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Abstract. The paper is devoted Lo the study of an approximation process Il
representing an integral form in Kantorovich sense of Bernstein-Shelfer opera-
tors.

We establish the degree of approximation both in C[0, 1] space in terms of the
modulus of continuity and in Lp[0,1], p > 1, spaces in terms of the integral
modulus of smoothness.

Consequently, it results that the sequence (IKH),> converges to the identity
operator in the mentioned spaces.

Also we point out a connection between the smoothness of local Lipschitz —c
(0 < o < 1) functions and the local approximating property.

Mathematics Subject Classifications (1991). 41A36, 41A25.

1 Introduction

For any positive integer n we denote by II, the linear space of polynomials of
not most than n degree and by II% the set of all polynomials of exactly n degree.
We set IT := U II,. A polynomial sequence b = (bn)a>0, bn € I} will be
n>0
called of binomial type if for any n > 0 the following identity

n

ba(z+y) =3 (Z) be(@)bar(y), (5,7) ERXR, (1)

k=0

holds.
The most common example is the monomials e, e, (z) = z™.
Let J be a linear operator applicable to all polynomials having the form

Jy)=cay +ey" +ey” +..., a#0 (2)

A sequence s = (8n)n>0, 5n € II4, is of type zero (Sheffer sequence, (10]) if
J(sp) = sn—1, n > 0, where s, :=0.
The formal series J(t) = Z c;t! is called the generating series (or function)
izl
for the operator J.
Let the formal power series inverse of J be

Ht) = hat", h=c #0, (3)

n>1

obtained from J(H(t)) = H(J(t)) =¢.
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We consider the sequence p =(p,,),>0 generated by

t”
alli(t) _ Yo
e > pulz) = (4)

n>0

and by using the properties of the exponential function it can be proved that p
verifies the condition (1) thus it is of binomial type.

It is known ([10], Theorem 2.1) that a necessary and sufficient condition that
the sequence s be of type zero corresponding to the operator .J of (2) is that a,,,

n > 0, exist so that
tTl

wli(t
A()es 1) = ZS”(”’).}E:

n>0

where A(t) = Z ant”, ag # 0. The condition ag # 0 guarantees that s,, belongs
i n>0
to IT7.
Also, we have

“ /n
sn(z+y) = Z (k) Sk(I)pﬂ—k(y)'
k=0 '
We point out that the binomial sequences are in connection with the umbral

calculus.
Let us remind that the linear operator J : II — II becomes a delta, operator

if B*J = JE*, a € R, and Je; is a non-zero constant where E? is the shift
operator ((E°f)(z) = f(z + a)). R. Mullin and G.C. Rota [7] had proved that
every delta operator generates a unique sequence p of binomial type satisfying
Po = €p, pn(o) =0 and Jpn =npn1, n > 1.

Also, the binomial sequences may be used for the construction of linear and

positive approximation operators [6], [9].
The aim of this paper is to investigate an integral operator of Kantorovich

type created by using a binomial sequence.

2 Construction of the operators

Starting from (4) the Bernstein-Sheffer operator of degree n, associated with
the function H and consequently with the sequence p is defined by

3

1
pn(l) k

@0 = 21 (3) ()pemaa-a, secon, o

provided that p,(1) # 0 for all n > L.
The classical Bernstein operator corresponds to H(t) = ¢ which implies

Pn = €n.
In [2] and [9] many nice properties of B are releaved and Lupag [6] has

given a generalization L,({1 ") of these operators by using a sequence (a,),>1 of
positive numbers.
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But the above operators cannot be used for Ly (1 < p < co)-approximation.
For this purpose we must modify them into integral form.

Actually, we replace f(k/n) in the formula (5) by an integral mean of f(x)
over a small interval around the point k/n as follows

([(;_’f)(:u) =(n+1) Zp,,,|k(:r:) /:4.—1 f(t)de, fe Ly0,1], (G)
k=0 Tt
where ppr(z) = ;3:1(1—) (Z)pn(ﬂ:)p"k(l —x).

By using (1) it is clear that

mn

S pas(®) = L. (7)

k=0

REMARK

(i) K is a linear operator. P. Sablonniere ([9], Theorem 1) characterized
those functions H for which BX is a positive operator. Actually, the basic
idea appeared long time ago, in [8] T. Popoviciu, presenting the solution of this
problem.

In the same paper, choosing H(t) = t(1 — t)~! and using the Laguerre
polynomials the author also constructed operators of binomial type.

However, K} becomes a positive operator if and only if h,, defined by (3)
are non-negative for all n > 2. In what follows we assume that this condition is
always fulfilled.

(ii) If we define H by H(t) = H(—t) then the relation (4) implies pplz) =
(—1)"pn(z) and (6) leads us to the fact that KH and KH coincide.

(iii) We present another look of K.

More exactly, we can write this operator as a singular integral of the type

-1

(K f)(z) = j Wi, £)f(B)dt, € [0,1],

0

with the non-negative kernel Wy (z,t) = (n + 1)pni(z) for k/(n + ) <t<
(k+1)/(n+1), k = 0,n and Wy(z,0) =0, z € [0,1]. Using (7) it is obvious
that our kernel satisfies '

1
[ Wi(z, t)dt = 1.
0

3 Properties of the operators

We start with the expression of the operator K on the test functions e;,
3=03 -
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MmMa 1 Let (KM e defined by (6) and let the sequence (rn(x))nz0 be
werated by H"(t) exp(zH(t)) = Z ro ()£ [l
n>0
The following identities
(1) I(i’(ﬂ[) =
. 1
- Y (— .
(i) Kpen = T + -——42(” )
1

(iit) (Kﬂeg)(n:) = m {(’H.f 1)(1—(},1)63(."{1)+ (2+(n.—1)q,1)el(rr:)+ %}
old, where (n = rn—2(1)/Pn(1).

roof. First, we recall some useful formulas related to Bernstein-Sheffer opera-
ors ([9], Theorem 2(it)):

1 n-—1
H
Bf(‘,n = €n, Bffel =815 B;: ey = ey + (f +

T TL

qn) e —es)y  (®)

From (7) we have (IKHeq)(x) = (BH eg) () = eo(z)-
Further we deduce

n k: 1 n
(If WY = _E_ k() — e B2 () =
(@) = —og D pnr(@), + gy 2Pkl
k=0 k=0
m 1
= B : ot :
g 1( n 61)(T) =) 2(‘!?, 4 1) Bn (:’[))('E)

which implies the second statement.
Also, after few calculations we obtain

1 : 1
(Kles)(e) = e {P(BHea)@) + nBen)o) ¢ 3
and with the help of (8) we arrive at the desired result. d

Choosing H = e it results pn(z) = 2" and g, = 0.

The operator I(5! is the n-th Kantorovich operator and the results of Lemma
1 become known identities (for example see [1], Section 5.3.7).

Further we need the central moments of K defined by Qn i(z) = K Hiler~—
zeg) ,x), 7 = 0.

Taking into account Lemma 1 for any n > 1 it is easy to prove that

i i
Qo) =1 Mua(®) =377 (5 B ) /

=0 (1 e 1
Qn2(z) = n+1)2 (n +l1“l)' (1-=)+ 3(n+1)2.

(9)

Turorem 2 Let (IKH),>1 be defined by (6) such that H has positive coeffi-
cients.
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M

() If f € C[0,1] then |(KHf)(a) — F(a)] € (3/2)wy (\/ 1/n+ |r,',,]) where

wy B8 the maodulus of continuity associated to I
The sequence (1< I fYps1 converges uniformly to f if and only if lim qn =0
- n—no

holds.
(i) If f € L,[0, 1],p=1 and lim ¢, = 0 then lim ',]Kf,"f — fll,=0.
n—oo n—300

Proof. (i) Since H has positive coefficients, pn(z) =20 and consequently pnk = 0,

ko= 0,n.
This fact together with Lemma, 1 implies

k4l
e

e DS pnata) [ () S
k

L k
c=(0) n+1

<

\(H £)(w) — fz)l =

n ktl
nFL
A DY et [ 150 = TN
k=0 ; ;T:-_l_
We use firstly the following known properties of the modulus of continuity
\f(t) — f(@)] < wp(lt — =) < (1 + 5|z — t))ws () for any § > 0 and secondly
1/2

n T

Cauchy’s inequality Z pui(@)lz =t < an'k(:c)(w =~y
k=0 k=0

By virtue of the linearity of our operators and by Lemma 1 we obtain

(KX f)() - fl)l < 1+ 5=l 3 (2))wy (8)- (10)

-1
Since z(1-z) < /4,2 € [0,1], from (9) we can write Qnalz) € &—(::_—1)3(14‘

wlanl + gy S £l

Choosing § := (n™" + |qn]) /2, from the relation (10) the conclusion follows.
The second assertion follows directly from Lemma 1 and the well-known the-
orem of Bohman-Korovkin. We notice that the sufficient part of the statement
can also be obtained by the previous inequality of the present theorem.

(ii) By using the natural embedding S, : C[0, 1] = L0, 1}, Self) = f, we
obtain that Korovkin subspaces in C[0,1] are also Korovkin subspaces in L,[0,1)
([1], section 4.1).

Thus, Lemma 1 implies as well 11i_r£o KHf=fin L,[0, 1}-norm. O

1

We are going to estimate the degree of approximation by using the rt order
modulus of smoothness of f measured in L,[0,1]-spaces, P > 1.
We recall

wr(fwt)p = sup HA};fllllpn fe Lp[Oall‘ t>0,
o<|h|<t

where A} f(z) = (E" - I)" f(=)- For any k < 7, (B fla) = flz + kh) if
a2, ¢ + kh belong to [0,1] and becomes Z€ro otherwise.
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te documentation |3| can be consulted.
al norm in L,[0, 1] spaces.
p > 1, 7 > 0 integers) of the L, space

Tor A more comple
Also |- 1y represents the nsu
We consider the subspaces Wy, (
we the functions possess smooth derivatives.

More specifically W, stands for the space which consists of those functions

n [0, 1] for which the first 7 — 1 derivatives arc absolutely continuous on [0,1]

| the rtt derivative belongs to L,[0,1].
Also we need the Peetre I -functional of f € Ly|

K(t, f; X, Y)= mf{||f - glly + Hllolly + Ilg
], Y = W, [0, 1], and the modified K' fu

0, 1] which is defined by (141,

@], : g €Y}
= L,[0,1 nctional is given by
K'(t, f; %, Y) = inf{[lf —alln+ g Mlp: 9 €Y}

following connections between these functionals and the modulus of

The

noothness are valid
Kt £ X,Y) < K(t, £;X,Y) < min(L Dl fly K LX) ()
cw,(fit)y < K'(t", f; X,Y) < cswr(frit)p, 0 <t <1,

ihere ¢; = c1(py1), €2 = C2 (p,r) are positive constants.

"uEOREM 3 Let (KH)uz1 be defined by (6) such that H has positive coefficients
tnd @i p =0~ + lgnl)(p + N~ 4+ (1/3)(n + s
If v > 3 is an integer and a:l{;,' < (2r)71, n € N, then for every f e Ly[0,1]
the following inequality
UK S = Fllp < 200l llp + Coor (.2l

holds, where Cpr 15 @ constant independent of f and n.

], for any (¢, =) € [0,1]%[0,1] a:ld g€ W,.[0,1]
] (t—wu)g" (u)du. Consequently

Proof. Following [11 We can write

o) —g(x) = () (t—2) +s(8) where @ (D) =

lpa ()] < (£ = 2)2l19"lloo holdS.
Applying the linear and positive operators K H we get

|KH (g — g(z)eo, 2)| < 19 lool I (€1 — eo, 2)| + 6" lloo K H (€1 — me0),2);
which implies

K (9 — g(z)eo, Mlp = 19 lloollQmallp + 119" lool1€2n 2 lp-

At this point we need a known inequality: for k=0,1,...,7"— 1 and any

0 < & < 1 one has o™ Nleo < el/a{(2r) e Fgllp + er—k=1{|g(M||,}, where
1/q = 1—1/p ([5), relation (1)).

Choosing € = 1 and j € {1,2} the following relation

Hg(j)”oo < (27')THQHW + llg(")ﬂp

(12)

(13)
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holds.
Further, taking into account (9) and for the sake of simplicity denoting
G = (0= 1)(1 +nfg])/(n+ 1)? we obtain

i 0 L/p 1
Quillp =gy | [ (L 2aldz) =
(120,11l 2(n + 1) (/0 | | I) 2(n + 1)(p + 1)1/’

1 I/p
Q21 = ([ |Gn(z — %) + (1/3)(n + l)zl‘”d:c) <
Jo

1/p

< n (/ﬂl(-’r — fr=2)”d:c> +(1/3)(n+ 1=

UG ) A SN £ WP DL S TR
=\ @2p+1)! sz = \a T Gy T 3m e T

We deduce that max{||Qn,1llp, [|Qn2llp} < oy is valid.
Thus, the relations (12) and (13) imply

1K Tg — gll, = 1A g — 9K eollp < 2((2r) gl + g™ llp) .-

For a given function f € L,[0, 1] with the help of the above relation, we can
write

“-Krirf = f“p < ”Kf(f - 9‘)“;} ¥+ ”Kf!}' = QHF + “‘? - f”p <
2{|If — g”p + (QT)ra,m,(Hg“p + “.‘J(T]Hp)} :

Taking the infimum over all g € W,,,»[0, 1] and using (11) we get

VAN

WEZf—fll, € 2K(@2r) enp, i X,Y)
< 2min(1, (2r) anp) | fllp + deawr(f, 21‘05111{;;}1, )

Because o:,ll{; < (2r)~1, the proof of our theorem is complete. m|
Since w,(f,t), is a nondecreasing function in ¢ for each f and verifies the
property w,.(f,mt), < m w, (f,t), for any natural m, we have

wn(f, 2ral/T), < @) wn(f,lanl " + (2/7) 7).

We also relied on the following increases dnp < |gn| +2/n, (u+ v)B < uf + 0P
(6 €(0,1], u>0, v >0). So we can mark a simpler form of our result.

COROLLARY 4 Let (KX) .51 be given by (6) such that H has positive coeffi-
cients, lim g, =0 and r > 3 an integer.
1H—r 00

For every f € L,[0,1] and for sufficiently large n. one has

WEH = fllp < 2(anl + 2/ fllp + Cpper (S lgal "+ (2/1)'")ps

is a constant independent of f and n.

1
where C'p! e
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JEMMA B IF (K1) ,»0 s defined by (6) and H has positive coefficients then

K!'(ley — wep|™,x) < \QG/E(ZE), € [0,1], O<a<l.

n,2

dr00f. It is a direct result of Holder’s inequality. Indeed, let’s take the numbers
.5 0, s > 0, such that 1/r +1/s = 1. Holder’s inequality and the relation
7) imply I(f(hm"’") < (K:‘?(]"M!m))ur- Choosing 7 = 2/a, h = |e; — zeg| the
-onclusion follows. =

In order to investigate the relationship between the local smoothness of func-
-on and the local approximation we recall that a continuous function f is locally
Lipor (0 < a < 1) on E C [0,1] if it satisfies the condition

|f(z) = fy)| < Mylz—yl™,  (xy) €[0,1] % E, (14)

where My is a constant depending only of @ and f. Also we set by d(z, E) the
listance between = and E defined as d(z, E) := inf{|x —t|: ¢ € E}.

THeoREM 6 Let (ICH),>) be given by (6) such that H has positive coefficients,
) < a <1 and E be any subset of [0,1].
If f is locally Lipa on E then one has

|(K,’? (@) — f(z)] < My (Bn(z,a) + 2d%(z, E)), =z €[0,1], (15)

where fn(z,a) = {(1/n+ |ga])=(1 - )} + (n+1)7".

Proof. By using the continuity of f it is obvious that (14) holds for any z € [0,1]
and y € E, the closure of the set E.

Let (z,zo) € [0,1] x E such that |z — zo| = d(z, E).

We have

(K7 £)(=) — F(o)] < KI(1S = flao)l, @) + | £(z) - Flzo)] <
< M{IH (Jer — zoeo|*, ) + & = mol"}.

Also we get |t — zo|* < |t — z|* + |z — z0]%, t € [0,1], and by Lemma 2 we

have KH (je; — moeo|®, z) < Q25 () + |z — mo]®.
In view of (9) we obtain

) » . /2
ﬂﬁ/f(dz) < {(?E‘nﬁ)lj}(l/n + |qa)z(1 — .'L‘)} + 3_“/2(n+ 1)y < Balz, o)

The result follows. 0
In particular we can choose E = [0, 1] and it results the following statement.

COROLLARY 7 Let (K1),,>1 be given by (6) such that H has positive coefficients
and B, be defined by (15) where 0 < a < 1.
If f € Lipa on [0,1] then

(EH £)(z) - f(2)| € MsBu(2,a), z €[0,1].
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