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1 Introduction

A traditional feature of STMACO is to offer solutions regarding var-
ious existant problems from diflferent mathematical areas and, in the
same time, to present new open problems. In the present paper we fol-
low this line. Practically, we never know the particular seed in our mind
that will germinate. At first, in each section of the three, we indicate
some recent results obtained in the theory of approximation of functions
by linear positive operators. The focus of this note is to propose three re-
search themes in connection with the above mentioned approaches. We
point out that the results of both Section 2 and Section 3 are included
in two distinct papers submitted abroad for publication. Section 4 in-
corporates a part of the communication delivered at the 5 Conference
of Probability and Statistics held in Bucharest, February, 2002.
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2 Discrete operators without tails

The starting point is a sequence (L )n>1 of linear operators of dis-
crete type, Ly, being defined as follows

@1) (Eaf)@) =3 dus(@)f (ﬁ) 220, feF,
k=0

Gn

where F stands for the domain of L,, containing the set of all continuous
functions on Ry := [0, 00) for which the series in (1.9) is convergent. Also
we assume that the following requirements are fulfilled

ka;! <k, k€N, with le @ = O,

n—00
Gn s € C1(Ry), ¢, > 0 for every k € Ny, and
o o} [0}

1
D b =0 ) _kay b = e1,
k=0 k=0

(2.2)

where e; stands for the j-th monomial.

It is clear that the above classical construction requires an estimation
of infinite sums which in a certain sense restricts the operators usefulness
from the computational point of view. Thus, it is useful to consider
partial sums which only have finite terms depending upon n and z.
Roughly speaking, the operators will be truncated fading away their
"tails”.

In what follows, we also consider that a positive function 1) € RN*R+
p(n,-) € C(R;.), exists with the property

(23)  b(n2)dn (@) = (kag' — 2)op(z), k€N, z20.
Moreover, we assume that 1 admits the following decomposition

; ,
¥i(z .
24 Yo =) _ain—) & >0, where ¢; € C(R,), i = T
i=1 :

Under all the above assumptions, one obtains that (Ln)n>1 converges
lo the identity operator, i.e. the sequence is an approximation process.
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Keeping all assumptions we further define

[an(2+4(n))]

@) Unae)= X bl (=), 220, fe7

k=0 L

where § = (d(n))n>1 i8 a sequence of positive numbers.

The study of these operators can be developed in polynomla,l weighted
spaces connected to the weights wm, wm(2) = (1 4+ 2°™)~L, £ > 0. For
every m € Ny, the spaces

Ep ={f€CRy): [|fllm:= grgwm(w)if(w)l < oo}

endowed with the norm |||, and the natural order are Banach lattices.
Theorem 1. Let L5, n € N, be defined by (5.6).

(i) If ¥, € CT™™2(R,), i = 1,1, and lim \/a,d(n) = oo then Lnsf

converges to f, uniformly on any compact K C [0,00), for f € B, N.F.

(i) If 6 := M — =, M >0, the corresponding operators denoted by L*

map C([0, M)) into C([0, M]) and have the property

: .
TB}I&(L (=) = f(z) for all f € C([0, M]),
uniformly on every compuct Kpy C [0, M).
Examples. We consider the particular case a, =n, n € N,

k
1. Selecting ¢, p(z) = o k) exp(—nz), z > 0, the conditions (2.2),

(2.3), (2.4) are fulfilled and we have 9(n,z) = z/n. The operators L,
defined by (1.9) turn out into the Szdsz operators and in this case the
operators from (3.6) have been investigated by Lehnhoff [5].
2. Selecting ¢, () = ("*'ﬁ_l)cc’“(l - z)™" % x > 0, the conditions
(2.2), (2.3), (2.4) are again fulfilled and we have v(n,z) = z(z + 1)/n.
Now, the operators L,, become the Baskakov operators and the operators
from (3.6) have been investigated by J. Wang and S. Zhou [6].

In both examples F may coincide with E» and Theorem 1 encounters
results obtained in the quoted papers.

As regards this approach we formulate the following
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Problem 1. Develop a similar study for the integral extensions of
L, operators in Durmmeyer and Kantorovich sense.

3 A Vclass of polynomials of Durrmeyer-type

M. Campiti and G. Metafune [3] replaced in the Bernstein polyno-
mials,

(3.1) (Bnf)(@) = Y pni(z) f(k/n),
k=0

where pp, ;(z) = (})2*(1—2)"*, and z ¢ [0,1], the binomial coefficients
by general ones satisfying similar recursive properties. The new sequence
operators converges to an operator multiplied by an analytic function
depending on the sequences of the sides of Pascal’s triangle.

We fix two sequences of real positive numbers a = (an)n>1, b= (bn)n>1
and for every (n,k) € N x {0,1,...,n} we define the polynomials

(3.2) tnk(z) = copa®(1— 2)" 7k, ze0,1],
where the coefficients satisfy the following recursive formulas
(3‘3) Cn+1,k = Cn,k *+ Cn,k—1s k= 1: eyl Cro = aQp, Cpn = bn

For f € Ly([0,1]), we consider polynomials having the form

BY  M)e) =t D) na@) [ pus(t7 O, = € o,
k=0 0

Ifa; =b; =1 for e\;ery J=12,...,n, we have Cnk = (:’) and M,

becomes the Bernstein modified operator in Durmmeyer sense.
Theorem 2. Let the operator M, be defined by (3.4). The Jollowing
tdentities hold true

(3.5) (Myeo)(z)
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n—1
= Z (@ama(l —2)™ +bma™ (1 — 2)) + an(1 — )™ + byz™,
m=1

1 1
f (Myf)(2)g(z)dz = / £ () (M) (8)at
0 0

where [ and g belong to Ly([0,1]). Particularly, M, is a self-adjoint
operator on the space L ([0,1]).

From (3.5) we deduce (M,eq)(0) = a, and (Mpeo)(1) = b,. This
means that the convergence of (My)n>1 implies the convergence of the
sequence a and b. In what follows we assume that these sequences con-
verges and set nli}lgo Y nli}ngo by, := 1. Because of the above assunp-

tion we can. define the functions o, 7, ¢ belonging to R®Y as follows

o(z) := Z amz(l —z)™,0 <z <1, and o(0) = {,,

(3.6) e
T{E) ;= Z bnz™(1 —2),0 <z <1, and 7(1) = 1.
m=1
We also set

#(n) := max{am, by },
m<n

(3.7) An(z) :=2((n - 3)z(1l —z) + 1)/(n +3),
v(n) := fEE max{|a; — ay|,|bj — by|}.

We present some results concerning the degree of convergence.
Theorem 3. Let M, be defined by (3.4) such that the sequences q
and b converge. One has

(M. f)(2) = f(2)(Mneo) ()] < p(n)(1 + An(@))w s (1/v/m £ 3),

- (Mo f)(z) — o(z) f(z)|
< B(r)( + Ma(@))wp(1/VA F2) + (1 — 2) + 2w (n)|f ()|,

¥ € 00,1 then IS — o1 < 2w —=s) + 1.
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71 € La((0,1]) then [Mnf — s < gy (5mmms ) + vl .

Here @, ji(n), An(z),v(n) are given by (3.6) and (3.7).

We are able to completely describe the convergence of (My)n>1. This
sequence converges on the space X (X := C{[0,1]) or X := L;([0,1])) if
and only if the real sequences @ aud b converge. In this case we have

lil}n Mrpf = ¢f in the norm of the space X, for every f € X.
n—r00

Theorem 4. Let M, be defined by (3.4) such that the sequences a
and b admit an upper bound less or equal to 1. Then M, f is a contrac-
tion in Lp([0,1]) for every f € L,([0,1]), where 1 < p < co.

Special cases. Let us consider ¢ and b non-decreasing sequences.
Choosing dp, := ap — ap_1, d, = b, — b1, n > 1, with the convention

m

m
ap = by = 0, one has a,, = de, by, = Zd’fc and from (3.6) we abtain

k=1
oo

k=1
oo
p(@)= ) du(l-2)"+ ) dyaz™, zel0,1].
m=1 m=1
N _ : (a)m
For example, we can choose d,, = 0 and Ay, = 77—, m > 1,
(ﬁ)mm[

where a and 8 are positive fixed numbers. Here (a)o = 1 and (@) =
a(a+1)...(a+k—1) for k > 1. This choice leads us to a hypergeometric
function p(z) = 1Fi(a, B;2) — 1, z € [0,1). It is a convergent series for

all values of z and by using Kummer’s equation, we get

d*p dp
m-&?—i—(ﬁ—-m)ﬂ—aw—a.

We have free hands to give a and /3 various values thus obtaining for
¢, functions with a great personality, as reflected in [1; §15.6, page 509].

Since we consider the sequence (M, f Ja>1 a fertile field of investiga-
tion, we propose

Problem 2. Find the iterates of the sequence and an asymp-
totic property as Voronovskaja-type formula. Study the convergence
of derivatives of M, f for a differentiable function .
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4 Approximation processes of Feller type

In this section we consider the following:
{Xng : 7= 1L,2...,n; n € N} a triangular array of independent
random variables (l r v) such that for each ﬁxed n, Xnj, j =1,n, are
identically distributed (i.d.) with E(X, ;) = E,(z) and finite variance
Var(Xp;) = 0Z(x) >0, j =1,n, where z € I C R is a parameter;
{Mj: i=12,...,n; n € N} a triangular array of positive numbers.

We construct the following sequence of linear operators

(41)  (Anh)(z) = E[h(Zy)] = fR h((zn:An,j) u)an,m(u), hecr,
j=1

T
where Z, = Z)\n,jJYn’j, Fp ¢ is the distribution function of Z, and
g1

L stands for the domain of A, containing all functions h for which
E[h(Z,)] < o0

Particular cases. Choosing A\p; = -+ = A,y i= Ay, (An)n>1
becomes a sequence studled by M.K. Khan r4] If Xn 5,7 =1,n, are i.d.
for all n, Ey(z) = z, 02(z) = o?(z) > 0 and ¢ =n"! then A,,L reduces
to the classical Feller operator.

More details about probabilistic methods and positive approximation
processes can be found, e.g., in the monograph [2; §5.2).

L]
By simple computation we obtain Apeg = ey, Ape; = An.i ) Bn and
N W

Aney = (Z And)a + (i /\n,j) QE,%. Based on F. Altomare’s énd M.
j=1

Campiti’s monogra,ph [2; §5.1] we indicate the rate of convergence.

Theorem 5. Let Ap, n € N, be defined by (4.1). For every h € C(I)
and a > 0 holds true

|(Anh)(2) = h(2)] < (14 n®p(Ane))wr (hyn=/2), z €1,
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where wy(h, ) is the first modulus of smoothness associated to b and
B n 2 n

a8 2) 5= (30 Aag) Bula) )" + > oM2)od@), sel.
7 7=1 d=1

We mention that the classical results concerning Feller operators can
be reobtained from the above. Now we formulate

Problem 3. By using probabilistic methods, establish an asymp-
totic estimate of the remainder.
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