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ABSTRACT: Starting from a positive summation integral operator we present linear combinations of these
operators which under definite conditions approximate a function more closely then the above operators.
Also we establish a connection between the local smoothness of local Lipschitz - @ (0 < @ < 1) functions
and the local approximating property. :

1 Introduction

V.A. Baskakov [1] has introduced and investigated linear operators of discrete type defined
by

(vnf)(x)=(1+z)-"§(“+’;‘1)(ﬁ—m)kf(g), 230, m

forall n=1,2,..., and for f €Ca:={f € C10,00)| (14 2?)7! f(z) is convergent as x tends to
infinity}. The Banach lattice C; is endowed with the norm

lIflle = sup | f(@)I(1+27) 7"
z>0

In order to obtain an approximation process in the space of integrable functions, A. Sahai and G.
Prasad [7] proposed an integral modification of these operators as follows
(Vaf)(z)=(n—1) an,k(r] f k(@) f(t)dE, n=12,... (2)
k=0 g

where
k-1 =
puate) = ("TETH )40, e 00)
and f € L;[0,00), the space of integrable functions defined on [0, co0).
By using weight functions of beta-type, the following integral extension was given by V. Gupta
(5]
0

(Maf)(@) =S pns(@) [ bSOt 220, n=120 3)
k=0
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B(k + l’n)tk(l G t)_n—k_la t > 0, and B(:,-) denotes the Beta function. It

fm bo(t)dt = 1. (4)
0

These operators are a slight modification of those defined by (2) but some approximation formulas
for M, f are simpler than the corresponding results for V.f. _

We point out that the two modified operators are inspired from the work of Durrmeyer [4] who
presented an integral modification of Bernstein polynomials to approximate Lebesgue integrable
functions on [0,1]. The focus of the present note is on giving combinations of M, operators which
ensure faster convergence in relation to a higher degree of smoothness.

where bk (f) =

results

2 Results

Since the classical linear operators like Bernstein, Szasz, Baskakov cannot be used for the
investigation of higher orders of smoothness, P.L. Butzer [2] introduced combinations of Bernstein
polynomials defined inductively which have higher orders of approximation. Z. Ditzian and V.
Totik [3, p.116] extended this method of combinations and defined for the operators Ly, n2>1,

r—1

and a fixed integer 7 > 1 the combination Ly, as (Ln.f)(z) = Zc,—(n)(Lﬂ‘,f){:c), ‘where n; and

1=0
ci(n) satisfy
(@) n=no<--<n_1 <Kn, (b) Y len)|<K,
i=0
(5)
r—1 r—1
I el =1, @ > say” =1 p=1%F— Lk
=0 =0
where K is an absolute constant, K € N. Also the conditions
r=1 r—1
N Y eafn)=1+o0(x"), (d) D amn?=o(n"), forp=1,2,...,r =1,  (6)
i=0 i=0

can replace (c) and (d) in many cases.

Based on the work of C.P. May [6] we can present a concrete example of a system useful for
linear combinations. In this purpose we set e; : [0,00) = R, e;(z) = 27, 7 > 0, and we fix k1
distinct positive integers namely dy, d1, . .., dx. We define the numbers ¢;(k), ¢ =0,k by

k
co0) =1 and c(k)=df J[ (di—dj)™", k#0.
j=0
373
These coefficients enjoy the properties
k
¥ el =1, Zc,, P =0, forp=1,2,...,k, (7)

i=0
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in other words the requirements (5-c) and (5-d) are automatically satisfied by our choice (r := k+1).
In order to prove this we consider Lﬂ’ﬁthe Lagrange interpolating polynomial corresponding to
the function f and the nodes d;’!, i =0, k,

k

(2 . . ) B ¥
)

where w(z) = (z —dg')(a —d....(= —d;'). Tt is known that for any p < k we have (Lge,)(z) =
e,(z). For z = 0 this implies (Lreo)(z) = 1 and (Lge,)(z) =0 for 1 < p < k. On the other hand

we can write
a (~1)kdi™ ekt
(Lkey)(o):g(du—di)-'-/---(dk“di): - Ci(dei )

which lead us to the identities from (7).
Further we use the coefficients ¢;(n) defined by (5) choosing r a perfect square, r = s%, and
replacing the requirement (5-d) with the following

Z(n,—l)m_o forevery0<p<{2]andm:1,2\/F——2, (8)

where (@), represents the lower-factorials defined by (¢)m = a(a—1)...(a¢—m+1) and [f] stands

for the integral part of g.
25—2 ,
Because of Z([m/?} +1) = 5% — 1 it results that (8) contains r — 1 relations.
m=1
Let ¢ be the function defined on [0, 00) by () = \/z(z + 1), z > 0. Actually
Val(e: — zeo)?;z) = @*(z)/n and ¢ becomes the step weight function of the Baskakov operators
and it controls their rate of convergence. For a fix 7 = s? we define a linear combination of

Baskakov-Beta operators as follows

r—1

(M, f)(z) = Z ci(n) (M, f)(z), (9)

=0

where n; and ¢;(n) satisfy (5-a,b,c) and (8). It is clear that for r = 1 one obtains
My, = M,. Further we consider s > 1. Since Mpep = €g for every natural n, the relations (5-c)

and (9) imply
Mn.reﬂ = €9. (10)

Lemma 1. ([5]) Let the m** order moment for the operator M, be defined by

o0
Tn,m(m) ank / bnk t)(f, — :c]mdi
k=0
1 2 1)z? + 2(n 4+ 2
Then Too(e) = 1, Tos(2) = 123, (n'> 1), Taale) = 25 (iﬁ)(:ﬂ?)x £, (0> 2), and

for n > m + 1 there holds the recurrence relation

(n=m—1Thme1(z) =2(x+1) (diTn m(T) + 2mTh m— 1(1‘)) ((m+1)(22 + 1) — 2)Ta,m(z).
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Remarks. (i) T, (z) is a polynomial in & of m degree whose coefficients depend on n but are
bounded for all n. ’

(ii) (n = 1)(n ~ 2)...(n — m)Tym(z) is a polynomial in n of degree less or equal to [m/2].
Consequently for each z > 0, T, (z) = O(nl™/A-m) = O(n-Im+1)/2]),

The above remarks together with (8) guarantee

r—1
M, ((-—z)5:z) = Zc,-(n.)Tnhk(a:) =0, forevery k=125 — 2. (11)
et ;

Theorem 1. Let My, be defined by (9) and let f be bounded and integrable on [0, 00). If f has
a dertvative of (2s — 2) order at a point ¢ > 0 then

|(Mn £)(2) = f(z)| = O(n™H).

Proof. At first we use the Taylor’s expansion of f

2s5-2 {

t—xz)* i g

sy =3 T 100 10,0 - 2,
i=0

where 8,(¢) — 0 as ¢t — = and it is a bounded function. Applying the linear operator M, , we

obtain

(M- f)(2) = f(2) = f(2)((Mnre0)(z) — 1)+

25-2

+ 37 25O (@) M (- = 2)532) + My (- = 2)*~02)
=t &

and taking into account both (10), (11) and (9) we have

r—1

|(Mnr £)(2) = F@)] < D lei(n) [ M, ((- — 2)*7 26, ]; 2).

=0

From (5-a,b) and Remarks (ii) the result follows. (I

This result indicates that M, , comparatively to M, improves the rate of convergence for smooth
functions.

Now we return at M, operators to present a new property of them.

Lemma 2. If M,, is defined by (3) then for every 0 < o < 1 and h > 0 one has

My (h%;2) < (M, (A% 2))>/2,

Proof. Considering r := 2/a in the relation 1/r 4+ 1/s =1, r > 0, s > 0, which characterizes
Hélder's inequality, from (4) we get

fom R (t) bk () di < ([om hz(t)bnlk(t)dt) = )




(o33
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By using this inequality as well as Holder’s and knowing that Epn,k(:[:) =1 we get

k=0
©0 oo a2
< Sl ([T Oba0d)” < a5
k=0 L
The proof is complete. O
As a consequence of Lemma 2 we obtain
M, (le1 — zeo|¥;2) < T:'éz(a:), n=34,..., z>0. (12)

For our further purpose we need the following definition.
A continuous function f defined on J is locally Liparon E (0 < e <1, E C J) if it satisfies the
condition

|f(z) = F()| < Mylz—y|*, (V) (my) € X E (13)

where My is a constant depending only on « and f.
Theorem 2. Let M,, n > 4, be given by (3), 0 < o < 1 and E be any subset of J = [0,c0). If
f is locally Lipa on E then we have

(Mo f) (@) = f(3)] < (—‘f—%) ML+ (2(n = 2 (2))°/*} + 2M; (d(z, B))*,

where d(z, E) is the distance between ¢ and E defined as d(z, E) =inf{lz —y|: y € E}.

Proof. By using the continuity of f it is obvious that (13) holds for any = € [0,00) and y € E,
the closure of the set E. Let (z,%0) € [0,00) x E be so that [z — 20| = d(z, E). On the other
hand we can write |f — f(z)| < |f — f(=zo)| + |f(z0) — f(z)|eo and applying the linear and positive
operator M,, we have

(M f)(z) = f(2)] < Mu(lf = flzo)l;2) + [ f(z) = flzo)| <

< Mp(Myley — zoeo|™; ) + Myla — zo|®. (14)
At this point we use the classical inequality
(a+b)"<a™+0b% a>0, 520, 0<a<l,
which implies |t — zg|* < [t — 2| + |z — 20|%, ¢t > 0, and further
M, (ler — zoeo|*; z) < My (ler — zeo|*; z) + [z — 2ol < TP (2) + |2 — 2ol

The last increase is based on (12). The expression of T, » guarantees

4p?(z) 2
T < . n>4
2(@) n—2 +(-n,72]2 R

Gathering the above relations, returning at (14) and using again (15) we obtain the desired result.
O
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