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In this paper we are dealing with approximation by summation integral
operators. We show the connections between the local smoothness of
the approximated function and the rate of its local approximation. The
direct theorem is obtained in a general case. Also, an inverse result is
presented under certain conditions imposed on the sequence of operators,
the most important being the commutativity of the operators and a
restriction on the second order moments of the operators.

1. Introduction

Let J be a given interval on the real line. To approximate continuous
functions f on J, we use a sequence (l)n>1 of linear positive operators of
discrete type, that is, operators of the form

(1) (nf)(@) = ) (@) f(@ne),

keln

where I, C N is a set of indices, u, j are non-negative functions in the space
C(J) and the knots z, are suitably chosen in J. For a given compact K
in J we study the approximation of functions from C(XK’) with respect to the
uniform norm ||-||x. To determine a positive approximation process on C(K),
the above sequence has to satisfy the Korovkin conditions ||l,e; — €|k — 0,
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i=0,1,2, where ¢;(t) = ', t € K. Further on, we assume that /,, reproduces
every constant function. In other words,

(2) > tnp(z)=1, ze€l

kel,

In order to generalize [, to a summation-integral operator L,, we follow
Durrmeyer and use a non-negative family {w, x} of functions from Lebesgue
space L1(J) and normalized by

3) fwn,k(t) dt=1, kel,
J
Then we define L,, as

(4) Lnf)@) = 3 tnp(a) /J wn () () dt.

kel,

In [1] we indicated conditions that ensure the convergence of the sequence
(4). In [2] the authors have presented the asymptotic properties of L, in
the case I, = {0,1,...,n} and J = [0,1]. The general class of operators we
are studying includes those considered in the literature under the name of
"modified operators” being the integral analogue of the Bernstein, Baskakov,
Meyer — Konig and Zeller, Szasz operators (see, respectively, (3], [7], [8], [6]).
The aim of the present paper is to give an equivalence between the local
smoothness of functions and the local convergence of L, operators. For this
purpose, we need the following definition.

Definition. A continuous function f defined on J is locally Lipa on E
(0<a<1, ECJ)if it satisfies the condition

(5) |f(z) = f(y)| < Myslz —y|*, Y (z,y)€JXE,

where My is a constant depending only on a and f.

2. A direct theorem

The relations (2) and (3) guarantee (L,ep)(z) = 1. Further we shall need
the second central moment of L, defined by p,2(z) := L.((e1 — zep)?, ).
‘Since we want to show that the sequence (L,),>1 converges to the identity
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operator, it is necessary to assume that a continuous function ¢ exists so that
lim nu,2(z) = @(z). Actually, we can represent nu, 2 in the form
n—oo =

(6) ntina(2) = pla) + E #l2)  yey,

where @; € C(J), i = 1,1. It is clear that ¢ > 0 and we will call /2 the
step-weight function related to L, operators.
First, we mention an immediate consequence from Holder’s inequality.

Lemma 1. If L, is defined by (4), then for every 0 < a <1 we have
Lo(h®,) < ((Lnh)(2))%

where h > 0 and {h*w, k}ker, C Lp(J) (p=1 or p = oo, if J is a bounded,
respectively, unbounded interval).

Indeed, an application of Holder’s inequality with parameters 7 = 2/a
and s > 0 (1/7 4 1/s = 1) gives on the basis of (3)

fJ B ()wn, (1) dt g'( /J R alt) dt)%

By using this relation and Hélder’s inequality, from (2) we get
L) € X d 1o ([ o) < @021,
keln

which was to be shown.

As a consequence of Lemma 1 we obtain

(7) Ly(ler - z|%,z) < “E,z(m): z € J.

Next we give an estimate of the rate of approximation in terms of 2.
Denote by d(z, E) the distance between z and E, that is,

d(z,E)=inf{lz —y|: y € E}.
Theorem 1. Let L, be given by (4), 0 < a < 1 and E be any subset of

J. Assume that f € C(J)N Ly(J), if J is bounded, or f € C(J)N Leo(J), in
case J is unbounded. If f is locally Lipa on E, then

(Laf)) = F(a)] < My (p2 (=) + 2(d(z, E))°).
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Proof. By the continuity of f, it is obvious that (5) holds for any z € J
and y € I (the last being the closure of the set E). Let (z,z0) € J x E be so
that |z — x| = d(z, E). On the other hand, we can write

|f = ()| < |f = f(zo)| + |f(wo) — f(2)]ea
and applying the linear and positive operator L, we obtain

- |(Lnf)(@) = f(z)] < La(lf = f(zo)l,2) + | f(2) = f(=0)]

IA

L,(M¢ler — zo|®,2) + My|z — zo°.
At this point we use the classical inequality
9) . (a+b)* < a4+ 0%, a.._>_0,520,0<a§1,
which implies |t — zo|® < |t — 2|* + |2 — z0|%, t € J, and consequently
Ln(Mgley — zo|®,2) < MypLp(ler —z|*,2) + My|x — 2o|®
My (n3a(w) + o = 2ol).

(VAN

In the last inequality we have used estimate (7). Returning now to (8) we
obtain the desired result. The proof is complete.

Define wy(f,t) := sup {|f(z+ h)— f(z)|: z,z+ N € J}.
0<h<t |
As a particular case of Theorem 1, when E = J, the following is true.

Corollary. Let L, be given by (4) and 0 < o < 1. If f satisfies the
condition wy( f,t) = O(1%), then there ezists a constant My, independent of n

and z, so that |(L,f)(z) — f(z)| < Mf#,f_ﬂ(a:), zeJ.
Examples.
1° Choose J = [0,00), I, = N, and

() = (n +: = I)CEk(l + a;)_”_k, Wak(t) = (7 — 1)unk(t).

Then L, reduces to the known Baskakov — Durrmeyer operator V,, (see [7]).
In this case py2(z) = 2((n + 3)(z2 + 2) + 1)/(n — 2)(n - 3), n > 4, and
o(z) = 2z(z + 1).

2° Choose J = [0,00), I, = N, and u,i(z) = e (na)*/k!, woi(t) =
Nty k(). Ln becomes the Szasz — Durrmeyer operator S, defined by Mazhar
and Totik [6]. Now i, 2(z) = 2(zn~! 4+ n~?) and ¢(z) = 2z.
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3 J = [051}1 I, = {0311”-1“}, un,k(m) = (:)xk(l - g;)n—k,

wnk(t) = (n + 1)upk(t), then L, becomes the Bernstein — Durrmeyer op-
erator M, studied by Derriennic [3]. Here ¢(z) = 2z(1 - z).

4° If J = [0, 1]’ In = N, uﬂ,k(ﬂ) - (n'!::‘ k).’l:k(]. _ m)'ﬂ'l‘l,
wn k(1) = (ntk +n1?£n1+ ke z)uﬁ,k (t), then L,, becomes the modified opera-

tor of Meyer — Konig and Zeller, studied in [8]. In this case ¢(z) = 2z(1—=)2.

3. An inverse theorem

In this section we are going to discuss an inverse result. For this purpose
we shall consider the following assumptions on the sequence of operators:

(A) The operators L, commute, i.e., L, 0 L,, = L, 0 L,.

(B) The function ¢ is monotone and satisfies the relation

(10) () < ap + a12 4 aza®, z € J.

For any given 0 < @ < 1 and E C J, define
O\ 7
sl 1) 1= (#) + % 4 (At E), te

(C) If h has the property |h(t)] < Mos,(a,t), t € J, then

(11) ]%(th)(t)‘ <M min{ ;’(%n} sn(ayt), te€d,

where Mo, My are independent of A,n and z. Implicitly, the functions Un k
belong to C(J).

Theorem 2. Assume that the operator (4) satisfies conditions (A), (B),
(C). Let f € C(J)N Ly(J), if J is bounded, or f € C(J)N Loo(J) in case J

is unbounded interval. If

(12)  [(Laf)(@) = f(2)] < M2 ,(2) + (d(E,2))%), @€ J,

then f is locally Lipa on E.
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Proof. Let us fix an arbitrarily (z,y) € J x E. We have to show that (5)
holds with a certain constant M;. To do this we first assume that |z —y| > 5"
Then clearly 1 < 2|z — y|* and thus

|F(2) = f(@)] < 2l flleo < 4llfllcole = yI%

where || f]|oo = esssup f. Therefore (5) holds in this case with My = || f||oo-
J

1
Assume now that 0 < |z —y| < 3 and define the sequence (8(n,z,¥))n>1,

d(n,z,y) := max {2_”, V2 p(z), ﬂ‘“gp(y)} which is decreasing to zero as
n tends to infinity and satisfies 8(n,z,y) < é(n — 1,z,y) < 26(n,z,y). We
can choose n > 2 so that

T—y
(13) l—7—| < é(n,z,y) < |z -y

The following inequalities hold:
O\ 2
(14) (%(%l) < 82", z,y) < |z —y|¥, 27" <6%(2%,2,y)< |z — y|®.

We can write

If(x)= f(¥)] < |f(z)— (Lanf)(@)] + |Lan(f = Lan-1 f, 7))
' £ |Eg(Lgna f, @) — Las(Bgw=s ], )
+ |Lan(Lona f = £, 9)| + |(L2n f)(y) — F(¥)
= A1+ B1+C + By + As.

Estimating the terms in the last sum we shall denote by M a constant
which may be different at each occurrence.

At the first step we estimate A; and Aj.

The relations (6), (9), (14) imply

(15) i) < (%)) T, pda(e) < (L Nz -9l

where A := Imax{1, ||¢:|]|oc}- Then, making use of (12), we get
i=1,l

1£(z) = (Lan F)(@)] € M) (i o(2) + d*(E, ))
M2+ Nz - yI* = Ml - y|°.

A

A
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Since d(y, E) = 0, analogously we have
Ay < M1+ Nz —y|* = M|z —y|*.

Next we estimate By and Bs.

It follows from (10) that ¢(t) < ¢(z)+ay(t — =) +a{(t— z)? 4 2z(t—=z)}.
Using again (9) and (14), together with (7) and (15), we have

@ 5 a o a £ =
(16) Lan ((@,Tl) ,l') < 2%af|z — y|* + 2|z — y|2 pgn o () + p3n 2(2)}
< Ml.’b - ,y|a,

where a is a constant which depends on a1, a; and a.

Further, we have Lan(ft2n 2,t) < M}(ug,,z(t) + d(t, E)) + pon2(t) and
d*(t, E) < d*(z, E) + |t — «|*. Finally,

By < Lon(|f = Lyn1 f|,2)

£ (@) = (Lgn=1 )(@)| + M Lan(Bgn-1 5 + 4%, E),2)

<
< Mi{p5as 5(2) + d°(e, E)}
+ M} Lyn ((2—::9_—1) T4 a20-ma 4 g%(q, E) + |e; - o], a:)
< MH{(1+ Nz —y|* + e -y}
+ M) {LG ((5,?_—1) : m) +2°Ae — 9| +d*(z, E) + #2%",2(‘5)}
< Mlz -yl

The relation (16) was used here. Similarly, B, < M |z — y|*.
It remains to estimate C. In order to do this, note first that the commu-

tativity of L, implies

Lan(Lon-a f, 8) S Lai(Lgi-r f51) = Laimi(Lai=2 £)) + La(L2f,1)

7=3
= Z L2j—l(L2jf - L'zJ—?fa t) + Ld(L2fa t)'
j=3
We can write

Lzﬂ(Lgn—l f,ﬂ:') - Lzﬂ(Lzﬂ—lf, 'y)
= 3 [ theslBat - LSy dt+ [ marna,
Y

j=3"Y
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and consequently,

G = |L2ﬂ-([l2n-’—] f, :L‘) = L?"‘(LG_lf} y)l

] L'gj—1(L2if — Ly f,1) dt‘ +
y .

<y

Jj=3

/ " L(Laf 1) dt} -

y

But

[ Bt ] < lo — o s < M=ol e

Y

CJ' =

/ Loia(Loi f - sz-zf,t)dt‘.
y

To finish the proof of the theorem we need only show that

(17) Y i < Mle —y|*.
1=3
Indeed, then we would have

|[f(z) = f(y)| £ A1+ B1+C+ By + Ay < Mlz - y|*, (z,9)€JXE

and thus the theorem.
Next we prove (17). Clearly,

(L) = L DOl € 1Lt O) = FOI+ (L )E) = SO
. M ((-”Z(—t)) @), E))

<
o ((59) s )
< M ( (%’}(f—f) T @), E))

Msyi-1(a,t),

where s,,(a,t) was defined in the hypothesis (C). Notice that the function
h:= M~ Ly, f — Ly;—2 f| satisfies the condition required in the same hypoth-
esis, thus we can apply (11).



OCTAVIAN AGRATINI 389

Case 1. b(n,2,y) = 27", In view of (13), 2" < 2z — y[~!. Then (11)
implies

S
IA

Jace h)(t)]

[ (9)

Here we have deduced d*(t, E) < |= — y|® since { lies between 2 and y. But

(18)

IA

+(T;U_ﬂ$—yﬁ+hﬁ-w““}-

M§23-1 {

| [ al < oyl (wax { Vo, Vo))
< oz — yl?"“’zﬁu(n, z,y) = 27"y - yl.

Making use of the inequality

(19) A+ad+.. a7 <

a
for a equal to 2!~ % 21=2 92 and taking into account the relations (18), (14),
we obtain

n

S < Mo e

7=3 j=3
T n
+ Mgla =yl ) (27714 Mila — o+t 37 27
j=3 j=3
< Mz -yl

Cask 2. 6(n,2,y) = max {\/go(::;)Z‘“, \/gp(y)Q—“}. Consequently,

e g 1
|:1, . y| < max {\/(,o(:v)2-n, \/99(?1')2_“} < |5L _ yl « 5
1 21—-n/2

(nos {0 vi)) " < 5

(20)
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Firstly we consider a € (0,1/2). This time (11) implies

G < ] x(L;;-.h)(t)|

il { W) +(2"-‘)‘“+d‘”(t,E)} dtl

= M w(t) |\ 291
< M {(25-')(1—a)/2 /E(g,(t))aT—* al S
(21) + VI 4 o - (P_m(t)dt.}

IA

Mg{ e - 9(@)'3® (max { Vol@), Vo))
+ lo = gl((2F )2 4 V2T - y%)

x (max{m,m})“ }

With the help of (19) (we take the constant @ respectively equal to
2(1-0)/2 91/2=a /3) and wunder the hypothesis of this case, we get

D e < Mz —y|*
j=3

Now consider the case a € [1/2,1). For the given integer j,3 < j < n,
there are two possibilities:

(i) 29/2 ma.x{\/cp(:r:), \/go(y)} < 1. Then (20) implies |& — y| < 279+,

Using the assumption (11) we obtain

{89

i 213 (e {73 V7)) b o

I

€y

+ ()2 —yl + | - yl"‘“}

IA

+ |z -yl + 2 e ~ yl““}



M.;{ 2% (max { Vo@) ve@)})" (@)'F e -l

<
+ lm _ yla(2j-—l)l—a s 2j_1|ﬂ.’.' _ y|a+1}
< Mf|z - y](Qif—l)li2 (max {1/90(33_), /_(P(y)})a-]

+ MYa -3l (max { Vi), Vo)

(ii) 24/2 max{\/ga(a: ,\/ga(y)} > 1. Then clearly |z — y| > 279+! and

starting from inequality (21) we proceed further as follows

ej < Mala—y[te2U=/ (max {\/;("’—‘)’ \/@})—1
+ e = 3l(@)'F (max { Vo, Vo)
Ms¢;(a,z,y).

Taking into account the rtesults in both situations, we obtain
¢; < Myp;(a,z,y) for any j = 3,n. Applying the same estimates as in
the previous case, we get

i ¢ < Ms|a — y|1+°' (ma,x {\/(;0(3:)2—?1, \/‘P(y)2‘"})_1

i=3

+ Mla ol (max { Vol@2, Vo)) < Mlz—yl”

The proof of the theorem is complete.

Remark. Note that for Baskakov — Durrmeyer operator the conditions
[

in Theorem 2 have been already verified: for (A) see [4], for (C) see [5],
Lemma 2.3 and Lemma 2.4. This way our theorems lead to the result obtained

by Song Li in [5].
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