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Abstract
In this paper we are concerned with the sequences of polynomi-
als of binomial type. In particular we point out their remarkable
algebraic—combinatorial properties related to the so called delta
operators as used in a series of papers on the foundations of com-
binatorial theory, see [23], [27]. In order to detail this field, the
theoretical aspects are illustrated with several concrete examples.
The paper is also a survey of the role of these polynomials in Ap-
proximation Theory and it includes the construction of general
binomial type operators and their main approximation proper-

ties.

Introduction

The main objective of this survey paper is to present the role of binomial polynomi-
als in Approximation Theory, more precisely, a unified theory of the approximation
operators of binomial type by exploiting the technique of the umbral calculus or sym-
bolic calculus, widely used in the past century. In its modern form, this is a powerful
tool for calculations with polynomials. It has its origin in so—called Heaviside cal-
culus created by G. Boole and extended by A. Cayley, P. Appell, S. Pincherle, J.
Blissard and after 1900 by N. Nielsen, N.E. Norlund, J.M. Sheffer, E.T. Bell. We
point out that the first rigorous version of this calculus belongs to Gian—Carlo Rota
and his collaborators; among them we mention R. Mullin, S. Roman, D. Kahaner, A.
Odlyzko. The umbral calculus is a successful combination between the finite differ-
ences calculus and certain chapters of Functional Analysis and Probability Theory.

*Babes-Bolyai University, Faculty of Mathematics and Computer Science, str. Kogélniceanu 1,

3400 Cluj—Napoca, Romania.
811 manoscritto & pervenuto alla Redazione il 28 novembre 2000.



2 BINOMIAL POLYNOMIALS AND THEIR APPLICATIONS ...

The paper is organized in three sections:

1. Notation and preliminaries,

2. Delta operators and their basic polynomials,

3. Approximation operators of binomial type.

Firstly we introduce the notion of polynomial sequence of binomial type and some
basic facts needed in the subsequent analysis accompanied by several examples.

The focus of the second section is to present delta operators, the Pincherle deriva-
tive of a linear operator and Sheffer sequences. We investigate their main properties
and the connections between them. We establish both identities involving the gener-
ating function of a binomial sequence and explicit formulas for the basic polynomials
associated to a given delta operator. As an illustration of the theory a number of
examples are also given.

The third section contains the application of the binomial sequences in the con-
struction of linear approximation processes. For the analysed operators we give
quantitative estimates of the rate of convergence. We also show that such opera-
tors leave invariant the cone of the convex functions of higher order and preserve
the Lipschitz constants. In particular cases some classical operators are reobtained.
Further, we shall examine some integral extensions of these operators. The final
part in devoted to the link between exponential-type operators and the basic set of

polynomials of binomial type.

1. Notation and preliminaries

1 Throughout the paper the symbol Ny stands for the set NU{0}. For any n € Ny we

denote by II,, the linear space of polynomials of degree no greater than n and by

! IT} the set of all polynomials of degree n. We set

I] = U IL,.

n>0

II represents the commutative algebra of polynomials with coefficients in K, this
symbol standing either for the field R or for the field C.
A sequence p = (pn)n>o0 such that p, € II¥ for every n € Ny will be called a

| polynomial sequence.

Definition 1.1. A polynomial sequence b = (bp)n>0 is called of binomial type if for

| any (z,y) € K x K the following equalities

bp(z+y) = Z (n) be(2)bn—r(y), n € Ny, (1.1)

k=0 k

hold.
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Remark 1.2. Knowing that deg(by) = 0 we get bp(z) = 1 for any =z € K and by(g )
induction we easily obtain b,(0) = 0 for any n € N. )

-

Examples 1.3. The most common example of binomial sequence is e = (en)n>o0,
en(z) = 2™ (the monomials). We will keep this notation throughout the paper. Some

nontrivial examples are given below.

1.3.1. The generalized factorial power with the step a: p = (pp)n>0, Po(z) =
g% := 1 and p,(z) = 2™ :=2(z —a)...(z — (n—1)a), n € N.

n

The Vandermonde formula, ie. (z + y)™9 = Z (2) glkalyn—k.a] guarantees
k=0
that this is a binomial type sequence. There are two particular cases: for a = 1

we obtain the lower—factorials which, usually, are denoted by (z),; for a = —1
we obtain the upper—factorials denoted by Pochhammer’s symbol (z),. It clearly
appears that (z), = (z +n — 1),. We also we recall that z[-™% := 1/(z + na)™,

1.3.2. The exponential polynomials introduced by J.F. Steffensen and studied

by Touchard: t = (tn)n>0, ta(z) = ZS(n, k)z* where S(n, k), k € Ny, represent
k=0

the Stirling numbers of the second kind defined by z™ ZS n, k){x)k, or ex-

 plicitely, by using the divided differences, S(n, k) = [0, 1,.. k ;en]. We recall that
the following identity is known in literature [23] as Dobinskl formula,

Ms

1.8.3. Abel polynomials: @ = (a,ﬁa))ﬂzg, aé“'> =1, al® (z) =z(z —na)" !}, neN,
a # 0. Rewriting the identity (1.1) for these polynomials we obtain the Abel-Jensen

combinatorial formula

1.3.4. Gould polynomials: g = (g.,(f’b))nzo, gé"”b) =1, g(“ b)( ) = z <$ —ban> ,

z —an
n € N, ab # 0.
« The space of all linear operators T' : II — II will be denoted by £. Among these
‘operators an important role will be played by the shift operators, named E?. For

'}every a € K, E° is defined by (E*p)(z) = p(z+a), where p € II. An operator T' € L
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"which commuted with all shift operators, that is TE® = ET for every a € K, is
(called a shift-invariant operator and the set of these operators will be denoted by
\ L A
( 8

2. Delta operators and their basic polynomials

2.1. Della operators

A special class of L, is formed by the so called theta operators, a term introduced
by J.F. Steffensen [34] in 1927. In 1956 F.B. Hildebrand [11] called them delta
operators and this term was taken over and intensively used by Gian—Carlo Rota
and his collaborators. Therefore we will continue to use this latest term.

: Definition 2.1. An operator Q) is called a delta operator if Q € L, and Qe; is a
| monzero constant.
Let Ls denote the set of all delta operators.

Examples 2.2. Here we present some examples of delta operators. The symbol I
stands for the identity operator on the space II.

2.2.1. The derivative operator, denoted by D.

2.2.2. The operators used in calculus of divided differences. Let h be a fixed number
belonging to the field K. We set Ap, := E* — I, the forward difference operator;
Vi := I — E7" the backward difference operator; §, := EM?2 — E~M2 the
central difference operator; M}, := (1/2)(I + E"), the mean value operator.
It is evident that V, = ARE~", 6, = ARE~"?2 = V,EM?2 My, = I + (1/2)A, =
E™ — (1/2)Ay. The properties of these operators can be found in [14, Chapter 1].

d.
2.2.3. Abel operator, A, := DE®. For any p € I, (A,p)(z) = ﬁ(a: + a). Writing

(symbolically) the Taylor’s series in the following manner

= B*D“
Et = Z —ale P, (2.1)
v=0

we can also get A, = D(e®P).
2.2.4. Gould operator, G, := AyE* = E*t* _ E® ab # 0.

D
2.2.5. Laguerre operator, L := DT More clearly, L = -D(I — D)™! = —-D —

D? — D3 — ... Notice that there are no convergence problems with this power series
in D since the infinite sum reduces to a finite one when applied to any polynomial
p. Also we recall that

(Lp)(z) = _/000 %(1 + t)dt.
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2.2.6. Touchard operator, T := log(I + D) = D — T -+ = T for any

polynomial the sum being also finite. Another representation of this operator is the
following one:

T = [ " &, gl

Actually, delta operators possess some of the properties of the derivative operator.
For example,
if Q@ € Ls then Qa =0 for every constant a.
Indeed, because () is a delta operator we have Qe; = ¢ # 0 as well as @) € L,
consequently (QE%)(e1) = (E®Q)(e1). The left member of this identity can be
| written as Q(e; + a) = ¢ + Qa, the right member is E%c = ¢ and hence we obtain

., Qa=0.

More generally, according to [27, Proposition 2] for every Q € Ls we have
QIIy)cI,_4, neN.

| Definition 2.3. Let Q) be a delta operator. A polynomial sequence p € (Pn)n>0 is
~ called the sequence of basic polynomials associated to Q) if
' (i) po(z) =1 for any z € K,

(ii) pn(0) =0 for any n € N,

(iii) (@pn)(z) = npp—1(z) for any n € N and z € K.

We mention that this term was used both by I.M. Sheffer [31] and by Gian—Carlo
Rota [27] and his collaborators. The above polynomials p,, n € Ny, were called by
J.F. Steffensen [34] poweroids, considering that they represent an extension of the

notion of power.

If p = (pn)n>o0 is a sequence of basic polynomials associated to @ then
{po,P1,---,Pn-1,€n} is a basis of the vectorial space II,,. Taking this fact into ac-
count by induction it can be proved [27, Proposition 3] that

every delta operator has a unique sequence of basic polynomials.

Examples 2.4.

We give some examples: (en)n>o0, (:c["’h])n20 respectively ((z + (n— 1)h)[n,hl)n20
represent the sequence of basic polynomials associated to Q = D, Q = Ay re-
spectively @ = V. Also, we can easily prove that @ = (aff))nzg respectively
g = (g,(f’b))nzo is the sequence of basic polynomials associated to Abel operator
A, respectively Gould operator G, .

The so called Steffensen polynomial sequence (pp)n>0, Po = 1, p1 = €1, Pn(T) =

x ($+ g — 1) (:v-{—g—Q) (a:-l— g —n+2), n > 2, represents the basic set as-
sociated to @ = 6; (the central difference operator with h = 1), see [26, page 115].

The following result establishes the connection between delta operator and the
binomial type sequences. For its proof see [27, Theorem 1].
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Theorem 2.5. (a) If p = (pn)n>0 s a basic sequence for some delta operator Q,

. then it is a sequence of binomial type.
(b) If p = (pn)n>0 is a sequence of binomial type, then it is a basic sequence for

some delta operator.

Iterating the third property of the definition of basic polynomials we obtain
(QFp,)(z) = (n)gpn—k(z). Hence, for k = n we have (Q"p,)(0) = n!, while for
k < n, (Q*p,)(0) = 0 holds. Since any polynomial ¢ is a linear combination of the
above basic polynomials, we obtain

deg(q) , ~k
) (Q%)(0)

T Pr(z),

q(z) =
k=0

and consequently, by choosing q := EYq, we get

deg(q) k
gz+y)= ) 8 kl)(y)Pk($)-
k=0
This identity is the basic starting point which allows us to obtain the expansion of
a shift—invariant operator in terms of a delta operator and its powers. The following
theorem, named ”first expansion theorem” [27, page 691] generalizes the Taylor
expansion theorem to delta operators and their basic polynomials.

Theorem 2.6. Let T be a shift—invariant operator and let Q) be a delta operator
with its basic sequence (Pn)n>0. Then the following identity

k>0

holds.

Further, we point out the following algebraic result. Let ¢ be a delta operator
and let (F,+,:) be the ring of the formal power series in the variable ¢ over the
same field. Here the product means the Cauchy product between two series.

Let (Ls,+,+) be the ring of shift—invariant operators. Here the product is defined
as usually (for any Py, P> € L, we have PPy : I1 — II, (P1P2)(q) = P1(P2(q)) for
every q € II). Then there exists an isomorphism % from F onto £, such that

YIB) =T where f()=) Tet" and T=Y Q"  (23)

k>0 k>0

The mapping is clearly linear and by the first expansion theorem, it is.onto.
Therefore, we must only verify that the map preserves products — for this see [27,
page 692].
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Remarks 2.7. This isomorphism allows us to conclude:
(i) A shift-invariant operator T is invertible if and only if T'ey # 0. Since for every
Q € Ls we have Qeg = 0 we see that no delta operator is invertible.
(i) Since (F,+,-) is a commutative ring, any two shift-invariant operators com-
mute, that is T'S = ST for every T, S € L. '

As a special case of Theorem 2.6. it follows that any shift-invariant operator T
can be expressed in terms of D, that is

i ak :
T ,CZ: -EDk, where ap = (Te)(0). (2.4)
>0

Further, by the isomorphism (2.3), the formal power series corresponding to T is

fr(t) = Z %tk. We call fr(t) the indicator of T.

k>0
Taking into account Examples 2.2. we present the indicators of some operators:

fD(t) =1, fAh (t) = eht — I fvh (t) =1- e_ht: .f..‘l,z (t) = teat1 fG(t) = eat(ebt - 1)1
fo(t) =t(t=1)"", fr(t) = log(1+1).

In the following we shall write 7' = ¢(D), where T' € L, and ¢(t) is a formal
power series, to indicate that the operator T' corresponds to the series ¢(t) under
the isomorphism defined by (2.3).

It is known that to every series y = Z ¢z, 1 # 0, corresponds a unique inverse

i>1
power series T = ZC,-y", where C; = ci!, Oy = —cacy®, C3 = (2¢3 — c1e3)c]®,
i>1
Cy = (5cicacs — c3cq — 5c3)ey 7, and so on, for details see [1; 3.6.25. Reversion of
Series]. For our formal power series ¢(t) such that ¢(0) = 0 and ¢'(0) # 0 we denote
by ¢~1(t) its inverse series; consequently '

if g(t) =Y, ot then ¢(¢7 (1) =) L6 =t=0"" (1),

k>1 k>1

where the sum is well defined, since ¢~1(0) = 0 and (¢~1)’(0) # 0.
Now we can give a characterization of any delta operator.

Theorem 2.8. An operator P € L, is a delta operator if and only if it corresponds,
under the isomorphism defined by (2.2), to a formal power series ¢(t) such that
#(0) =0 and ¢'(0) # 0.

We are going to present the identity involving the generating function of a bino-

mial sequence.

Firstly, we consider a given @) € Ls and its basic sequence (pp)n>0. By using
(2.4) this operator can be written @ = ¢(D). According to the previous results,
let’s define the formal power series t = ¢(u) and u = ¢~ 1(t).
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Secondly, in relation (2.2) we choose T' = E® and expand E® in terms of Q.
Knowing both (E%pg)(0) = px(z) and the identity (2.1) one gets

ermD = Z pkk—(f)qbk(D).

k>0
Substituting D by u, the series terms lead us to the following result.

/;Theorem 2.9. ([27, Corollary 3]) Let Q be a delta operator with p = (pp)n>o0 its
| \/|sequence of basic polynomials. Let (D) = @ and @(t) be the inverse formal power

series of ¢(u). Then
") = Z p"n—('m)t”, (2.5)
n>0 '
where p(t) has the form cit + cot? + ... (1 #0).

At this moment, by using the properties of the exponential function and the defi- fh,
nition of the Cauchy product we easily check that the sequence p satisfies condition k

(1.1) thus it is of binomial type. The map ¢ — e#(*) implies the existence of a series
0(t) = 1+ dit + dat? + ... such that [p(t)]* = =),
According to (2.5) it is also clear that one can obtain sequences of binomial type |

by using the generating functions method.
We present another characterization of delta operators which appears in [27, Propo-

sition 4]. Because there the result is only listed we include the proof.

Theorem 2.10. Q € L, is a delta operator if and only if Q@ = DP for some
shift-invariant operator P, where the inverse operator P~1 exists.

Proof . If in (2.4) we substitute T' by a delta operator @ then we get ap = Q(ep) =0
and a1 = Q(e1) = ¢ # 0. Consequently, we can write

Q= %Dk. (2.6)

k>1

Denoting Z%Dk_l by P we have P € L; and P(ep) = a3 # 0, thus P is

k>1 ,
invertible, see 2.7.(i). So, ) can be written as DP. Reciprocally, for every P € L,

such that P is invertible, D P is a shift-invariant operator, E*(DP) = (DP)E®, and
(DP)(e1) = P(D(e1)) = P(eo) = c # 0 thus DP € Ls. O

2.2. Delta operators and Pincherle derivatives

The operator X : II — II, (Xp)(z) = zp(z), is called the multiplication operator.
Clearly, X is a linear but not a shift-invariant operator.
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Definition 2.11. Let U belong to L and let X be the multiplication operator.

The operator U’ :== UX — XU is called the Pincherle derivative of U.

For example, by using the above definition, we get I' = 0, D' = I, (D*) = kD*-1,
(B®) =aE".

We indicate some properties of the Pincherle derivative of U € L.

Theorem 2.12,
(i) If U is a shift-invariant operator, then U’ is also a shift—invariant operator.

(ii) The following formula (UV) = U'V + UV" holds for every U,V € L.
(iii) If U € Ls has the indicator fy (t), then U’ has dit fu(t) as its indicator.

(iv) If the nt* Pincherle derivative of U is defined by U™ = (U"-DY n e N,
then the following identity

n

U(n) — Z(_l)z (":’) X‘iUX'n-uz',

=0

holds, for every U € L.
(v) If U € Ls, then U’ is invertible.

Proof. By using the definition of Pincherle derivative, a straightforward calculation
leads us to the first two former statements. The third property is a consequence of

(2.4), the definitions of fy(t) and U’ as well as of the relation (D*)" = kD*~1, The A
[ P

fourth one can be proved by induction, see e.g. [g}, Lemma 3.6]. The last statement
follows from the previous property (iii) and the isomorphism relation (2.3). O

We are ready to present explicit formulas for the basic polynomials associated to
a given delta operator. For the proof see [27; Theorem 4].

Theorem 2.13. Let Q € Ls and R = Q'~!. Let p = (Pn)n>0 be the sequence of
basic polynomials associated to Q). For every n € N, the following identities

(1) pn = (@ P !)(en), (i) pn = P ™(en) — (P7") (en-1),

(iii) pp = e1P™™(en-1), (iv) pn = e1R(en—1), (Rodrigues formula),
hold, where P € L, such that P~' exists and is given as in Theorem 2.10. by
DP'= g 7
Example 2.14. The above formulas are useful to construct the basic sequence of a
given delta operator. Since we have not yet indicated the basic sequence of Laguerre
operator L, we will do it now. We have L = D(D — I)7! thus P = (D — I)~L.
Applying formula (iii) of Theorem 2.13., for every n € N, we can write

Pn=e1(D —I)*(en-1) = &1 nif(—l)”_i (?)Di(en—l),

=0
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Pn(z) = mg(—nn—f ('f:) (n—1)n-2)...(n—dz" 1 =

:i‘(_l)k( n )(n—l)(n—Z)...kmk=i:—i(::;)(_$)k-

k=1 n—k k=1

Notice that llpn, n € N, represent the Laguerre polynomials of order zero, see
n!

' _
[22, Remark 2.7.4, page 44] and the coefficients —:—l (: _ 1) are known as the Lash

numbers.

2.8 Delta operators and Sheffer sequences

Next, we connect the binomial sequences with the so called sequences of type zero.
This notion was introduced by I.M. Sheffer [31, page 594] in 1939. The conditions
for a set of type zero were stated as follows: s = (sn)n>0 is of type zero if sg # 0
and J(s,) = sp—1, n € N, where the operator J : II — II is given for every q € II
by the relation

J(@)=liqd +lq" + 13" +..., L #0.

It is easy to verify that J is actually a delta operator. To this end we can examine
the relation (2.6). In the present paper the definition of a sequence of type zero comes
from [27, page 698] and it slightly differs from the original approach.

Definition 2.15. Let Q be a delta operator. The polynomial sequence s = (sp)n>0
is of type zero (or a Sheffer sequence) for the operator Q if

so#0 and Q(sp) =nsp-1, neN. (2.7)

We mention that in [35] it appears a purely algebraic definition for Sheffer se-
quences which avoids the notion of formal power series.

A Sheffer set for Q € L; is related to the set of basic polynomials of @ by the
following result whose proof can be found in [27, Proposition 1, p.698].

Theorem 2.16. Let Q € L4 with its basic sequence (Pn)n>0. Then s = (sp)n>0 15 @
Sheffer sequence relative to @ if and only if there exists an invertible shift-invariant

operator S such that
s, =S8 Y(pn), ne€Ng. (2.8)

With the help of this result we can find out the defining property for Sheffer
polynomials.
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Since (pn)n>0 is of binomial type we have the identity (1.1). We apply the shift—
invariant operator S~! to both sides (where z is the variable) and use (2.8) to
obtain

> ()5t @rn-s) = (57 mn)o +3) = (57 (B¥pa)) (o) =
k=0

= (B'S™)(pa)(®) = (BYs)(@) = su(a +9)
We can now state the following result.

Theorem 2.17. Let Q € Ls with its basic sequence (p,)n>0. For a Sheffer sequence
s = (Sn)n>o0 relative to Q the following identity holds

sule+3) = 3 () ss@paci),

k=0

for every n € Ny and (z,y) € K x K.
Remark 2.18. If we choose in the above identity z = 0 then

suls) = 32 () s:0pn-40),

k=0

in other words, the polynomials s,, n € Ny, are completely determined by their
constant terms si(0), k € Ny, and the basic sequence of Q.

We recall that in the particular case when ) becomes the ordinary differential
operator D, the Sheffer polynomials relative to D are called Appell polynomials.
These polynomials were introduced in 1880 by P. Appell [4]. The members of an

n

Appell set (An)n>0 have the form A, (z) = Z A (0) (Z) "k gz e K, n € Ng.
k=0

7 A detailed study j}}g@:ﬁgﬁpp@lip_@lxnorﬂials was carried out by Corrado Scar-
avelli, see [29], [30]. We can characterize a sequence of Appell polynomials by the

following

Theorem 2.19. (B.C. Carlson, [6, Eq.(1.4)]) The polynomials sequence (Ap)n>o is
of Appell type if and only if a generating function exists having the form

etg(t) = 3 An(:c)i—rj, (2.9)

n2>0
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tk
where g(t) = Zakﬂ’ ag # 0.

k>0

For example, choosing in (2.9) g(t) = t/(e’ — 1), |t| < 27, we obtain Bernoulli
‘polynomials and choosing g(t) = 2/(e* + 1), |t| < 7, we obtain Euler polynomials,

see [1, 23.1. page 804] or [10, Vol.3, page 253].

3. Approximation operators of binomial type

Our aim is to present an application of the binomial sequences, concerning the
construction of sequences of approximation linear operators.

3.1 Operators of binomial type ¢ ©
We consider a delta operator () and its sequence of basic polynomials p = (p,)n>0, '
under the assumption that p,(1) # 0 for every n € N. Also, according to Theorem j
2.9. we shall keep the same meaning of the functions ¢ and ¢. For every n > 1 we
consider the linear operators LY : C([0,1]) — C([0,1]) defined as follows: ;

(L8f)(z pn(l Zn:() Sl = 2)F (i) neN. (3.1) /

k:O

~> [ i:z 1.2
They are called (cf. e.g., P. Sablonniere [28]) Bemstezn—Shejj‘er operators, but as
D.D. Stancu and M.R. Occorsio motivated in [33], these operators can be named
Popoviciu operators. In 1931 Tiberiu Popoviciu [24] indicated the construction (3.1),
in front of the sum appearing the factor d;! from the identities (1 + dyt + dot? +

)P = P = an(:c)t”/n!, see (2.5). If we choose z = 1 it becomes obvious
n=0
that d,, = p,(1)/n!.
In the particular case Q = D, L2 becomes the Bernstein operator of degree n.
Z The operators LS, n € N, are linear and reproduce the constants. Indeed, choos-
!ing in (1.1) y := 1 — = we obtain L%eq = e.
The positivity of these operators are given by the sign of the coeflicients of the
series ¢(t) = c1 + cat +... (c1 # 0). More precisely, T. Popoviciu [24] and later P.
| Sablonniere [28, Theorem 1] have established that

O™ f Lemma 3.1. "L§ is a positive operator on C([0,1]) for every n > 1 if and only if
" e >0and ey, =0 for alln > 2.

The next theorem collects the most significant results concerning these operators.

=
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Theorem 3.2. If the operator LY defined by (3.1) satisfies the conditions of Lemma
3.1. then the following statements are true.
(i) Lff is an isomorphism of I, preeserving the degree, i.e., L2q € I}, whenever
gelly, 0<k<n.
(11) One has L2 e; =e;4, j € {0,1} for anyn € N and LRes = ex + an(e; — e3),
— ~(- e

oran n>2 wherea,=—[14+(n—1

), the sequence (rn())n>0

being generated by

" (t) exp(zep(t) Z o (T — (3.2)

n>0

(iii) L2f converges uniformly to f € C([0,1]) if and only if the condition
ILI{:O(Tn—z(l)/Pn(l)) = 0 holds.

(iv) }frn_g(l)/pn(l) = O(n~1') then there exists an integer k > 1 for which ¢ € Tl
and we have |[LLf — flloo < (1 + \/_/2) wy (f;1/4/n).
Here || - ||oo is the sup—norm of the Banach space C([0,1]) and wi(f;-) is the

first modulus of continuity of f.
(v) If f € Lipmo then LRf € Lipyra where

‘“‘_H‘-a_«

Lipya:={f € C([0,1]) : wi(f;t) < Mt*, 0<t<1}, 0<a<l.

v

Remarks 3.3. (i) Statement (iv) shows that the classical Bernstein operators (k =
1) could be considered as the best positive Bernstein—Sheffer—Popoviciu operators

- associated with functions ¢ which are polynomials.
(ii) Before Sablonniere’s paper, in 1984 C. Manole [19, pages 97-98], by using the
Pincherle derivative, gave a form of L2e; as follows

Q'_zpn—z)(l)) n>2.

1 n—1 (
Q p— (2) — ; h (2) —_— 1 —
Lrey = 82+(n +ay* | (ex—ez), where a,”’ = - o)

(3.3)
Accordingly, the condition of the third statement can be substituted by

. (Q’_zpn~2)(l) .
nango pn(l) s

(iii) Let Lipyo = {f € C([0,1]) : wa(f;h) K Mh®, 0<h< %} be Lipschitz

classes with respect to the second order modulus of continuity. In [8] C. Cottin and
H.H. Gonska proved that '

f € Lipyya implies B,f € Lipjsp, 0<a<2,
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B, = L? being the Bernstein operator. Motivated by the result of T. Lindvall

[15] the authors conjectured f € Lip} o implies By, f € Lipy a. Ding-Xuan Zh Zhou

7 Almplles B,.f € Lip o, 1 < a < 2 [37, Theorem 4. 5]. This resultuv;z;;é).{tended in
d [21, Theorem 5.2] for the operators of binomial type as follows:

if fe Lipjya then LZfe€ Liphya, 0<a<l.

Examples 3.4. Further on, choosing concrete delta operators Q we reobtain some
classical linear positive operators of discrete type.

3.4.1. In the case @ = D we have Q’;Z = I, consequently (3.3) implies a? =0
and we get the well-known result concerning the Bernstein operator B,,, that is
(Bnez)(z) = 2% + z(1 — x)/n, see e.g. [16, pages 5-6].

3.4.2.If Q = A, with its basic sequence & (see 2.2.3 and 1.3.3) then A} = E*(I+aD)
(Theorem 2.12.(ii)). Assuming that the parameter a is non positive and depends on
n, a := —t, one obtains the Cheney—Sharma operators named G;, [17], see also
the monograph [3, Eq.(5.3.16)]. If the sequence (nt,)n,>1 converges to zero then
nlLIEO |G% f — flleo = 0 for every f € C([0,1]). Also a positive integer ng exists such

that _
[(Gr)(z) = f(=)| < 18wy (f; z(l— m)/n) for every n>mng and =z €[0,1].

343 If Q = lva, a # 0, then Q"2 = E?® The basic polynomials will be
a
pn(z) = (z+ (n—1)a)™l, see 2.4. In this case L becomes Stancu operator [32]
denoted by P,[la],
m[kl_a](l s m)[n_kv_a]

(Pl f)(z) = ank z; o) f (k) where  wn k(z;a) = (:) 1[n—a] :

-

a being a parameter which may depend only on the natural number n. By using
(3.3) we have

a® = aln—1) 4 (Pleley)(z) = lia (x(ln_ ) + z(z +a)) :

in accordance with [32, Lemma 4.1]. If f € C([0,1]) and 0 < &= a(n) — 0 as
n — oo, then the sequence (PT[LO‘] f)n>1 converges to f uniformly on [0, 1] and

(B )@) — 1(@)] < Sor (f /(LT an)/ln ¥ nad)
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see D.D. Stancu’s paper [32, Th.4.1 and Th.5.1] or the monograph [3; 5.2.7].
The operators defined by (3.1) have been generalized in different ways. We present

some of them.

3.4.4. In [33] D.D. Stancu and M.R. Occorsio replaced the system of nodes {k/n :
k = 0,n} by the following {(k +v)/(n +6) : k = 0,n} where -, are parameters
satisfying the relations 0 < v < §. In the same paper the authors construct another
binomial type operator Q%#"% depending on four real parameters, defined for any

function f € C([0,1]) by the formula

@t St (£2)

where
(1+a+nB)r=t=elgl(z) =

= (})ate+a+BE 0 =)0 -t ot (= Ik

anda>0,82>0,6>~2>0.

In the case f =~ = § = 0 one reobtains the Stancu operator Péa], see 3.4.3.

If the parameters a and [ depend on n such that o = a(n) — 0, nf(n) — 0 as
n — 0o, the authors proved that nli_}ngo QP8 f = f uniformly on the interval [0, 1]

([33, Theorem 5.1]).

3.2 Modified Operators of binomial type

We now proceed to illustrate some further properties of the binomial sequences.
Taking into account the notations in Theorem 2.9., let @ € Ls, p = (Pn)n>0, @ =
¢(D), ¢~ =

For ¢(t) = cit + cat> + ... we assume ¢; > 0 and ¢; > 0, j > 2, the role of
these positivity conditions were revealed by Lemma 3.1. Also p,(n) # 0, n € N, are
required. In [17, Th.2.9 and Th.2.10] A. Lupas proved new inequalities between the
terms of the binomial sequences p. For any = > 0 one has

) 0 <21 < (@r-2p, ) (o) < P2lE)

_l_n(n

(ii)' % < pn(Q) < 1 where pn(Q) = Tﬂ))(ngzpn—Z)(n)- (3'4)
Following Lupag we can define the operators L2 : C([0,1]) — C([0,1]),

, for any n > 2;

E29@ = 3 (Vputnpnstn-na)r (£), men @y

pn(n) k=0
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We denote by B all sequences of linear positive operators (LS Jn>1 defined as in

(3.5). Also let K, be the set of all f, f € C([0,1]), which are non—concave of st*
order on [0,1], s = —1,0,1,... This means that for all systems z1,z3,...,Ts1p of

diStiIlCt pOintS from E = [0, 1], one haS
[$1:$2: sy $s+2;.ﬂ > 0.

It should be mentioned that the notion of s—convexity on an arbitrary set E is
due to T. Popoviciu, see [25, page 13].
The following properties of LS were emphasized (see also [18]).

Theorem 3.5. Suppose that LS € B and p,(Q) is defined by (3.4).
(i) Ln(K,) CK,, s=—-1,0,1...
(ii) For f € Ky, min ILSf = flloo = IIBnf = flloo, where B, = LP is the
i3eB

Bernstein operator. )
(iii) L8e; = e;, i € {0,1} and LYes = ez + (e1 — €2)pn(Q).
(iv) For anyn > 2 and f € C([0,1]) we have

1291 = flleo < J1 (£iv0al@) s 1EZS = flloo < 02 (£ V@)

(v) (A Voronovskaja type formula) Let zy be in [0,1] such that f"(zo) ezists and
let the polynomials dy n, € II}, be defined by

n—k

din(@) = —— 3 (” g ’“) D346 (NT)Proto—i (1 — 1) -

pa(n) —0

LY

If im np,(Q)=p5, p >0, and the condition

4 4 .
lim nd Z(k — nzx)* Z(—l)j_k (j)dj,n(iﬂ) =0
n—00 — ik _ k
s satisfied, then
Jim n(f(@o)  (E91)(wo) = ~22EZ20) )

Some concrete examples of LY operators are given below.
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Examples 3.6.

3.6.1. If fr(t) is the indicator of Laguerre operator then we consider the delta
operator L~ having its indicator f1(—t), in other words L™ = DL-H From ¢(t) =
t(1 — t)~! we remark that the positivity condition is satisfied. Following 2.14. the

w5l _
basic sequence for L™ is (Ip)n>0 where lo(z) =1, I,(z) = Z % (: D z* n>1,
k=1"" -
and one obtains

3n+2 4 _2_ ln+1(n)

1 ;
— & LG (18, pages 64-65]

pn(L_) =

Since p,(L~) < 3/n, the sequence (LE~ Jn>1 converges to the identity operator
on the whole space C([0, 1]).

3.6.2. Choosing ) = T with its basic sequence (t,)n>0 (see 2.2.6 and 1.3.2) we have
T'-2 = (I + D)? and applying Theorem 2.13.(iv) we get t, = (X + XD)(tn_1)
consequently

tn — tnul l n—1 tn_l(n)

n(1') =
€z and pald) n n ty(n)

- 2
T 2tn—2 = < ;,

where n > 2. The sequence (LT),>; converges to the identity operator on the space
In [2] we modified the operator LY defined by (3.1) into an integral form which
approximate any integrable function, that is

i

n+1

(K2f)(@)=(n+1) > pui(z) F(t)dt, f e Li([0,1]), (3.6)
k=0 n

k

+

1

+

n

where py, 1 (z) = 171(15 (k)pk(m)pn_k(l —z).

For Q = D, K2 becomes the nt* Kantorovich operator, see e.g. [3; 5.3.7]. The
degree of approximation was estimated by using the r** order modulus of smoothness
of f measured in L,([0, 1])-spaces, p > 1, that is

wr(fit)p :== sup [[ALfllp, f € Lp([0,1]), t>0.
0<|h|<t

For more details we refer to [9].
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Theorem 3.7. Let (K9)n>1 be defined by (3.6) such that the notations in The-
orem 3.2 are preserved and the positivity condition is fulfilled. Let f € Ly([0,1]),
=l
(i) If lim g, =0 then lim |[K2f — fll, =0, where ¢, = rn_2(1)/pa(1), n > 2,
n—0o0 n—0o0
rn(z) is generated by (3.2) and | - ||, represents the usual norm in Ly([0,1])

spaces.
(ii) If r > 3 is an integer, for sufficiently large n one has

”K’?f —flp = 2(lgn| + 2/”)||f”p + Cprwr (f; an|1/r + (2/71)1/T)pa

where Cp » is a constant independent of f and n.

3.8 Exponential-type operators

In the sequel we need a brief introduction about the exponential-type operators.
Let us consider an interval J = (a,b) where —oo < a < b < o0 and let Wy (t,-)
be the density function of a random variable X+, (A,t) € (0,00) x J. Since we
don’t exclude variables with discrete distribution, for Wy(t,-) we use the term of
generalized function, see [5, page 206]. However, such a function is nonnegative and
verifies the normalization condition

/ Wi (t, w)du = 1. (3.7)
R

Let p be a nonnegative analytic function on J. An exponential operator is a
positive linear integral operator

(Sxf)(t fWA t,u) f(u)du, (3.8)
whose kernel W), satisfies the partial differential equation

%W)\(t, u) = )\t;(—_t)tw)\(t:“)' (3.9)

The exponential operators with p € Il were studied by C.P. May [20]. In
this class we recover some classical linear positive operators, such as: the Gauss—
Weierstrass operator (A = 1, J = R, p(t) = 1), the Szédsz operator (A € N, J =
(0,00), p(t) = t), the Baskakov operator (A € N, J = (0,00), p(t) = t + t2);
all of them are presented in the monograph [3; 5.2.9, 5.8.9, 5.2.6]. Knowing that
Sxe; =ej, j € {0,1}, and Sxez = ez +p/A [34, Proposition 3.1] it is obvious that the
exponential operators are approximation operators, that is S\ f — f as A — oo, for
certain spaces of functions f (in general, bounded by some growth—test function).
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In [13] Ismail and May identified the exponential operator (3.8) as the bilateral
Laplace transform

(Sxf)(t) = fR exp (_)\ / t %dﬁ) O (u) f(u)du, (3.10)

for some ¢ € J, the normalization (3.7) becoming

/Rexp (—/\ fct i)(——g)udﬁ) Cy(u)du = 1. | (3.11)

Notice two facts:

(i) The operator Sy of (3.10) is independent of ¢, cf. [12, Lemma 2.3].

(ii) If Cx,1,Ch2 are generalized functions such that, for some ¢ € J, the
condition (3.11) holds then they coincide, cf. [36, page 69]. So, there is at most

one generalized function C) satisfying (3.11).

As regards the interval J we assume that a > —oo and the function 1/p has a
simple pole at z = a. By a linear change of variables in ¢ and « we can take a = 0
and

1/p(z) = 1/z + h(z), (3.12)

with A analytic.
We introduce the functions £ and 7 as follows

t

£(t) = %exp ( f th(@)d@), n(E®) =t—c+ f 0h(6)do.

C

Furthermore 7(0) # 0 and one can choose ¢ in order to make n(0) # 0. Also

we define the map ¢, ¢(£) = n(£) — n(0) and in according to our relation (2.5) let’s
denote 1 = (¥n)n>0 the sequence of basic polynomials generated by ¢. We have

ep{An(©) = 1(0)} = Y v (W)

n>0

Under the above assumptions and notations we can infer
(i) The generalized function C satisfying (3.11) is a sum of delta functions as

follows ([12, Theorem 3.3])

NOETSDY ibﬂﬁ(!)‘—)fs(n — Au).

n>0

Substituting this relation in (3.10) the explicit form of the operator S becomes
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(ii) (Sxf)(t) = exp{-A(n )} D %) ( ) (3.13)

k>0
A converse to this statement is given below
(iii) Every basic set of polynomials ¥ = (1 (\))n>0 of binomial type generates
an integral operator (3.8) with a = 0 and p of the form (3.12). The integral operator

is given explicitely in (3.13).
Indeed, setting t = &
W (t, ) by

E(g) B g%‘g(g), we define the generalized function

Wa(t, u) = € exp{-A(n(€) - }Zwk e}

We easily check the requirement (3.9)

oW _ OW df _ dE (&_A_m)_(f))wz)\u—tﬁw

Ot . OE dt dt \ £  df ¢ dt
ith p(t) = €2 Also — h le pol 0and P8|  —1 s0th
with p(t) = € df S0 e as a simple pole at ¢ = 0 and — = ~0_1' o the

proof is complete.
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