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On some wavelet type linear opcrators

Octavian Agratini®

Abstract

In this paper is introduced a general class (Ly)rez of linear positive
operators of wavclel, type. The construetion is bascd on Lwo sequences
of real mumbers which verify some certain conditions. We also study
some properiics of the above operators. The main result consists
in establishing a Jackson inequality by using the first, modulus of
smoothness. '

1 Introduction

The subject of wavelet analysis is quite diverse and extensive, pioneering
work being done by mathematicians, computer, mechanical and clectrical
engincers, physicists and also by experts in applied sciences such as geo-
physics and statistics. The last two decades have produced tremendous
developments in the mathemaltical theory of wavelets and this fact can
be justified reminding that more than 100 books have been issued. For
example, L. Debnath’s monograph [3] represents one of the most recent
authoritative guide to wavelets.

Among numcrous applications of this area we shall consider here the
construction of wavelet type linear positive operators. In (Lis respect, with-
out any doubt, a major contribution is due to George Anastassiou and his
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collaborators. Anastassiou’s quantitative approximation methods applied
in wavelets’ field are gathered in [1]. In this frame our research has been
mainly motivated by paper [2], see also [1], Chapter 6.

Following the trend created by Franklin-Stromberg, the definition of
wavelels is in connection with the bidimensional net (2*, 7), (k,7) €ZxZ,
where k denotes the translation indez and j represents the dilation index.

From the point of view of approximation we can consider a general net
having the form (ay, b;), (k, j) € ZxZ. Of course, regarding these sequences
some additional conditions will be required. This new bi-dimensional net is
more flexible than the previous one. Indeed, with the help of the above two
general sequences, in order to approximate different kinds of functions, we
can take advantage transforming the net in accordance with the problem
data. We refer here to those signals f for which we are in position to obtain
information in some certain points of the real line.

This is the motivation and, in the same time, the main idea of the
present note. Our paper is designed as follows. In Section 2 we introduce
some notations and we define the notion of cvasi-scaling type function.
Some examples are provided. A general class (Ly)pez of linear positive
operators of wavelet type is constructed in Section 3 and further on we
give another look for Ly. In the last section we establish an inequality for
estimating the degree of approximation. To do this, we involve the first
modulus of smoothness of the approximated function. . In order to ensure
that (L) becomes an approximation process, a sufficient condition is given.

2 Preliminaries

Throughout the paper we consider Ny := NU {0} and R, := [0,00). Let us
define the following sets of real sequences:

S :={s= (su)nem, : 0< sp and s, < Sk+1 for every k € Ny},

S1:={s = (sm)mez : (Sm)men, €S and s_,, = S for every m € Ny },

- {s=(sm)mez € S and 5_,, := —5m for every m € Ny }.
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If s € 5 US; then it is easy to see that s_ ~(m+1) < $-m for every m € Nj.

Moreover we have: if s € Sl then sg =1, if s € Sg then sg = 0.

In what follows we consider a = (ak)kggy < Sl and b = (bj)jez € S as
fix. Let Lj ;,.(R) be the vector space of the real-valued functions defined on
R and integrable on any interval compact of the real line. Also, let ¢ € ]RE_E
be a bounded function verifying the conditions:

(C1) @ belongs to Ly jo-(R) and it has bounded support,

(C3) a positive constant I' exists with the property

i p(z+bj))=T, z€R (21

j=—c0
The condition (C)) implies that o > 0 exists such that
suppp C [—a, . (2.2)
By using the above elements we define the functions
Pk,i(z) = Vagplagz + b;), z€R, (k,j) €Z x Z. (2.3)

The same condition (C) guarantees that ¢ belongs to the Lebesgue
space Ly(R). As usual, the space is endowed with the inner product (-, )
defined by

oy e /R m(Oha(B)dt, b€ Ly(R), hy € Lo(R),  (2.4)

and it becomes a Banach space with the norm || - [|a, [|2]]z = \/(%, k). For
the sake of convenience, we make the following informal definition.

Definition 2.1. A function ¢ : R — [0, 00) satisfying conditions (C1) and
(C2) is called a cvasi-scaling type function.

Example 2.2. Let us take the particular sequence b = (5) jez € 8s.

1. The characteristic function X[-1,1) (often called a rectangular pulse
or a gate function) verifies the conditions (C}) and (Co) with I' = 2 and
consequently ¢ = X[-1,1) 1S a cvasi-scaling type function.
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2. Considering o Chinese hat

3:+17 _1S$§01
pz) =< l—gz, 0<z<I,
0, zeR\[-1,1],

the conditions (C) and (Cs) with I = 1 are fulfilled and  is a cvasi-scaling
type function.

We will denote by Dy, a # 0, and by 73, 8 € R, the dilation operator
respectively the translation operator. Recalling that D, f (z) = /|alf(az)
and Tgf(z) = f(z + ) forevery f e RR and z € R, (2.3) can be written

(,0;;;’7(56') = D,ak nj/akﬁﬂ(l'): zeR

Based on these considerations and taking into account that suppy is
bounded, by a simple computation one obtains

Lemma 2.3. Letp be o cvast-scaling type function. For every f € Ly 0e(R)

the following identities
(frr) = y 2 wo;), (k,j)EZxXZ,

hold true.

'3 The operators L,

Let ¢ be a cvasi-scaling type function.
For every f € Ly 10c(R) and k € Z we consider the operator

50]

(Lef)@) = > (fron)emi(z), z€R, (3.1)

j=—o0

where the functions Pk,j are given by (2.3), and (-, ) is defined by (2.4).
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Remark 3.1. (i) Because of the function ¢ has bounded support, for any
real = the summation in (3.1) involves only finite terms and consequently
(L f)(z) is well-defined on R.

(i) The properties of the inner product imply that every Ly s a linear
operator. Since @ > 0, relation (2.8) implies that Ly is also a positive
operator.

(iti) In the particular case ar = 2%, b; = j, (k,j) € Z x Z, operator Ly
becomes operator Ay studied in [2], see also [1], Eq. (6.1). Now we have
e A=l

In what follows we assume that the sequence b = (b;)jecz € S Verifies
the condition :

a constant A exists such that b; —b;_1 = A, j € Z. (3.2)

The definition of the set S implies that A is a positive constant and
moreover, we have b; = jA, j € Z.

Lemma 3.2. If the sequence (bj)jcz € 8, satisfies (3.2) then one has

/ w(z)dr = f o(z +bj)dz =TA, jEZ, (3.3)
R R

where ¢ is a cvasi-scaling type function.

Proof. Since b; = jA, A > 0, we can write successively

(o0}

G+1)A 0o A .
/Rqo(w)dz': Z]; w(z)dz = qu p(t+ jA)dt

j=—o00 A j:r-oo

A 20 A
:/ 3 (e +by)dt @r/ dt = TA.
JO 0

j=—00

The second identity is a direct consequence of the previous one. O

We shall present another look for Lg, k£ € Z, by using the dilation
operator D,_, and the central operator Ly.
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Theorem 3.3. Let Ly, k € Z, be defined by (3.1). For every integer k angd
every function f € Lj 1,.(R) one has

Lk(f, :i.’:) = \/@LO(DG_kf, aksr:), z e R

Proof. Since ag = 1, for k = 0 the statement is evident. For k € Z*, by
using Lemma 2.3 and formula (2.3), we get

(Lef)(@) = D (Da_pfros)varpos(asz), =€ R,
j:—oo 5
and the proof of our theorem is complete. O

4 'The main result

Now we estimate |Lyf — ©f|, where C is a certain constant and f belongs
to the space C(R) C Ly j,.(R).

Theorem 4.1. Let Ly, k € Z, be defined by (3.1) such that (3.2) is fulfilled.
For every function f € C(R) the following inequality

|(Lef) () —2f(z)] Sews(2aay), keZ, ceR,

holds true, where constant € is defined by ¢ :=‘E(I‘,A) =T2A, a is given
at (2.2) and wy represents the modulus of continuity associated to f.

Proof. At the first step we observe that relation (2.1) implies

> plaxz+b) =T, zecR kezZ. (4.1)

j=—c0

Let z € R and k € Z be fix. By using both (3.1), (4.1) and (2.3) we can
write '

oo

(D)) ~T 7@ =] 3 (1 0xs)ons(@) ~TAL@) Y plass+b,)

j=—c0 Jj=—00
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< 3 War(f o) — TAf(@)lp(ar + bs)

j=—co

= Y IWVar(f, ox;) — TAf(z)|p(az + b;), (4.2)

jEIz,k

where I j := {j € Z| axz + b; € [~a, 0]} and o appears at (2.2).
Further on, with the help of (3.3) and (2.3) we obtain

VG (S, or5) = PAT(@) = [ax [ f)ploru +b)du—PAS @)

'ff TU)(t + by)dt — f z)/ (t+ b)) dt]
< [ 1)~ F@lete + by)a

B /_a_b‘ |f(ai't) = f(@)ep(t + bj)dt. (4.3)

Since f € C(R), we have |f( 1) — f{v)] < wf(lu —vl), (u,2) € R x R, and
choosing (u,v) := (aj 't,z) € [—(a +bj)a;?, (@ — bj)a; 1]2 we get -

£ (az't) — f(=)| < wy(20a;?).

Returning to (4.3) we have

l\/_(f, (pk]) I‘Af | < wf(2aak 1) / t + bj)dt

—a—>b

= wf(2aagl) fR (p(t + bj)d‘t = Al"wf(2aag1),

and consequently, relation (4.2) combined with (4.1) implies

[(Lif)(z) = T2Af (z)] < ATw;(20a,") > p(axz +by)
JEIL &
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oQ
= ATwf(2aa; ') Z wlarz + b;) = Al%w(20a_t).

j=—00

From Theorem 4.1 we give the following

Corollary 4.2. Let the operators Ly, k € Z, be defined by (3.1) so that
(8.2) holds true. If klim ar = oo then the sequence (€' Ly)p>g has the
—00 =

approzimation property, in other words
lim Ly f =¢f,
k—ro0
uniformly on any interval compact of the real azis, for every f € C(R).

Note. We must mention that at the celebration of Professor D. D.
Stancu, we presented the paper entitled ”Stancu polynomials revisited”,
written in February, 2002. Following the advice of Professor D. D. Stancu,
that paper was submitted for publication in Revue d’Analyse Numerique
et de Theorie de I’Approzimation, Cluj-Napoca, and will appear in tome
31(2002), no.1.

The present note elaborated in August 2002 has not yet been presented
at any meeting.

References

(1] Anastassiou, G., Quantitative Approzimations, Chapman & Hall
/CRC, Boca Raton, London, 2001.

[2] Anastassiou, G. and Yu, X. M., Monotone and probabilistic wavelet
approzimation, Stochastic Anal. Appl., 10(1992), 261-264.

[3] Debnath, L., Wavelet Transforms and Their Applications, Birkhiuser,
Boston, Basel, 2002.



