

1. Introduction

By using a probabilistic method D.D.Stancu [4] constructed a linear positive polynomial operator $L_{m,r}^{\alpha,\beta}$ of Bernstein type, depending on a non negative integer parameter r (2r < m) and on two real parameters α and β such as $0 \le \alpha \le \beta$. The expression of this operator is presented below:

$$\left(L_{m,r}^{\alpha,\beta}f\right)(x) = \sum_{k=0}^{m} w_{m,k,r}(x)f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1}$$

where $f \in \mathbb{C}[0,1]$ and

$$w_{m,k,r}(x) = \begin{cases} \binom{\binom{m-r}{k}}{x} x^k (1-x)^{m-r-k+1}, & 0 \le k < r \\ \binom{m-r}{k} x^k (1-x)^{m-r-k+1} + \\ + \binom{m-r}{k-r} x^{k-r+1} (1-x)^{m-k}, & r \le k \le m-r \\ \binom{m-r}{k-r} x^{k-r+1} (1-x)^{m-k}, & m-r < k \le m \end{cases}$$

It is obvious that for $\alpha = \beta = 0$ and r = 0 or r = 1, the operator becomes the well-known Bernstein operator. We mention that $L_{m,2}^{0,0}$ has been given earlier by H.Brass.

Furthermore, in the same paper, the author was able to express the operator by means of the fundamental Bernstein polynomials in the following form:

$$\left(L_{m,r}^{\alpha,\beta}f\right)(x) = \sum_{k=0}^{m-r} p_{m-r,k}(x) \left[(1-x)f\left(\frac{k+\alpha}{m+\beta}\right) + xf\left(\frac{k+r+\alpha}{m+\beta}\right) \right] \tag{2}$$

where

$$p_{m-r,k}(x) = {\binom{m-r}{k}} x^k (1-x)^{m-r-k}.$$

¹⁹⁹¹ Mathematics Subject Classification. 41A28, 41A35.

Key words and phrases. Linear positive operators, modulus of continuity, degree of approximation.

For our exposure we need also an old result obtained by D.D.Stancu [3]. He studied a class of Bernstein operators depending on two real parameters $0 \le a \le b$. This operator is defined as follows:

$$\left(S_n^{a,b}f\right)(x) = \sum_{k=0}^n p_{nk}(x)f\left(\frac{k+a}{n+b}\right),\tag{3}$$

where $f \in \mathbb{C}[0,1]$.

The aim of our lecture is to prove an estimation for the difference

$$\left| \left(L_{m,r}^{\alpha,\beta} f \right)^{(s)} (x) - f^{(s)}(x) \right|, \quad s \leq m - r,$$

which involves the first order modulus of continuity ω_1 of s-th and (s+1)-th derivative of f, where $f \in C^{(s+1)}[0,1]$. The technique of evaluation follows a classical way presented in he numerous papers, such as [2].

2. Preliminary results

At first, we differentiate the relation (3) s times and we get (see [5]):

$$(S_n^{a,b} f)^{(s)}(x) = n(n-1)\dots(n-s+1) \sum_{k=0}^{n-s} {n-s \choose k} x^k (1-x)^{n-k-s} \Delta_{\frac{1}{n+b}}^s f\left(\frac{k+a}{n+b}\right),$$
 (4)

where $\Delta_{\frac{1}{n+b}}^s f\left(\frac{k+a}{n+b}\right)$ represents the difference of order s (s < n) on the function f with the step $\frac{1}{n+b}$ starting from the value $\frac{k+a}{n+b}$.

By using the mean value theorem, we can write:

$$\Delta_{\frac{1}{n+b}}^{s} f\left(\frac{k+a}{n+b}\right) = \frac{1}{(n+b)^{s}} f^{(s)} \left(\frac{k+a+s\theta_k}{n+b}\right), \quad \theta_k \in (0,1).$$
 (5)

Clearly:

$$f^{(s)}\left(\frac{k+a+s\theta_k}{n+b}\right) = f^{(s)}(x) - \left(x - \frac{k+a+s\theta_k}{n+b}\right) f^{(s+1)}(x) - \int_x^{\frac{k+a+s\theta_k}{n+b}} \left(f^{(s+1)}(x) - f^{(s+1)}(t)\right) dt.$$
(6)

If we note

$$\frac{n(n-1)\dots(n-s+1)}{(n+b)^s} = \alpha_{n,s}^b$$
 (7)

(

and substitute (6) in (5) and (5) in (4) we obtain:

$$(S_n^{a,b} f)^{(s)}(x) = \alpha_{n,s}^b \sum_{k=0}^{n-s} \left\{ f^{(s)}(x) - \left(x - \frac{k+a+s\theta_k}{n+b} \right) f^{(s+1)}(x) - \int_x^{k+a+s\theta_k} \left(f^{(s+1)}(x) - f^{(s+1)}(t) \right) dt \right\} {n-s \choose k} x^k (1-x)^{n-k-s} =$$

$$(2)$$

$$= \alpha_{n,s}^{b} f^{(s)}(x) - \alpha_{n,s}^{b} \sum_{k=0}^{n-s} {n-s \choose k} \left(x - \frac{k+a}{n+b} \right) x^{k} (1-x)^{n-k-s} f^{(s+1)}(x) +$$

$$+ \alpha_{n,s}^{b} \sum_{k=0}^{n-s} \frac{s\theta_{k}}{n+b} f^{(s+1)}(x) {n-s \choose k} x^{k} (1-x)^{n-k-s} -$$

$$- \alpha_{n,s}^{b} \sum_{k=0}^{n-s} {n-s \choose k} x^{k} (1-x)^{n-k-s} \int_{x}^{\frac{k+a+s\theta_{k}}{n+b}} \left(f^{(s+1)}(x) - f^{(s+1)}(t) \right) dt.$$
 (8)

But

$$|f^{(s+1)}(x) - f^{(s+1)}(t)| \le (1 + |x - t|\delta^{-1})\omega_1(f^{(s+1)}; \delta),$$

here ω_1 is defined by

$$\omega_1(f,\delta) = \sup_{|x'-x''|<\delta} |f(x') - f(x'')|$$

x'' being points from [0,1] and δ a positive number. We can write successively:

$$\int_{x}^{\frac{k+a+s\theta_{k}}{n+b}} |f^{(s+1)}(x) - f^{(s+1)}(t)| dt \le$$

$$\le \left(\left| \frac{k+a+s\theta_{k}}{n+b} - x \right| + \frac{1}{2\delta} \left(\frac{k+a+s\theta_{k}}{n+b} - x \right)^{2} \right) \omega_{1}(f^{(s+1)}; \delta) \le$$

$$\le \left\{ \left(1 + \frac{s}{\delta(n+b)} \right) \left| \frac{k+a}{n+b} - x \right| + \frac{s}{n+b} + \frac{s^{2}}{2(n+b)^{2}\delta} + \frac{1}{2\delta} \left(\frac{k+a}{n+b} - x \right)^{2} \right\} \omega_{1}(f^{(s+1)}; \delta).$$

Substituting this result in (8) and taking down $\varphi_x(t) = |t - x|$, $0 \le t \le 1$, we can tinue with the following increases:

$$\left| \left(S_{n}^{a,b} f \right)^{(s)} (x) - f^{(s)}(x) \right| \le \left| \alpha_{n,s}^{b} - 1 \right| \left| f^{(s)}(x) \right| + \alpha_{n,s}^{b} \left(S_{n-s}^{a,b+s} \varphi_{x} \right) (x) \left| f^{(s+1)}(x) \right| +$$

$$+ \alpha_{n,s}^{b} \frac{s}{n+b} \left| f^{(s+1)}(x) \right| + \alpha_{n,s}^{b} \left\{ \left(1 + \frac{s}{\delta(n+b)} \right) \left(S_{n-s}^{a,b+s} \varphi_{x} \right) (x) + \frac{s}{n+b} +$$

$$+ \frac{s^{2}}{2(n+b)^{2}\delta} + \frac{1}{2\delta} \left(S_{n-s}^{a,b+s} \varphi_{x}^{2} \right) (x) \right\} \omega_{1}(f^{(s+1)}; \delta) \le \left| \alpha_{n,s}^{b} - 1 \right| \left| f^{(s)} \right| +$$

$$\left(\left(S_{n-s}^{a,b+s} \varphi_{x} \right) (x) + \frac{s}{n+b} \right) \left| \left| f^{(s+1)} \right| \right| + \left\{ \left(1 + \frac{s}{\delta(n+b)} \right) \left(S_{n-s}^{a,b+s} \varphi_{x} \right) (x) + \frac{s}{n+b} +$$

$$+ \frac{s^{2}}{2(n+b)^{2}\delta} + \frac{1}{2\delta} \left(S_{n-s}^{a,b+s} \varphi_{x}^{2} \right) (x) \right\} \omega_{1}(f^{(s+1)}; \delta).$$

$$(9)$$

In the relation above we have used $\alpha_{n,s}^b \leq 1$; also, we mention that $||\cdot||$ is sup-norm on [0,1].

By making use of the Cauchy inequality and according to Stancu (see [3]), we have:

$$\left(S_{n-s}^{a,b+s}\varphi_{x}\right)(x) \leq \left\{\left(S_{n-s}^{a,b+s}e_{0}\right)(x)\left(S_{n-s}^{a,b+s}\varphi_{x}^{2}\right)(x)\right\}^{1/2} = \left(S_{n-s}^{a,b+s}\varphi_{x}^{2}\right)^{1/2}(x) \leq \left(S_{n-s}^{a,b+s}\varphi_{x}^$$

Corollary 1. Under the hypothesis of Theorem 2,

$$\lim_{m \to \infty} \left(L_{m,r}^{\alpha,\beta} f \right)^{(s)} (x) = f^{(s)}(x),$$

the convergence being uniform on [0, 1].

Finally, we mention that in [1] we considered an extension in the sense of Kantorovich of the operators $L_{m,r}^{\alpha,\beta}$. For this extension we established some quantitative theorems representing estimations of the order of approximation.

REFERENCES

- O. AGRATINI, Approximation properties of a class of operators of Stancu-Kantorovich type, Preprint, Fac. Math. Cluj-Napoca (1994), no. 1, 3-12.
- A. DI LORENZO and M. R. OCCORSIO, Polinomi di Stancu, Rapp. Tecnico I.A.M., Napoli (1995), no. 121.
- D. D. STANCU, On a generalization of the Bernstein polynomials, Studia Univ. Babes-Bolyai (1969), no. 14, 31-45.
- D. D. STANCU, Approximation of functions by means of a new generalized Bernstein operator, Calcolo 20 (1983), no. 2, 211-229.
- D.D. STANCU, Use of linear interpolation for constructing a class of Bernstein polynomials, St. şi Cerc. Mat. 28 (1976), no. 3, 369-379.

(1) Babeş-Bolyai University, Faculty of Mathematics and Informatics, Str. Kogălniceanu 1, 3400 Cluj-Napoca, Romania. *E-mail address*: agratini@math.ubbcluj.ro