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ON A SEQUENCE OF LINEAR AND POSITIVE OPERATORS

Octavian Agratini

Abstract. The purpose of this paper is to study a sequence of linear and
positive operators which was proposed by A. Lupaş [4]. An asymptotic formula
and some quantitative estimates for the rate of convergence are given. By
using a probabilistic method, this sequence is reobtained. Also two modified
sequences are constructed.

1. Introduction

At the International Dortmund Meeting held in Witten (Germany, March,
1995), A. Lupaş [4] formulated the following problem.

”Starting with the identity

(1)
1

(1− a)α
=

∞∑
k=0

(α)k
k!

ak, |a| < 1,

let α = nx, x ≥ 0, and consider the linear positive operators

(Lnf)(x) = (1− a)nx
∞∑

k=0

(nx)k
k!

akf

(
k

n

)
, x ≥ 0,

with f : [0,∞) → R. If we impose that Lne1 = e1 we find a = 1/2. Therefore

(2) (Lnf)(x) = 2−nx
∞∑

k=0

(nx)k
2kk!

f

(
k

n

)
, x ≥ 0.

This Ln-operator has a form very similar with Szász-Mirakyan operators.
We have Lnh = h, h ∈ Π1 and lim

n→∞(Lne2)(x) = e2(x).
Find other properties of Lnf .”
The focus of this note is to investigate these operators.
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2. Approximation Properties

Firstly, we recall the common notation

(α)0 = 1, (α)k = α(α + 1) . . . (α + k − 1), k ≥ 1.

The symbol Πn stands for the linear space of polynomials with real coef-
ficients of degree ≤ n. For any real x ≥ 0 and integer r ≥ 0 we set

er(x) := xr, ψx,r(t) := (t− x)r (t ≥ 0), µn,r(x) := (Lnψx,r)(x).

At this point, it has been proved that

(3) Lner = er, r ∈ {0, 1}.
Remark 1. We can consider that Ln, n ≥ 1, are defined on E where

E =
⋃
a>0

Ea

and Ea is the subspace of all real valued continuous functions f on [0,∞) such as
e(f ; a) := sup

x≥0
(exp(−ax)|f(x)|) < ∞. The space Ea is endowed with the norm

‖f‖a = e(f ; a) with respect to which it becomes a Banach lattice.

Remark 2. In our investigations we also need to consider the Banach lattice
CB [0,∞) of all real-valued bounded continuous functions on [0,∞) endowed with
the sup-norm ‖ · ‖∞. The operator Ln maps CB [0,∞) into itself, it is continuous
with respect to the sup-norm and ‖Ln‖ = ‖Lne0‖∞ = 1.

Lemma 1. If Ln is defined by (2) then, for each x ≥ 0, the following
identities are valid

(4) (Lne2)(x) = x2 +
2x
n

,

(5) µn,2(x) =
2x
n

.

Proof. Taking into account the recurrence relation (α)k = α(α + 1)k−1,
k ≥ 1, we can write successively:

(Lne2)(x) = 2−nxx
∞∑

k=1

(nx + 1)k−1

2k(k − 1)!
· k
n

= 2−nx−1x
∞∑

j=0

(nx + 1)j
2jj!

· j
n

+ 2−nx−1(x/n)
∞∑

j=0

(nx + 1)j
2jj!

= 2−nx−2x
∞∑

k=0

(nx + 1)(nx + 2)k
2kk!

+
x

n
= x2 +

2x
n

.
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We have also used (1) where a = 1/2 and α = nx + 1 respectively α =
nx + 2. Since the operator Ln is linear, the second statement of our lemma
follows as a consequence of (3) and (4).

Let ϕ be the function defined on [0,∞) by

(6) ϕ(x) :=
√

2x.

Actually, ϕ represents the step weight function of the Lupaş operators
and it controls their rate of convergence as follows.

At this point, we fix b > 0 and consider the lattice homomorphism
Hb : C[0,∞) → C[0, b] defined by Hb(f) = f |[0,b]. It is clear that Hb(Lnei) →
Hb(ei) uniformly on [0, b], where i ∈ {0, 1, 2}. Hence, the well known Ko-
rovkin theorem implies the following result.

Theorem 1. If Ln is defined by (2) then one has

lim
n→∞Lnf = f uniformly on [0, b],

for any b > 0.

Next, we are interested in some quantitative estimates for the rate of the
convergence.

We shall give estimates concerning the pointwise convergence in terms of
the usual first and second moduli of smoothness of a function g, which are
defined by

ωk(g; δ) := sup{|∆k
hg(x)| : |h| ≤ δ, x, x + kh ∈ I}, δ > 0,

where k ∈ {1, 2}, g : I → R is a bounded real function, ∆1
hg(x) = g(x+h)−

g(x) and ∆2
hg(x) = ∆1

hg(x + h)−∆1
hg(x).

Theorem 2. Let Ln be defined by (2) and b > 0. One has

(7) |(Lnf)(x)− f(x)| ≤
(
1 +

√
2b

)
ω1

(
f ;

1√
n

)
, x ∈ [0, b].

If f has a continuous derivative on [0, b] then

(8) |(Lnf)(x)− f(x)| ≤ 2b +
√

2b√
n

ω1

(
f ′;

1√
n

)
, x ∈ [0, b].
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Proof. For every x, y belonging to [0, b] and δ > 0 we obviously have

(9) |f(x)− f(y)| ≤ (1 + δ−1|x− y|)ω1(f ; δ).

By using the preceding inequality as well as the Schwarz inequality we
obtain

|(Lnf)(x) − f(x)| ≤ (1 + δ(Ln|ψx,1|)(x))ω1(f ; δ) ≤ (1 + δµ
1/2
n,2 (x))ω1(f ; δ).

Choosing δ = 1/
√
n and taking identity (5) into account we arrive at (7).

In what follows we assume that f possesses a continuous derivative on
[0, b]. For every x, y belonging to [0, b] by the mean value theorem we get
f(x) − f(y) = (x− y)f ′(x) + (x− y)(f ′(ξ) − f ′(x)), where ξ lies between x
and y. Using (9) for f ′ and following an argument similar to the one used
in the preceding proof, we obtain

|(Lnf)(x)− f(x)| ≤ {(Ln|ψx,1|)(x) +
1
δ
(Ln|ψx,2|)(x)}ω1(f ′; δ)

≤ µ
1/2
n,2 (x)(1 + δ−1µ

1/2
n,2 (x))ω1(f ′; δ) .

Since x ∈ [0, b] and δ = 1/
√
n, lemma 1 implies (8).

In the following we are going to prove another estimate by involving the
second order modulus of smoothness. In fact, our estimate will be based
upon a more general theorem which is due to Gonska ([3], theorem 4.1, page
331). So, if we consider the identities (3), (4) and the above mentioned result
of Gonska, we can state

Theorem 3. Let Ln be defined by (2) and b > 0. The following inequality

|(Lnf)(x)− f(x)| ≤
(
3 + 2bmax

(
1,

b

n

))
ω2

(
f ;

1√
n

)
, x ∈ [0, b],

holds.

In the final part of this section we establish a Voronovskaja-type formula.

Theorem 4. Let f ∈ C[0,∞) be twice differentiable at some point x > 0
and let us assume that f(t) = O(t2) as t → ∞. If the operators Ln are
defined by (2) then

(10) lim
n→∞n((Lnf)(x)− f(x)) =

ϕ2(x)
2

f ′′(x),
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holds, where ϕ is defined by (6).

Proof. In order to prove this identity we use Taylor’s expansion

f

(
k

n

)
− f(x) =

(
k

n
− x

)
f ′(x) +

(
k

n
− x

)2 (
1
2
f ′′(x) + ε

(
k

n
− x

))
,

where ε is bounded and lim
t→0

ε(t) = 0. By applying the operator Ln to the
above relation we obtain

(11) (Lnf)(x)− f(x) = µn,1(x)f ′(x) +
1
2
µn,2(x)f ′′(x) + (Lnsx)(x),

where sx(t) = ψ2
x,1(t)ε(t−x) and clearly µn,1(x) = 0. Recalling the Cauchy-

Schwarz inequality and (5) we can infer

(Lnsx)(x) ≤ (Lnε
2ψ2

x,1)(x)(Lnψ
2
x,1)(x) ≤ ‖ε2‖∞µ2

n,2(x) = 4‖ε2‖∞ x2

n2
.

Thus, lim
n→∞n(Lnsx)(x) = 0 holds, and therefore we conclude that (11)

and (5) lead us to the asymptotic formula (10).

3. A Probabilistic Investigation

It is known that by using some concepts of the probability theory have
been obtained several classical positive and linear operators. Pioneers in this
field to be mentioned here are W. Feller [2] and D.D. Stancu [6].

Let (Xj,x)j≥1 be a sequence of independent random variables identically
distributed

(12) P (Xj,x = k) = 2−x−k (x)k
k!

, k ≥ 0,

where x is a positive real parameter. Denoting by θ the common character-
istic function of these random variables, the identity (1) implies

θ(t) =
∞∑

k=0

eitkP (Xj,x = k) = (2− eit)−x.

If we set Yn,x := 1
n

∑n
j=1 Xj , n ≥ 1, then the characteristic function of

Yn,x will be φn(t) = θn(t/n) which corresponds to the following distribution
P (Yn,x = k/n) = ln,k(x) where

(13) ln,k(x) := 2−nx (nx)k
2kk!

, k ≥ 0.
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Furthermore, for every n ≥ 1 and every f ∈ E we consider the function
Lnf : [0,∞) → R defined by (Lnf)(x) := M(f◦Yn,x) where M(Z) represents
the mathematical expectation of Z. This way we obtain the Lupaş operators.

As a matter of fact, all those approximation processes (Pn)n≥1 of proba-
bilistic type which are associated with a random scheme

Zn,x =
1
n

n∑
k=1

Xk,x (n ≥ 1, x ∈ I, Xk,x i.i.d.)

satisfy the formula lim
n→∞n((Pnf)(x) − f(x)) = σ2(x)

2 f ′′(x) for every f ∈
C2

B(I), see [1, page 368]. Here σ2(x) = Var(Xk,x) represents the variance
of Xk,x. For the variables Xn,k defined by (12), after a few calculations,
we obtain M(Xk,x) = x, M(X2

k,x) = x2 + 2x, Var(Xk,x) = 2x. So, in the
particular case when f ∈ C2

B [0,∞) we come across (10).
The next step is to present some properties of ln,k(x).

Theorem 5. If n ≥ 1, k ≥ 0, x ∈ (0,∞) and ln,k(x) is defined by (13)
then the following relations hold true:

i) ln,k+1(x) = nx+k
2(k+1) ln,k(x),

ii) l′n,k(x) = nln,k(x)
(

k−1∑
i=0

(nx + i)−1 − log 2
)

(k �= 0),

iii)
∫ ∞
0

ln,k(x) = (n2kk!)−1
k∑

i=0

(−1)k−isk,ii!(log 2)−i−1,

iv) ln,k(x) < 4(2x2 + 3x + 2)/
√
nx.

Here sk,i represents the Stirling numbers of the first kind.

Proof. The first two identities can be obtained by an easy computation,
so we omit them.

For the third estimate we recall (x)k =
k∑

i=0

(−1)k−isk,ix
i, where sk,i are

the Stirling numbers of the first kind. Also, we need the identity

∫ ∞

0

xi

2x
dx =

i!
(log 2)i+1

, i ≥ 0.

By using these relations the result follows.
In order to prove the last inequality we resort to a probabilistic way. By

virtue of Berry-Essen theorem [5, page 286] there is an absolute constant
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0 < C1 < 1.33 such that

sup
x

∣∣∣∣∣P
(

n∑
k=1

Xk,x − nµ < σ
√
nx

)
− (2π)−1/2

∫ x

−∞
e−u2/2dy

∣∣∣∣∣(14)

<
C1√
n

( ρ

σ

)3

where µ = M(Xk,x), σ2 = Var(Xk,x), ρ3 = M(|Xk,x − µ|3). For our
variables Xk,x we already know that µ = x, σ2 = 2x and M(X2

k,x) = x2+2x.
Also, by using a standard computation method, we obtain M(X3

k,x) = x(x2+
6x + 6). It follows that

ρ3 ≤ M(X3
k,x) + 3xM(X2

k,x) + 3x2M(Xk,x) + x3 = 2x(4x2 + 6x + 3).

So, we have

ln,k(x) = P

(
k − 1 <

n∑
k=1

Xk,x ≤ k

)

= P


k − 1− nx√

2nx
<

n∑
k=1

Xk,x − nx

√
2nx

≤ k − nx√
2nx


 .

By using (14) we obtain

ln,k(x) <
1√
2π

∫ (k−nx)/
√

2nx

(k−1−nx)/
√

2nx

exp(−t2/2)dt +
2C1√
2nx

(4x2 + 6x + 3)

<
1

2
√
πnx

+
2√
nx

(4x2 + 6x + 3),

which implies the claimed result.

4. Extensions

In order to obtain an approximation process in spaces of integrable func-
tions, we introduce two integral modifications of these operators, Kantoro-
vich-type operators

(Knf)(x) = n
∞∑

k=0

ln,k(x)
∫ (k+1)/n

k/n

f(t)dt,
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respectively Durrmeyer-type operators

(Dnf)(x) =
∞∑

k=0

cn,kln,k(x)
∫ ∞

0

ln,k(u)f(u)du.

The coefficients cn,k are defined as follows c−1
n,k =

∫ ∞
0

ln,k(x)dx. In fact,
this guarantees the relation Dne0 = e0. Also, we easily obtain

(Kne0)(x) = 1, (Kne1)(x) = x +
1
n
, (Kne2)(x) = x2 +

3x
n

+
1

3n2
.

As regards these integral operators we raise the problem to investigate
their convergence in Lp-spaces.
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