ANALYSIS, FUNCTIONAL EQUATIONS, APPROXIMATION AND CONVEXITY

Proceedings of the Conference
Held in Honour of
Professor ELENA POPOVICIU
On the Occasion of Her 75th Birthday

Editura Carpatica

1999

Conference on Analysis, Functional Equations, Approximation and Convexity IN Honour of Professor Elena Popoviciu Cluj-Napoca, October 15-16, 1999; pp. 1-7

Properties Concerning the Baskakov-Beta Operators

OCTAVIAN AGRATINI

(CLUJ-NAPOCA)

ABSTRACT: Starting from a positive summation integral operator we present linear combinations of these operators which under definite conditions approximate a function more closely then the above operators. Also we establish a connection between the local smoothness of local Lipschitz - α (0 < α ≤ 1) functions and the local approximating property.

1 Introduction

V.A. Baskakov [1] has introduced and investigated linear operators of discrete type defined by

$$(V_n f)(x) = (1+x)^{-n} \sum_{k=0}^{\infty} {n+k-1 \choose k} \left(\frac{x}{1+x}\right)^k f\left(\frac{k}{n}\right), \quad x \ge 0, \tag{1}$$

for all $n=1,2,\ldots$, and for $f\in\mathcal{C}_2:=\{f\in C[0,\infty)|\ (1+x^2)^{-1}f(x) \text{ is convergent as }x\text{ tends to infinity}\}.$ The Banach lattice \mathcal{C}_2 is endowed with the norm

$$||f||_{\mathcal{C}_2} = \sup_{x \ge 0} |f(x)|(1+x^2)^{-1}.$$

In order to obtain an approximation process in the space of integrable functions, A. Sahai and G. Prasad [7] proposed an integral modification of these operators as follows

$$(\widetilde{V}_n f)(x) = (n-1) \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} p_{n,k}(t) f(t) dt, \quad n = 1, 2, \dots$$
 (2)

where

$$p_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-(n+k)}, \quad x \in [0,\infty),$$

and $f \in L_1[0,\infty)$, the space of integrable functions defined on $[0,\infty)$.

By using weight functions of beta-type, the following integral extension was given by V. Gupta [5]

$$(M_n f)(x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k}(t) f(t) dt, \quad x \ge 0, \quad n = 1, 2, \dots,$$
(3)

where $b_{n,k}(t) = \frac{1}{B(k+1,n)} t^k (1+t)^{-n-k-1}$, $t \ge 0$, and $B(\cdot,\cdot)$ denotes the Beta function. It results

$$\int_0^\infty b_{n,k}(t)dt = 1. \tag{4}$$

These operators are a slight modification of those defined by (2) but some approximation formulas for $M_n f$ are simpler than the corresponding results for $\widetilde{V}_n f$.

We point out that the two modified operators are inspired from the work of Durrmeyer [4] who presented an integral modification of Bernstein polynomials to approximate Lebesgue integrable functions on [0,1]. The focus of the present note is on giving combinations of M_n operators which ensure faster convergence in relation to a higher degree of smoothness.

2 Results

Since the classical linear operators like Bernstein, Szasz, Baskakov cannot be used for the investigation of higher orders of smoothness, P.L. Butzer [2] introduced combinations of Bernstein polynomials defined inductively which have higher orders of approximation. Z. Ditzian and V. Totik [3, p.116] extended this method of combinations and defined for the operators L_n , $n \ge 1$,

and a fixed integer $r \geq 1$ the combination $L_{n,r}$ as $(L_{n,r}f)(x) = \sum_{i=0}^{r-1} c_i(n)(L_{n,i}f)(x)$, where n_i and $c_i(n)$ satisfy

(a)
$$n = n_0 < \dots < n_{r-1} \le Kn$$
, (b) $\sum_{i=0}^{r-1} |c_i(n)| \le K$,
(c) $\sum_{i=0}^{r-1} c_i(n) = 1$, (d) $\sum_{i=0}^{r-1} c_i(n) n_i^{-\rho} = 0 \text{ for } \rho = 1, 2, \dots, r-1$,

where K is an absolute constant, $K \in \mathbb{N}$. Also the conditions

$$(c') \sum_{i=0}^{r-1} c_i(n) = 1 + \mathbf{o}(n^{-r}), \qquad (d') \sum_{i=0}^{r-1} c_i(n) n^{-\rho} = \mathbf{o}(n^{-r}), \text{ for } \rho = 1, 2, \dots, r-1, \qquad (6)$$

can replace (c) and (d) in many cases.

Based on the work of C.P. May [6] we can present a concrete example of a system useful for linear combinations. In this purpose we set $e_j:[0,\infty)\to \mathbf{R},\ e_j(x)=x^j,\ j\geq 0,\ \mathrm{and}$ we fix k+1 distinct positive integers namely d_0,d_1,\ldots,d_k . We define the numbers $c_i(k),\ i=\overline{0,k}$ by

$$c_0(0) = 1$$
 and $c_i(k) = d_i^k \prod_{\substack{j=0 \ j \neq i}}^k (d_i - d_j)^{-1}, \quad k \neq 0.$

These coefficients enjoy the properties

$$\sum_{i=0}^{k} c_i(k) = 1, \quad \sum_{i=0}^{k} c_i(k) d_i^{-\rho} = 0, \text{ for } \rho = 1, 2, \dots, k,$$
 (7)

in other words the requirements (5-c) and (5-d) are automatically satisfied by our choice (r := k+1).

In order to prove this we consider $L_k f$ the Lagrange interpolating polynomial corresponding to the function f and the nodes d_i^{-1} , $i = \overline{0, k}$,

$$(L_k f)(x) = \sum_{i=0}^k \frac{w(x)}{(x - d_i^{-1})} \frac{dw}{dx} (d_i^{-1}),$$

where $w(x) = (x - d_0^{-1})(x - d_1^{-1}) \dots (x - d_k^{-1})$. It is known that for any $\rho \leq k$ we have $(L_k e_\rho)(x) = e_\rho(x)$. For x = 0 this implies $(L_k e_0)(x) = 1$ and $(L_k e_\rho)(x) = 0$ for $1 \leq \rho \leq k$. On the other hand we can write

$$(L_k e_\rho)(0) = \sum_{i=0}^k \frac{(-1)^k d_i^{k-\rho}}{(d_0 - d_i) \dots / \dots (d_k - d_i)} = \sum_{i=0}^k c_i(k) d_i^{-\rho},$$

which lead us to the identities from (7).

Further we use the coefficients $c_i(n)$ defined by (5) choosing r a perfect square, $r = s^2$, and replacing the requirement (5-d) with the following

$$\sum_{i=1}^{r-1} \frac{c_i(n)n_i^{\rho}}{\langle n_i - 1 \rangle_m} = 0, \text{ for every } 0 \le \rho \le \left[\frac{m}{2}\right] \text{ and } m = \overline{1, 2\sqrt{r} - 2}, \tag{8}$$

where $\langle \alpha \rangle_m$ represents the lower-factorials defined by $\langle \alpha \rangle_m = \alpha(\alpha - 1) \dots (\alpha - m + 1)$ and $[\beta]$ stands for the integral part of β .

Because of $\sum_{m=1}^{2s-2} ([m/2]+1) = s^2-1$ it results that (8) contains r-1 relations.

Let φ be the function defined on $[0,\infty)$ by $\varphi(x)=\sqrt{x(x+1)}, x\geq 0$. Actually $V_n((e_1-xe_0)^2;x)=\varphi^2(x)/n$ and φ becomes the step weight function of the Baskakov operators and it controls their rate of convergence. For a fix $r=s^2$ we define a linear combination of Baskakov-Beta operators as follows

$$(M_{n,r}f)(x) = \sum_{i=0}^{r-1} c_i(n)(M_{n_i}f)(x), \tag{9}$$

where n_i and $c_i(n)$ satisfy (5-a,b,c) and (8). It is clear that for r=1 one obtains $M_{n,0}=M_n$. Further we consider s>1. Since $M_ne_0=e_0$ for every natural n, the relations (5-c) and (9) imply

$$M_{n,r}e_0 = e_0. (10)$$

Lemma 1: ([5]) Let the m^{th} order moment for the operator M_n be defined by

$$T_{n,m}(x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} b_{n,k}(t) (t-x)^{m} dt.$$

Then $T_{n,0}(x) = 1$, $T_{n,1}(x) = \frac{1+x}{n-1}$, (n > 1), $T_{n,2}(x) = \frac{2(n+1)x^2 + 2(n+2)x + 2}{(n-1)(n-2)}$, (n > 2), and for n > m+1 there holds the recurrence relation

$$(n-m-1)T_{n,m+1}(x) = x(x+1)\left(\frac{d}{dx}T_{n,m}(x) + 2mT_{n,m-1}(x)\right) + ((m+1)(2x+1) - x)T_{n,m}(x).$$

Remarks. (i) $T_{n,m}(x)$ is a polynomial in x of m degree whose coefficients depend on n but are bounded for all n.

(ii) $(n-1)(n-2)\dots(n-m)T_{n,m}(x)$ is a polynomial in n of degree less or equal to $\lfloor m/2 \rfloor$. Consequently for each $x \geq 0$, $T_{n,m}(x) = \mathcal{O}(n^{\lfloor m/2 \rfloor - m}) = \mathcal{O}(n^{-\lfloor (m+1)/2 \rfloor})$.

The above remarks together with (8) guarantee

$$M_{n,r}((\cdot - x)^k; x) = \sum_{i=0}^{r-1} c_i(n) T_{n_i,k}(x) = 0, \text{ for every } k = \overline{1, 2s - 2}.$$
 (11)

Theorem 1. Let $M_{n,r}$ be defined by (9) and let f be bounded and integrable on $[0,\infty)$. If f has a derivative of (2s-2) order at a point $x \geq 0$ then

$$|(M_{n,r}f)(x) - f(x)| = \mathcal{O}(n^{-s+1}).$$

Proof. At first we use the Taylor's expansion of f

$$f(t) = \sum_{i=0}^{2s-2} \frac{(t-x)^i}{i!} f^{(i)}(x) + \theta_x(t)(t-x)^{2s-2},$$

where $\theta_x(t) \to 0$ as $t \to x$ and it is a bounded function. Applying the linear operator $M_{n,r}$ we obtain

$$(M_{n,r}f)(x) - f(x) = f(x)((M_{n,r}e_0)(x) - 1) +$$

$$+ \sum_{i=1}^{2s-2} \frac{1}{i!} f^{(i)}(x) M_{n,r}((\cdot - x)^i; x) + M_{n,r}((\cdot - x)^{2s-2} \theta_x; x)$$

and taking into account both (10), (11) and (9) we have

$$|(M_{n,r}f)(x)-f(x)| \leq \sum_{i=0}^{r-1} |c_i(n)| M_{n_i}((\cdot-x)^{2s-2} |\theta_x|; x).$$

From (5-a,b) and Remarks (ii) the result follows. \square

This result indicates that $M_{n,r}$ comparatively to M_n improves the rate of convergence for smooth functions.

Now we return at M_n operators to present a new property of them.

Lemma 2. If M_n is defined by (3) then for every $0 < \alpha \le 1$ and $h \ge 0$ one has

$$M_n(h^{\alpha};x) \leq (M_n(h^2;x))^{\alpha/2}.$$

Proof. Considering $r := 2/\alpha$ in the relation 1/r + 1/s = 1, r > 0, s > 0, which characterizes Hölder's inequality, from (4) we get

$$\int_0^\infty h^{\alpha}(t)b_{n,k}(t)dt \le \left(\int_0^\infty h^2(t)b_{n,k}(t)dt\right)^{\alpha/2}.$$

By using this inequality as well as Hölder's and knowing that $\sum_{k=0}^{\infty} p_{n,k}(x) = 1$ we get

$$M_n(h^{\alpha};x) \le \sum_{k=0}^{\infty} p_{n,k}^{\alpha/2+1/s}(x) \left(\int_0^{\infty} h^2(t) b_{n,k}(t) dt \right)^{\alpha/2} \le (M_n(h^2;x))^{\alpha/2}.$$

The proof is complete. \square

As a consequence of Lemma 2 we obtain

$$M_n(|e_1 - xe_0|^{\alpha}; x) \le T_{n,2}^{\alpha/2}(x), \quad n = 3, 4, \dots, \quad x \ge 0.$$
 (12)

For our further purpose we need the following definition.

A continuous function f defined on J is locally $Lip\alpha$ on E $(0 < \alpha \le 1, E \subset J)$ if it satisfies the condition

$$|f(x) - f(y)| \le M_f |x - y|^{\alpha}, \ (\forall) \ (x, y) \in J \times E$$

$$(13)$$

where M_f is a constant depending only on α and f.

Theorem 2. Let M_n , $n \ge 4$, be given by (3), $0 < \alpha \le 1$ and E be any subset of $J = [0, \infty)$. If f is locally Lip α on E then we have

$$|(M_n f)(x) - f(x)| \le \left(\frac{\sqrt{2}}{n-2}\right)^{\alpha} M_f \{1 + (2(n-2)\varphi^2(x))^{\alpha/2}\} + 2M_f (d(x, E))^{\alpha},$$

where d(x, E) is the distance between x and E defined as $d(x, E) = \inf\{|x - y| : y \in E\}$.

Proof. By using the continuity of f it is obvious that (13) holds for any $x \in [0, \infty)$ and $y \in \overline{E}$, the closure of the set E. Let $(x, x_0) \in [0, \infty) \times \overline{E}$ be so that $|x - x_0| = d(x, E)$. On the other hand we can write $|f - f(x)| \le |f - f(x_0)| + |f(x_0) - f(x)|e_0$ and applying the linear and positive operator M_n we have

$$|(M_n f)(x) - f(x)| \le M_n(|f - f(x_0)|; x) + |f(x) - f(x_0)| \le$$

$$< M_n(M_f |e_1 - x_0 e_0|^{\alpha}; x) + M_f |x - x_0|^{\alpha}.$$
(14)

At this point we use the classical inequality

$$(a+b)^{\alpha} \le a^{\alpha} + b^{\alpha}, \quad a \ge 0, \quad b \ge 0, \quad 0 < \alpha \le 1,$$

which implies $|t-x_0|^{\alpha} \leq |t-x|^{\alpha} + |x-x_0|^{\alpha}$, $t \geq 0$, and further

$$M_n(|e_1 - x_0 e_0|^{\alpha}; x) \le M_n(|e_1 - x e_0|^{\alpha}; x) + |x - x_0|^{\alpha} \le T_{n,2}^{\alpha/2}(x) + |x - x_0|^{\alpha}.$$

The last increase is based on (12). The expression of $T_{n,2}$ guarantees

$$T_{n,2}(x) \le \frac{4\varphi^2(x)}{n-2} + \frac{2}{(n-2)^2}, \quad n \ge 4.$$

Gathering the above relations, returning at (14) and using again (15) we obtain the desired result.

References

- [1] V.A. Baskakov, An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR 113(1957), 249-251.
- [2] P.L. Butzer, Linear combinations of Bernstein polynomials. Canad. Math. J. 5(1953), 559-567.
- [3] Z. Ditzian and V. Totik, "Moduli of Smoothness". Springer Series in Computational Mathematics, Vol.9, Springer-Verlag, Berlin Heidelberg New York, 1987.
- [4] J.L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
- [5] V. Gupta, Rate of convergence by Baskakov-Beta operators. Mathematica, Tome 37(60), Nos 1-2, 1995, 109-117.
- [6] C.P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators. Canad. J. Math., 28(1976), 1224-1250.
- [7] A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators. J. Approx. Theory, 45(1985), 122-128.

Octavian Agratini
Faculty of Mathematics and Computer Science
Babeş-Bolyai University
Str. M. Kogălniceanu nr. 1
3400 Cluj-Napoca
ROMANIA