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THE MYSTERIOUS WAVELETS WORLD

OCTAVIAN AGRATINI

ABSTRACT. This survey paper contains the basic ideas of windowed
Fourier transform, wavelet transforms, wavelet bases and multireso-
lution analysis, providing important information that introduces the
reader at the forefront of current research.

1. PRELUDE

"Wavelets are without doubt an exciting and intuitive concept. The concept
brings with it a new way of thinking, which is absolutely essential and was entirely
missing in previously existing algorithms.”

Yves Meyer

In the last two decades more than 100 books and monographs on the
subject of wavelets have been issued. As a detail (see [9, Preface]): in the
Wavelet Literature Survey edited by the Institute of Numerical Analysis
and Applied Mathematics of Vienna University are quoted 976 papers on
this topic, all of them having been written between 1985-1993. From 1993,
the number of articles dedicated to wavelet transforms and their applica-
tions has increased yearly. A nalural motivation consists in the fact that
this subject is diverse and extensive, pioneering work being done by math-
ematicians, computer, mechanical and electrical engineers, physicists and
also by experts in applied sciences such as geophysics and statistics. This
way, different approaches appear in the presentation of the wavelet theory.

Roughly speaking, our aim is to go in the opposite direction, which
means that by using the vast information we shall try to briefly present the
fundamental aspects of the wavelet theory. In other words, we shall try to
deliver to a mathematician who is novice in the wavelet world, sufficient
information in order to get the picture of this universe generated by a lucky
marriage between the results of the signal processing community and the
results in multiresolution analysis. In order that we be able to present a

large range of information in a concise way, we have avoided, as a rule,
9
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the proofs of the theorems. On the other hand, we have provided lots of
examples so as to clarify the notions involved.

This friendly guide to wavelets is based on the short course An Introduc-
tion to Wavelets consisting in eight hours and given by the author at the
Department of Mathematics of the University of Bari in the frame of the
Socrates Programme, during the period of April 227 — May 5, 2002.

We hope it can motivate some readers to get involved with this research
area and to convince them of the fact that wavelets are a tool rich mathe-
matical content and great potential for varied applications.

2. PRELIMINARIES
ON SOME SPACES OF FUNCTIONS
Let a be a fixed real positive number. For every integer n we consider
2nmt

-+ 7sin

S 2nmt
(21) en:R—oC, eyt) =e2mit/e = gog 20
a

Clearly: en(l + a) = en(t), eo(t) = 1, &, = e_,, and |e,(t)| = 1 for every
(n,t) e ZxR.

For every N € Ny := NU {0} we denote by 7y the complex linear space of
trigonometric polynomials of degree no greater than N. If p: R — C is an

element of Ty then p(t) = Z Cnen(t) where ¢, € Cand n = —N, N,
T
This space is endowed with the inner product defined for every p and g

belonging to 7n as follows (p,q) := / p(t)q(t)dt. Consequently, it is also

a normed space with the norm defined by [jp|| = /(p,p), p € Tv.
If we set

Gn =0 C_pn, Cn = (a'ﬂ- - an)/za
(2.2) { b 1= i(Cn — ), then { iy = (Bt 1bn) /2,

where n = 0, N, and every p € Ty admits the representations

2mrt

+b sin t e R.

COS

(2.3) p(t)= ) caea(t) =

Remark 2.1. Ife, is defined by (2.1) then (e)nez is an orthogonal system.
One has (€, em) = @0n,m, nm - Kronecker’s symbol.

Theorem 2.2. For every p € Ty defined by (2.3) the following relations
hold true:

(i) cn =a"'(p,e,), n=-N,N
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(ii) Fourier formulas
2 Y 2nmt 2 e . 2nw
Uy = —/ p(t) cos——dt, b, = —/ p(t) sin
a Jo a aJo

(iii) Parseval’s identity

1
dt, n=1,N;

(2.4) $ Jenl? ]|p 1|2,

n——N
Further on, we consider the space

13(0,a) = {f :R— C | f is a — periodic and / |£()|%dt < oo},
0

endowed with the inner product defined by (f, g) := / F()g(t)dt and with
0

the norm || - [l2, |fll2 := (f, £)M2

We recall: Ty < L%(0,a) and ||fll2 =0 & [ =0a.. on (0,a).
Theorem 2.3. Let f € L%(0,a). There ezists a unique polynomial [y €
Ty with the property ||f — fnll2 = ;1;};; |f =2l and it is given by

(2.5) In(t) = Z cnen(t), where ¢, = — /f Ye_n(t)dt

n=—N
N
One has ||[f — fxll3 = Ifl5 - o Z len|? (Bessel’s equality) and conse-
n=—N
AR 718,
quently, Z len{" < ) N € Ny (Bessel’s inequality). The polyno-
n=—N

mial fy is called the orthogmmt projection of [ onto Ty or element of the

best approzimation to [ in T; N
Theorem 2.4. Let [ € L%(0,a) and fv € Ty defined by (2.5). The
sequence (fn)N>0 15 sérongly convergent to f, this meaning

@6)  Jm I~ fule = Jim |10 - S0 =o.

o0
Remark 2.5. (i) The identity (2.6) guarantees that f = Z Crntn almost
n=—00

everywhere on R. This, in general, does not imply pointwise convergence!
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(ii) If fx € T is the orthogonal projection of f onto 7y then

= 1 1 1§

2 L2, 1 %) o _ 2
> leal? = ool 4 3 Y (leal + bul) = 3 [ 17000 e
n=—oco n=1
where ¢,, and a,, b, are defined by (2.5) respectively (2.2).
We denote by [? the space of all square-summable bi-infinite sequences of
complex numbers £ = (2p)nez - this meaning Z|a:k|2 < oo - endowed
kel
with the inner product defined by (z,y) = Z 1Y),
ke

It is known that both (? and L%(0,a) are Hilbert spaces.
Theorem 2.6. The operator ¢ : L%(0,a) — 12, ¢(f) = (Vacu(f))nez
where ¢, (f) = a ([, en), verifies the following identity

(¢()), 8(9) = (/,9),

for every [ and g belonging to L%(0,a) (¢ is an isometric operator).
We also consider the space

LL(0,a) == {f :R — C| [ is a — periodic and / |f(0)|dt < 00},
0

endowed with the norm || - |1, || f]l1 :f |f(t)|dt.
0
One has L3(0,a) C Lh(0,a) and [|f|l1 € Val|fll2, f € L3(0, a).

FOURIER TRANSFORM IN L!(R)
Definition 2.7. Let f belong to L'(R). The Fourier transform Ff of f

—~

(also denoted by f) is defined by

(27) Fi©) = [ e @)da.

R
The conjugate Fourier transform F f of [ is defined by
(28) F1©) = [ e sa)da.

R

Remark 2.8. (i) Often, the Fourier transform of f is given by
(F1E) = [ e f(a)da.

Clearly, (F'f)(2m¢) = (Ff)(€). We chose the relation (2.7) because of the
operator F is an isometric operator on the space L%(R) as we will see later.
However, this change do not alter the theory of Fourier transforms at all.
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(i) The Fourier transform f of f not necessary belong to L'(R). For
example we easily deduce

i a, 6 = 0:
(2.9) if f = Xjau then X[a (&) = sin w€(b— a) it )
‘ ¢ , £#0,

and X[a. b| é L (R)
We notice that in science and engineering, the characteristic function xq

is often called a rectangular pulse or gate function.
Further on, we gather the most significant properties of 7 f for f € LY(R).
Theorem 2.9. (1) If f € LY(R) then Ff is continuous and bounded on R.

F : LY(R) — L*™(R) is a linear continuous operator and 1fllee < 11/
The identily Ifllim [/(€)] = 0 holds true.

(2) If  and g belong to L*(R) then [g, Tg belong to LY(R) and

| (et = | Flala(a)

(3) If mif € LX(R), k = 0,n, then JW)(€) = (=2niz)%f(2)(€), k = T,n.
Here my, indicates the monomial my(z) = 2%, 2 € R. -

(4) If f € C*(R) N L'(R) and f® e LIR), k = T,n, then fR)(€) =
(2mig) e (€). R

(5) If f € LY(R) and supp(f) is bounded then [ € C®(R).

(6) If f € L'Y(R) then Ff =F f and (Ff)o = Ff = F/s.

Here h, 1s defined by ho(z) = h(—2), z € R.

(7) If f € LY(R) is an odd (even) function then f is odd __@_ii??,) function.
(8) If f € L'(R) then T, f(€) = e7>™*% [(£), To[(€) = e?™ia[(z)(€).

Here T, indicates the shift operator (T,h(z) = h(z — a), 2 € R).

(9) Inverse Fourier transform.

If f and [ belong to L'\(R) then F[(t) = f(t) for every point t where f is
continuous. N

(10) If f € C%(R) and {f, f', f'} C L'(R) then f € L'(R).

(11) If f € C(R)N LY(R) and f € LY(R) then F[(z) = [o(z) = [(~2).
(12) If f,g belong to LY(R) then m(é) 116G )3(€), € € R.

(13) If £, 1, 9,3 belong to LY(R) then fg (£ )= f*g(g) £ eR.
Remark 2.10. (i) Property (9) says: the function f can be recovered from

f by using the operator FF at every point 2 where f is continuous.
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(ii) For a given f € LP(R) we can consider
(2.10) Op(z):= »  fl@+ak), z€ER,

where a > 0 is fixed. The first question: really, @ is a function? For p =1
the answer is positive and this can be read as follows:

If f € LY(R) then the series defined by (2.10) converges to the a-periodic
Junction ®5. One has @5 € Lh(0,a) and 1240 Ls,0.0) < 111

FOURIER TRANSFORM IN L%(R)

Definition 2.11. The function f : R — C has (f.f.d.) property (function
with fast diminution) if for every p € Ny, | llim |22 f(z)| = 0 holds true.
Z|—00

Theorem 2.12. (1) If f € L}, .(R) has (f.f.d.) property then m,,f € L}(R),
for every p € Ng. N

(2) If f € LX(R) has (f.f.d.) property then f € C*°(R).

(3) If f € C®°(R) and f*) € LY(R) for every k € Ny then [ has (f.f.p.)
property.

We define

D(R):= {f:R—C| fe C®(R) and f*) has (£.L.d.) property, (¥)ke No}.

Clearly, D(R) C L*(R) and for f € D(R) one has f' € D(R), f € D(R),
qf € D(R), where ¢ is an arbitrary polynomial.

Definition 2.13. The sequence (fn)nen, fn € D(R), converges to 0 in the
space D(R) if

(V) p€No, (V) ¢€N, lim sup |2?f{?(z)| = 0.
n—od :r.‘ER

We can prove: if f, — 0 in D(R) then one has
fo—0in LY(R), f:—0inDR), f,— 0inD(R).

Theorem 2.14. The Fourier transform F is a linear continuous bijective
operator mapping D(R) into D(R). Its inverse transform is F, consequently

the relations
TreN —2ifx : _ 2mizé 7y
fle) = /R eI () da,  f(z) fm 2zt flg) dg

are equivalent for every [ belonging to D(R).
Theorem 2.15. D(R) is a linear subspace of L*(R) dense in L*(R).
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Theorem 2.16. (Plancherel-Parseval’ identities) If f and g belong to D(R)
then the following relations hold

JRGGEE | 1@ NGRS [1@ytas,

Theorem 2.17. The Fourier transform F (respectively ) is one contin-
wous extendable to L2(R) onto L*(R). Keeping the same notations for the
extensions, the following properties hold:

(1) FF[ =FFf = |, FFI = I,

(2) ] [(2)g(x)dz = / FHOTFE)E, Ifll2 = 172,

(3) f Ff(t)g(t)dt = _/ f(u)Fg(u)du,
for every function f and g belonging to L%(R).

3. THE FIRST BRICK IN THE WALL: WIE'T

At the beginning we briefly discuss about signals presenting some aspects
regarding their classification.
From the mathematical point of view a signal is a function of time. We
can express a signal f(t) in terms of its amplitude and phase as follows:
1(t) = a(t) exp(i0(t)).
A. If the variable belongs to an interval I then the signal z = z(¢), ¢ in
I, is called analogical signal. Usually, this type of signal is a continuous
function of time ¢, with the exception of perhaps a countable number of
jump continuities. If the variable is discrete then the function 2 = (2,)nez
is called diserete (or digital) signal. Usually, it is obtained by discretization
of an analogical signal.
Examining Theorem 2.6 we deduce

e FEvery analogical S?gnal fE T8 %(0,a) can be identified with the digital
signal (/acn)nez € 12, where cn = a7(f, exn).

B. Also we can speak about deterministic and random (or stochastic) sig-
nals. A signal is called deterministic if it can be determined explicitly, in
terms of a mathematical relationship. A deterministic signal is referred to
as periodic or transient if the signal repeats continuously at regular intervals
of time respectively decays to zero after a finite time interval.

Practically, in nature there are random or stochastic signals in the sense
that they cannot be determined precisely at any given instant of time.
Probabilistic and statistical information is required for description of ran-
dom signals. It is necessary to consider a particular random process that
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can produce a set of time-histories, known as an ensemble. This can repre-
sent an experiment producing random datum which is repeated n times to
give an ensemble of n separate records. The average volue at time ¢ over
the ensemble z is defined by (z(t)) = nlil\rl;.o n~ 3 71 zk(t), where 2 takes

any one of a set of values zy, k =1, 7.

The average value of the product of two samples taken at two separate
times 47 and ts is called the autocorrelation function R, for each separate
record, defined by R(7) = lim_ nt S0 ze(t)zg(te), T =11 —ta.

C. On the other hand a signal can be stationary or non-stationary. In the
first case the properties of the signal are invariant over time. The ideal tool
for studying this type is the Fourier transform. In other words, stationary
signals decompose canonically into linear combinations of waves (sines and
cosines). A signal is non-stationary if the values of (z(t)) and R(r) vary
with time, even if the change in time is very slow.

Let f € L'(R) be a signal. Physically, the Fourier integral (2.7) measures
oscillations of f at the frequency w = 2mé. The frequency is measured by &
in terms of Hertz. Also, f(w/2w) is called the frequency spectrum of a signal
or waveform f(t). Tt seems equally justified to refer to f(t) as the waveform
in the time domain and f(w/ 2m) as the waveform in the frequency domain.
The continuous Fourier transform is not satisfactory for many applications.
It is appropriate only for stationary signals. For any signal f(f) the trans-
form f(w) gives information on the frequency content over the entire signal
for the frequency w. To extract frequency information at even a single w,
it requires an infinite amount of time, (—oo < t < co), using both past
and future information of the signal. Another trouble of standard Fourier
method is that it is quite inadequate for dealing with signals whose fre-
quency content changes over time. The formula for f(w) does not even
reflect frequencies that envolve with time. So, the Fourier transform anal-
ysis cannot provide any information regarding either a time evolution of
spectral characteristics or a possible localization with respect to the time
variable. Transient signals require the idea of frequency analysis that is
local in time.

In what follows we present an attempt to correct these deficiencies. This
approach is due to Dennis Gabor (1946), a physicist and engineer who won
the 1971 Nobel Prize in physics. He introduced the windowed Fourier trans-
form (WFT) to measure localized frequency components of sound waves.
Generally speaking, this major idea was to use a time-localization window
function, say go(t — b), for extracting local information from the Fourier
transform of a signal, where the parameter ¢ measures the width of the
window and the parameter b is used to translate the window in order to
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cover the whole time domain. This way we use a window function in order
to localize the Fourier transform, then shift the window to another position,

and so on.
In this direction an elementary idea is the following: if the signal [(t)
is given, we distort it over a bounded interval, say [t1,2]. Practically,
we multiply f by the function Xy, ., and then we apply 7. The initial
spectrum f()\) is substituted by Xj¢,,1/(A) = Xjt1,t2] * f()\), see Theorem
2.9, property (13); Xjs, t» i5 given at (2.9). Choosing the interval [—A, A]
one has

24, A=0,
3.1 sA(A) =X _a(AN) =4 sin2w AN
(3.1) (A) = X[-a,4( 24 sz

where s 4 is called the Shannon sampling function.
Definition 3.1. A non trivial function w € L*(R) is called a window
function if myw € L%(R). The center t* and radius A, of a window function

w are defined to be
1
= —s f tlw(t)|%dt,
Tl Jg o0

Ao~ | / (¢ - P huofPa)

respectively. The width of the window function w is defined by 2A,,.
Examples 3.2. Let A > 0.

(i) The rectangular time-window x(_4,4] and frequency-window s, given
by (3.1).

(ii) The triangle time-frequency window

and

t

S+ tel-4,0, A, A=0,
w(t) = _%H, t € (0, Al, D(N) = l(sin'frA)\)z, A £0

0, R\ [—4, 4], 4y, 7

(iii) The Gaussian time-frequency window with parameter o > 0
wot) = A= Ga(N) = A, /ge-ffza“"z.
Since / e P dt — V7/B, B >0, for w, window we obtain
R

lwalls = A%V7/(2a), t*=0, Ay, =1/(2Va).
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Under the normalized condition f We (t)dt = 1 (in other words, W, (0) = 1)

R
we get A = /a/m. _
Definition 3.3. Let w € L?(R) be a window function.
The operator W : L4(R) — C®*R | f s W}, where

(3.2) WA b) = / F(E)(E — b)e2T ey,

R
is called the windowed Fourier transform (WFT) or the continuous Gabor
transform.

Clearly, the operator W is linear. If for every pair (), b) € RxR we consider
the functions wy p,

(3.3) wap(t) = w(t — b)e*™™, teR,

then (3.2) can be written Wr(X,b) = (f, wap).

Theorem 3.4. (Gabor formulas). Let w € LYR) N L%(R) be a window
such that || is an even function and [|w]lz = 1. Let wap, (X,0) € RXR, be

defined by (3.3). For every f € L2(R) we consider the coefficients Wy (A, b)
defined by (3.2). The following relations hold true.

(1) ff [W(A, b)|2d)\db = ||f||% (conservation of energy).
RxR
(2) f(t) = f/ W (A b)wyp(t)dAdb (reconstruction formula,).

RxR
This identity will be read as follows

it galt) == /fo()\,b)wAlb(t)d)\db, then Ali_1’1;0||g,4— fllz2 =0.

[Al=A
beR

In time, various other functions have been used as window functions instead
of the Gaussian function that was originally introduced by Gabor.

4, SWIMMING ON WAVELETS

In order to present the definition of wavelets we can follow three differ-
ent trends created respectively by Franklin-Strémberg, Grossmann-Morlet,
Littlewood-Paley-Stein.

In [7; Chapter 2 is done a well documented presentation of wavelets from
a historical perspective. Also, the historical tree of wavelet theory appears
in [1; page 2. Further on, we follow the Franklin-Stromberg direction. In
this case the analysis of a signal f is obtained by restricting the Littlewood-
Paley analysis to the set L in (0, 00) xR consisting of the points (279, k279),
j, k € Z.



THE MYSTERIOUS WAVELETS WORLD 19

According to (2.6) and (2.5) any [ € L%(0,2m) has a Fourier series repre-
sentation
- oo 1 2n

(4.1) 1) = n_}_joo enen(®), en =gz | J(@)e-n(@)dr.
There are two distinct features in the above Fourier series.
(i) The signal f is decomposed into a sum of infinitely mutually orthogonal
components, that is (¢.en, ¢mem) = 0 for every n # m. Moreover, Remark
9.1 guarantecs that (e,/v/2m)ncz is an orthonormal basis in L*(0, 27).
(ii) The orthonormal basis (en/V2T)nez is generated by dilation of a
single function w(t) = e*. Indeed, w(2mnt) = e,(t), for all integers n.
Briefly, we say:

e every 2m-periodic square-integrable function is generated by integral

dilations of the basic function w, which is a sinusoidal wave.

For any large integer |n|, the wave e, has high frequency and for |n| with
small value, the wave e, has low frequency. Consequently, an arbitrary
signal f € L2(0,2x) is composed of waves with various frequencies.

Now, we are going to examine the space L*(R). Practically we are looking
for waves that generate L2(R). We notice that w ¢ L*(R) and any element
of this space must "decay” to zero at +oo. Consequently, we look for
small waves, or wavelets, to generate L2(R).

As a single function w generates the entire space L*(0, 27), we Lry to obtain
a single function, say v, to generate the entire space L?(R). At this moment
a problem appears: il the wave ¢ has very fast decay, how can it cover
the whole real line? The solution is: the wave 1 must shift along R. We
consider all the integral shifts of 1, namely (2 — k), k € Z. We need waves
with various frequencies partitioned in frequency bands. IFor computational
reasons, we will use integral powers of 2 for frequency partitioning.

e We consider the wavelets z — (272 — k), (4, k) € Z X Z, obtained
from a single wave 1 by binary dilation (27, j € Z) and by dyadic
translation (k/27, k € Z).

The function ¢ is called mother wavelet. This mother ”gives birth” to an

infinity of small waves by two operations - dilations and translations. Every
new-born child will be called by using (7, k)-index:

(4.2) Yik(z) =2/ 2p(Px — k), z€ER,

§ denoting the dilation index and k representing the translation indez. Di-
lation by larger § compresses the function on the z-axis. Altering & has the
effect of sliding the function along the z-axis.
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Lemma 4.1. (i) If f € L*(R) then for every (j, k) € Z X Z one has
1727 - k)2 = 2772 £ o

(ii) If 1 € L2(R) has the property |||z = 1 then the functlions 1 defined
by (4-2) have the same property.

Definition 4.2 (in the sense of Franklin and Stromberg). A function 1
belonging to L2(R) is called orthogonal wavelet if the functions ¥, x, (7, k)
in Z x Z, defined at (4.2) form an orthonormal basis of L(R).

Remark 4.3. Let 1 be an orthogonal wavelet. For all integers j, k,{, m,

one has

(Wjks Prm) = /R%bj,k(ﬁ)ﬂbl—mz(m)dﬂﬂ = 0 10km-
Every signal f € L*(R) can be written as
(4.3) f@) = > cispin(z), where cip = (f,%ix).

(5,k)ELX T
This series is called wavelet series and c;p represent the wavelels coeffi-

cients.
We recall that the convergence of the series in (4.3) is in L?(R), meaning

Ny Ny

Hf_ Z Z Cj.k'ﬁbj,kHQZO.

My, M: lii\me
1,M2,N1,N2— 00 o Ms k=M,

All these above statements are implied by the notion of orthonormal basis
in the Hilbert space L*(R).
AN EXAMPLE: THE HAAR SYSTEM

The Haar function H is a piecewise constant transform given by
1, 0<z<1/2,

(4.4) H(z) = xpa/2)(@) — xpen@) = -1, 1/2<z <1,
0, otherwise.

Clearly, f H(z)dz =0 and ||H|2 = 1.

This funcﬁon is the embryo of the solution of the following problem formu-
lated by Haar (1910): does there exist an orthonormal system hq, h1, ho, . ..
of functions defined on [0,1] such that for every f € C([0,1]), the series
Y50/ hj)h;j converges to f uniformly on [0, 1]?

For n > 1 Haar wrote n = 29 4+ k, j > 0, 0 < k < 27, and defined
ha(2) = 29/2H (22 — k). Clearly, int(supphs) = I := (k279 (k +1)279),
which is included in [0,1) for 0 < k < 27. To complete the set, define
ho(z) =1 on [0,1). Then (hn)n>o0 is an orthonormal basis for L2([0,1]).
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T

The uniform approximation of [ by Z( f, hi)hy is nothing more than the
k=0

classical approximation of a continuous function by step functions whose

values are the mean values of f(z) on the appropriate dyadic intervals. This

approximation can be criticized that the ”atoms” hy, used to construct the

continuous function [ are not themselves continuous functions.

Theorem 4.4. The Haar function defined by (4.4) is an othogonal
wavelet in sense of Definition 4.2.

Proof. Practically it is necessary to show two things: the set {tjr: 3,k €L}
defined by (4.2) with ¢ = H is orthonormal and any function f € L*(R) can be
approximated arbitrarily well by a finite linear combination of the ;;’s.

Taking into account that supp;r = [k279, (k + 1)2779] the first statement is not
difficult to be shown. A minute proof can be found, for example, in [8; Theorem
i
Thi proof technique of the second statement leads us to a discussion of the
principles of wavelet analysis and in what follows we shall present it. Since
271
lim [ fA(z)dy = f f?(z)dx, we can approximate [ arbitrarily well in the L?
j1—e0 J_gi R
sense by choosing a large integer j;. Thus f|[_2,-1 .271) represents the first approx-
imation of f and this restriction is further approximated by a piecewise constant
function over all small intervals of the form [127% (I + 1)2790) .= I, ; the integer
jo is chosen to be large enough to make the approximation as good as desired.
Our problem comes to approximating a function with bounded support with the
help of piecewise constant functions having bounded supports.
Let f7% be a function such that it is piecewise constant on intervals of length 270
as described above and it has supp f7 = [—27*,27]. We denote by ftj“ the constant
value of the function f7 on the interval I;, ;. At this moment we decompose fao
as the sum of two functions

(@5) fio = = 4 gh 7,

where f7%~1 is an approximation to f Jo that is piecewise constant over intervals
of length 2-Uo—1) twice as large as before. According to our convention, we put
I® ~1 .= fio~(z), = € Ij;—1,, and the value ff”fl is obtained by averaging the

two corresponding constant values of the function f90. more precisely ff”'l

(e + I§?+1)/2- _
By using (4.5) we can define a detail function g9~ which is piecewisc constant
over the same intervals as those for f79. It follows that

o . . 1 )
1 ; jo—1 >
g = A - 1 = g - 5 U+ ),

Jjo—1 [

_ gjo i Joy Jo—1
9241 = f2t+1 — Ji = =f 2:“+1 - fzf) =—gy -

po| =
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Using the Maar function (4.4) we can get the expression for the detail function
g%~ in terms of dilated and translated Haar wavelets (H = 1):

giitin—1

gjo—1(2) = > @iz ).

l=—231+tio—141
Consequently, we deduce ffo = fio=1 4 chrl,ﬂf)ju—l,i, where
[
) ) (k+1)27 _
(4.6) o= (P ) =27 [ ()@ - Kyda.
k24
The approximation function {70~ can be decomposed again, giving
flo = o=t g gt = (072 4 gT072) 4 g7

The new function f7~2 has the properties: suppf7°~% = suppf# and it is piece-
wise constant over the intervals [;,_2;. Using the wavelet representation of glo—2,
one has

o, o ._..2
Jr =7+ Z Cju—z,t'i,l')j[,—z,.! + Z Cjo—1,1%jo—1,0
L !

where the coeflicients c; . are given at (4.6).

Jo—1
Repeating the procedure, we get flo = f=ir 4 Z ch‘ky’)j‘k. The coarser ap-
j==h !

proximation f~7* has two constant pieces: f‘jlholgn) = fo_jl and f~7 |[_2_.,A1 0=
f’:lj ' Now the entire support of f% has been represented. Further on we double
the support of the approximation to fio . from —291+! to 2111, The function i
can be broken down: f=it = f~(1t1) 4 g=(1+)  where

F O g4y = R e ff(h“)h—zml,o) Gl B and

gD — 91 pdiy (o=t g) _ 9= pmiiy (9= Uity ),

jo—1
After k steps one obtains fi = frltk) Z ch,kfﬂj’k, where
=—(irtk)

suppf (1 tk) — [gitk givtk] - pmGLHR)| o = 2R fO0

and f~GHB)| ok gy = 27K F 7"
Using only the sequence of detail functions to approximate Fio we can obtain the
error of approximation

jo—1
w1 =3 b4 =i —h
|7 Y Seamtia], =IOl =V T 1P
j=—(j1+k) k

By choosing k large enough, we can make the error as small as we wish. O
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5. MULTIRESOLUTION ANALYSIS

We need multi-resolution because the resolution (i.e. the details of the
function that we can see) will be governed by the frequencies, i.e. by our
dilations though the integer parameter n. For each resolution we have a
space of basis functions obtained by translation of a basic function obtained
with a fixed parameter k. Consequently we work with several spaces at a
different resolution, this meaning mulliresolution.

Briefly, this concept is related to

e the study of signals of different levels of resolution as a limit of
successive approzimations, each of them being a finer version of f.

MRA AnD TSR

The proof of Theorem 4.4 is based on the decomposition of a piecewise
constant approximation function into a coarser approzimation and a detail
function. Using the Haar function and the corresponding piecewise constant
approximations, for each level j, one can construct f9, an approximation
of the original signal f.

e The approzimation can be written as the sum of the next coarser
approzimation {771 and a detail function, say gL (5.1)

Further on each detail function g7 can be written as a linear combination
of the corresponding 1; g-functions (1. (x) = PIEH (P x — k).
At this point, for each j € Z we define a function space Vj,

V; := {f € L*(R)| f is piecewise constant on [k277, (k4 1)279), k € Z}.

The sequence (V;);jez represents a ladder of subspaces of increasing res-
olution, as j increases. Iach subspace V; consists of functions that are
piecewise constant over intervals of exactly twice the length of those for
Vj—1. The above function sequence enjoys the following properties:

(P) -~CcVaocCcVaycWhcWiclhC..., (5.2)

(P (Vi={0}, UV =L®); (5.3)
JEZ JEZ

(P3) feV;ifandonly if f(2) € Vj11, j €Z; (5.4)

(Py) [ € Vpimplies f(- — k) € Wy, for all k € Z. (5.5)

In other words: () indicates that we deal with an ascensional sequence;
(P5) contains both the separable property and the density property; (Ps3)
demonstrates that each V; is a scaled version of the original space Vy; (P1)
means the invariance of Vj of the integer shifts. By using the shilt operator
7, we can rewrite (Py): f € Vg implies 7. f € Vg, for all k € Z. If the scale
4§ =0 is associated with Vg, then the scale 277 is associated with V;.
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Setting P7 f for the projection of a function f onto the space V; (or the best
approzimation to [ in Vj), relation (5.1) implies

Pif =PI f 4g770.

The detail function g7~ is the "residual” between two approximations and
it can be written in terms of dilated and translated wavelets as follows

Pif =PI f 43 ([ i1kt (5.6)

kEZ

The decomposition can be extended recursively

ji—1 -1
Pif=pPof 1+ g =PPf+% > ([ )ik
1

=7jo I=jo k€%

Now, regarding to the sequence (V;)jez we ask the following property to
be fulfilled.

(Ps) There exists a function ¢ € Vo such that the set {¢os : k € Z},
$or = ¢(- — k), constitutes an orthonormal basis for Vg, that is

113 = /R @) Pde = S| dop) forall f €Yo (57)

keZ

For example, in the Haar case one choice for ¢ is ¢(z) = xjo,1)(z), z ER.
Remark 5.1. The function ¢ which satisfies (5.7) is called the scaling
function (or the father wavelet) since its dilates and translates constitute
orthonormal bases for all V; subspaces, which are scaled version of Vo.

If the central space Vo is generated by a single function ¢ & L?(R) in
the sense that Vo = sp{¢os : k € Z}, then all the subspaces V; are also
generated by the same ¢, namely

Vi = sp{g;x : k €Z}, j € Z, where ¢;ji(z) := 29/24(2x — k).

Definition 5.2. A multiresolution analysis (MRA) generated by the scaling
function ¢ consists of a sequence (Vi )nez of embedded closed subspaces of
L*(R) that satisfy the following conditions: (5.2), (5.3), (5.4), (5.5), (5.7).
We have seen that a basis for V; is given by translates of the father function
¢. The reciprocal of the translation distance is called the resolution of this
basis. One could say that

e the resolution gives the number of basis functions per unit length.
Let us set by definition the resolution of Vg to be 1. The projection Py
gives an approximation of [ at resolution 1. The projection PIf of [ onto
V; gives the approximation of f at resolution 27.
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Remark 5.3. (i) Sometimes, requirement (Ps) is relaxed by assuming that
{pos = (- — k), k € Z} is a Riesz basis for Vo, that is, for every f € Vo,
there exists a unique sequence (Ci)rez € {? such that

- N

lim ‘f— 3 ckq{)g,kHz:O

S =N

and there exist two real positive constants A and B (independent of f)

such that ,
AN erl> < SIE < BY lewl®.
keZ ke
In this case we have a MRA with a Riesz basis.
Clearly, (5.7) implies that (¢(- — &))kez is a Riesz basis for Vo with A =

Bi=1
(ii) Typical examples of scaling functions ¢ are the mt" order cardinal B-

splines Ny, m € N, defined recursively by convolution: Ny := X[g,1) and

1
Np(z) = /RNm_l(:r — )Ny (t)dt = /0 Np-1(z —t)dt, m = 2.

One has suppN,, = [0,m] and Ny,(z) > 0, for 0 <z < m. Setting

By i= {Niu(- — k) : k € Z} and V5™ := 5p(Bm),

with an additional effort we can prove that B, is a Riesz basis in Vg™.
Theorem 5.4. Let (V;j);ez be a MRA in the sense of Definilion 5.2.
If f € L*(R) and P?{ is the projection of [ onto V; then

lim ||[PPf = flla=0and lim ||P?f|2=0.
J—00 J——00

Theorem 5.5. If ¢ generates a MRA on L2(R) then one has

oo

$(z) = > pud(2z—n), z€ER, (5.8)

n=—oco

where (pn)ncz, belongs to the space I2.

Equation (5.8) is called the dilation equation. It involves both & and 2z and
is often referred to as the two-scale relation (TSR). A third name used for
(5.8) is the refinement equation because it displays ¢(x) in the defined space
Vi. This space has the finer scale 27! and it contains ¢(z) which has scale

1. To avoid trivialities we look for a solution of (5.8) with / ¢(z)dz # 0.
R

Moreover, suppose we normalize ¢ so that

] ¢(z)dxr = 1. (5.9)
R
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ON THE FATHER WAVELET

We investigate (TSR) in order to reveal properties of the father wavelet.
Theorem 5.6. Let (V;)jez be a multiresolution analysis generated by the
scaling function ¢. Let (Dn)nez be given by (5.8). The following properties
hold true

(1) > pa=2

(2) Fo&) = H H(277€) and Fp(28) = H(E)F¢(£), where
=1
() :% S pue T, EER (5.10)

(3) S |Fpz+ k) =1, zeR.

keZ
Supposing that (5.9) is fulfilled, we also have
() |HE?+|H (E+271)|" =1, € €R, where H is given by (5.10).

(5) Z Pon — Z Pan{41 = 1.

nel ner
(6)Y dlz—k) =) (k) =1.
kel kEZ

Examples 5.7. We give two solutions of the equation (5.8).
1. Set po = p1 = 1. The solution is the boz function ¢ = Xjp,1)-
2. Set pr =1, po =p2 = 2-1 The solution is the hat function

i 0<ze <1,
dz)=¢ 2—2, 1<z <2
0, otherwise.

Since we need a more systematic approach of (TSR) we present three gen-
eral construction methods for the father ¢.

A. BY ITERATION
At first step we fix ¢o (for example bo = X[o,l)) and then we consider the
recurrence relation

$i(2) =D Pagj-1(22 — ).
nex
For j tending to infinity we obtain the scaling function ¢.

Examples 5.8.
1. For pp = p1 = 1 and ¢o = X[o,1)» the box remains invariant, ¢; = ¢o,
i>l.



THE MYSTERIOUS WAVELETS WORLD 27

2. For py = 1, po = p2 = 27" and ¢o = X[o,1), the hat function appears as

j — 0o
3. For pg = ps = 272, p1 =p2 = 3- 272 and ¢o = X[o,1), the solution is a

quadratic spline

z?, 0<z<1

222+ 6x—3, 1<z<2
#2) =9 @3-2)?, 9<z<3

0, z eR\[0,3].

4. Torpg = (1+v3)/4, p1 = 3+V3)/4, p2 = 38— v3) /4, p3 = (1 - V3)/4
and ¢o = X[o,1) the corresponding father wavelet ¢ is called Dy (D for
Daubechies and 4 because only four coefficients pj are non-zero).
B. BY FOURIER ANALYSIS

Firstly we determine H function defined by (5.10). Secondly, by using
Theorem 5.6, see (2), we obtain F¢. Taking into account Theorem 2.17,
property (1), we get FF¢ = ¢, and consequently ¢.

Example 5.9. We return at Examples 5.8, the casepg = p1 = 1. We obtain
H{Z) =1 -+ e~27i€) /2 and consequently, see property (2) at Theorem 5.6,

Fo€) = [[HE@7E = Jim HETEOH™)... ™)

i=1

1 — exp(—2mi ! :
exp(. 2?1'36) _ ] e—?szmdw,
27{'?.5 0

where € # 0. This Fourier transform F¢ appears at (2.9), consequently ¢
is the box function.

C. BY RECURSION
Suppose ¢(x) is known at integer values = k. Then the dilation equation
defines ¢(x) at half integers » = k/2. Repeating this process yields ¢(z) at
all dyadic points z = k/27, (k,j) € Z X Z.
This is an algorithm often used in practice and it is suited for the case when
(TSR) is described by a finite sum. In what follows we assume that there
exist the integers N' < N with the property

pnt 70, pyn #£0, pp=0for k < N and for k > N". (5.11)

Theorem 5.10. Let ¢ be a solution of the dilation equation (5.8). If the
relations (5.11) hold true then suppgp C [N', N"|.

Note that in order to obtain ¢ we use method A (by iteration), choosing ¢
such that supp¢g is compact.
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Under the assumptions (5.11), (TSR) can be rewritten
N :
$(z) = > prd(22 — k), popn 7 0. (5.12)
k=0

Since we are looking for ¢ € C(R), Theorem 5.10 implies ¢(0) = ¢(N) = 0.
At first we obtain ¢(k), k =1, N —1. We choose z := k, k=1,N—1in
(5.12) and we solve a linear system of the form v = Puv, where the matrix
P is given by P := (paj—k)1<jk<n—1 and v = (¢(1), #(2),..., ¢V — 1))~
Here j represents the row-index and k is the column-index. Because of
¢ generates a partition of the unit (see (6), Theorem 5.6) we obtain the
values ¢(k), k € Z, as lollows: we find the eigenvector of the eigenvalue
N-1
1 and we impose Z (k) = 1. Next, we define ¢ as a piecewise linear
k=1
function taking the values ¢(k) on Z. More precisely, we consider
do(z) = p(2)(k+1—12) +ok+1)(z—k), zelkk+1]
NH
Finally we obtain ¢; by using the relations ;1 () = Z pedi (22 — k),
k=N’
4 > 0. The functions ¢; are piecewise linear functions having the knots
k/2 € [0,N], k € Z.
Example 5.11. We choose pg = 1, P1 = — Y where g = (1++/5)/2 is
the golden ratio. In concordance with Theorem 5.6, property (5), we must
take ps = g and pa = 1 — p. The matrix P is given by

T2\ 1+v5 1-vB )"
The solution of the system v = Pv is v = a(l 1)t and normalized condition

implies a = 1/2. One has ¢(1) = $(2) = 1/2 and for all k € Z\ {1,2},
¢(k) = 0 hold. By recursion we obtain the values d(k/27), (j, k) € Z x Z.

ON THE MOTHER WAVELET

Let (V})jez be a MRA. Since V; C Vjy1 we define the orthogonal comple-
ment of V; in Vjy for every j € Z so that we have

Vimn=V;@W;, jeL, (5.13)
and V; L Wy, for k # j. Here ® indicates orthogonal sum. Thus

P Wi = Vi1 and P w; = I*®). (5.14)

j=—00 JEZ
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The last decomposition is usually called an orthogonal decomposition of
L2(R). This means that the decomposition of any signal f € L?(R) as the
(infinite) sum of functions g; € Wi, f =+ +g-1+go+g1+ ..., is not
only unique, but these components of f are also mutually orthogonal, as

described by (g1,9i) = 0, L # J-
Moreover, the spaces W; inherit the scale property (P3) of Vj, j € Z, in

other words v € Wo < v(27) € Wjt, j € Z.
Now, we are looking for a function 1 € Wy such that {or : k € Z} to
become an orthogonal basis in Wo. This function is called mother-wavelet.

Similarly as in (4.2) we consider
i p(z) = 2/%p(Pe —k), zER, (j,k) EZXZ. (5.15)
o As the father-wavelet generates orthonormal bases in Vj, the mo-
ther-wavelet generates orthonormal bases in W, j € Z.

Theorem 5.12. Let (V;)jez o MRA of L%(R) generated by the scaling
function ¢. Let (W;)jez be defined by (5.13). If v € Wo such that (tpok)kez
is an orthonormal basis in Wy then a function G € L%(0, 1) exists enjoying
of the following properties

(5.16) (Fap)(2)) GA(F)(N),
(5.17) IR+ G +12))P = 1
(5.18) HNG\) +HMA+1/2)G(A+1/2) = 0,

where H is given by (5.10).
Since 9 € Wo C Vi and {¢14 : k € Z} is a basis in Vi, a sequence (g )kez
belonging to /2 exists such that

I

co

(5.19) Y(t)= D, wp2—k), teR.

k=—co

Associated to the mother-wavelet 1, we consider G € L%(0,1) as follows

_ 1 = —2kmiA
(5.20) G =3 > we . AER.
k=—00
HOW TO FIND THE FUNCTIONS G' AND
Firstly we are looking for functions G which verify (5.17) and (5.18). Writ-
ing G(\) = exp(—2mi\)U(\), where U € L%(0,1), relation (5.18) leads us
to the identity
HNUMN =HMN+1/2)U(X+1/2), AeR
This means that HU has 271-period and G satisfies
(5.21) HO)G(\) = e~ 72g()),
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where 0 is a Zj—periodic function. Substituting (5.21) in (5.17) and taking
into account [H|% = [H|?, |[H(N|? +[HA+ 1/2)|? = 1, one obtains

(5.22) 6] = [HOHA+1/2)].

For example, 0a, o € R, defined by fa(\) = H(A)H(A+ 1/2)e~ 2" N e R,
satisfies (5.22). By using 0a, the function G is given by

(5.23) G\ = e~ 2O\ +1/2).

By direct computational we can prove that all these functions satisfy both

(5.17) and (5.18). At this moment G and father ¢ are known. Irom (5.16)

we get F1p and, further on, mother v is born.

Theorem 5.13. Let ¢ be a normalized solution of (TSR). If ¢ is de-

fined by its Fourier transform Fip(A) = G(\/2)(F¢)(N/2), X € R, where

G(\/2) = 27 exp(=2mi ()\/2 — a)) Zﬁn exp(nmi(\ + 1)), then (Tuy)kez
neZ

is an orthonormal basis in Wy space and (k) jkez 18 AN orthonormal basis

in L4(R).

Theorem 5.14. Let I, G be defined by (5.10) respectively (5.20). If (5.23)

holds true with a = 271 then one has (V) k €Z, qx = (—1)*p,_s, and the

mother-wavelet 1 is given by

P(t) = Z('l)kfﬁlew(% — k).

keZ

Examples 5.15. Knowing the scale function ¢, by using Theorem 5.14 we
can determine 1. We keep in mind Iixamples 5.7.
1. For the box function ¢ = Xjo,1) the mother ¢ is the Haar function, (4.4).
5. For the hat function ¢, the mother ¢ is the following

~1/2 -2, -1/2<z<0,

3p—1/2, 0<z<1/2,

P(z) =< —3z+5/2, 1/2<2<],
z—3/2, 1<z<3/2
0, reR\[-1/2,3/2].

6. WAVELET TRANSFORMS

WAVELET DECOMPOSITIONS AND RECONSTRUCTIONS

“We want to come to algorithms for wavelet decomposition and wavelet
reconstruction.

Let (V;);ez be a MRA generated by the scaling function ¢ € L%(R) and let
f be a signal in L%(R). For a given € > 0, the property (5.3) guarantees
that an integer n and a function f, € V; exist such that ||f — fullz <&,
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in other words, f can be appmximated as closely as desired by an f,, for
some n € Z. Since Vi, = Va1 ® Wig, fr has a unique decomposition

fn = fn_l + gn_1, where fr_1 € Vg and g,,1 € Wi1.
By repeating this process, we have
(61) fn,:gn—l -+ gng2+"'+gn—na+fn-—nu fj er, g EI’VJ

This type of decomposition is called wavelet decomposition. By using the
bases of spaces V; and W, we can write

2) = Y pikbin(), Pk = (], Psk)

keZ

) = ZQj.kw",k(ﬂ:)) dik = (fi ’zlbjlk)‘

keZ

(6.2)

We set pj = (pjx)kez € 1% and 3 := (gjk)rez € I2. The decomposition is
to find Pn—1 and gn—1 from P, and the reconstruction is to recover P, from

Prn—1 and gn-1.

Remark 6.1. Every signal f € L?(R) can be unique decomposed under

the form Zgj. where g;, j € Z, are defined by (6.2) and are called the
JEZ

voices of f. For every integer n, [n, = Z g; represents the orthogonal

j<n—1

projection of [ onto V. =

Theorem 6.2. If ¢ is the father-wavelet and 1 1is the corresponding

mother-wavelet then the following identities hold true

bnp(z) = \/—ZPE okPnr1i(z), T €R,

leZ

1
'l;bn,k(:r) = fZQI—2k¢n+1,l(m); Tc Ra
\/E leZ

1 1
(Drker Prt1) = Ep.z_z;m (Vn g, Prr1g) = ﬁ%—?im

where the 12-sequences (Pn)n, (Gn)n arve defined by (5.8) respectively (5.19).
This theorem and relation (6.2) imply

(6.3) pn!\._/f )P (2)dz = \/—sz 2% Pn1,l-

leZ



32 OCTAVIAN AGRATINI

Let us define an operator (named filter) H : (2 — [?, a = (ax) — Ha,

1
(Ha)y = —% Zﬁz—zkﬂl-
V2 leZ
From (6.3) we have P, = HPnt1- Analogously, we define the filter G : -
a+— Ga by
1
(Ga)k = —= Zﬁz—zkafh
V2ig
and by using the same arguments we obtain b = OPni-
We recall: if A is an filter on (2, then the adjoint A* : I* — [* is defined by
(Aa,b) = (a, A*D).

The matrix representation of the adjoint operator is the Hermitian conju-
gate of the matrix representation of the operator. Hence the adjoints of H

and G are given by
1 1
(M) =7 D _praay (G0 = > gr-mar.
leZ ieZ
We are now in a position to express Pn41 in terms of P and gn. Taking
into account that f — fat1 L Vit1, by using (6.2) and Theorem 6.2 we get

(f, bnr1k) = (fat1, Pntr) = (fnt Gny Pri1k)
= % Zpkf'zzpn,; + % Z Qr—21Gn,1

leZ IEZ

Pn41,k

and consequently 1 = H*Pp + G*Cn.
With the help of matrix representation, the decomposition-reconstruction
can be written as follows

H |~ Pr = * (1% Pn
I:g]pn-klz(gn)a pn+1:[H g](§n>

INTEGRAL WAVELET TRANSFORM
We associate to a function ¢ € CR the family (¢ap), @ > 0, b € R, where

(6.4) as(t) = \/iaw (?) .

Theorem 6.3. Let 1 belong to L*(R) and a4 be defined by (6.4). ILor
every a > 0 and b € R the following properties hold true

(i) ap € L*(R) and ||[Yapll2 = (1927

(ii) if 1 is o window function in the sense of Definition 3.1 with ils center
* and its radius Ny then Yoy is @ window function with the center at*+b
and the radius alqy;
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(#ii) if P is a window function with its center \* and ils radius Ag then

Pap 48 a window function with the center a='\* and the radius a 1AA
Definition 6.4. If ¢ € L%(R) satisfies the admissibility condition

@ f;)\ 2 0 A)\ 2
(6.5) Cy ;_—_f_m W'(/\l)l d,\:(/ﬂ rw!(/\fn Do

then ® is called a basic wavelel. Relative to every basic wavelet 9, the
integral wavelet transform (IWT) on L?(R) is the following operator

Wy : L*(R) — — CRLXR £ W,y f, where

(6.6) (W f)(a,b) = /f(t( ) a>0, bER.

(Wyf)(a,b) are called the coefficients of f relative to 9.

The IWT was introduced by Grossmann and Morlet.

Remark 6.5. (i) In (6.5), the equality of two integrals is not a very
restrictive condition. For example, if 4 is a real valued [unction then
{b‘(_)\) = v,E()\) and the equality holds true.

(i) The admissibility condition can be written as follows

I Aal 10N PN Al L GV
C.QF/O =t dA_/U A-dA.

(iii) The operator Wy is linear. By using (6.4) and Theorem 2.17 - (2) -
the coefficients of [ relative to 4 can be written

(6.7) (W )(a,0) = (f,%ap) = ([, %ap),

and according to Schwarz inequality and Theorem 6.3(i) one has
(V) f € L*(R), (V) (a,b) € (0,00) X R,  [(Wyf)(a,b)| < |Ifll2ll3]]2-

(iv) If 4 € L2(R) is a basic wavelet such that both 9 and 1 are windows
functions, then 1 is called a window basic wavelet. In this case ¢ has the
following properties

{'%L’ﬂ,’l;} C Ll(R) and /_oo Y(x)dx =

(v) Examining Theorem 6.3 and relations (6.6), (6.7) we deduce

1. The IWT gives local information of a signal [ with a time-window
[0+ at* —aAy,b+at* + aly|. This window narrows, for small values of a
and widens for allowing a to be large.
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2. The IWT also gives local unformation of f with a frequency-window
[(A¥ — A‘ﬁ) Ja, (N +Ag)/al. The ratio between center frequency and band-
width is A*/(245), independent of the scaling a.

3. Considering \*/a to be the frequency variable A, we may create the
t — X plane as the time-frequency plane. With the help of two previous
windows we form a rectangular time-frequency window

[b+ at* —aly, b+ at® + aldy| % [(A* = AJ))/C&, (A" + A,@)/GL

This window has finite area given by 4A,A7 (independent of a and b).

It narrows for detecting high-frequency phenomena (small @ > 0) and it
widens for investigating low-frequency behavior (large a > 0).

Theorem 6.6. I[ v is a mother wavelet in the sense of Definition 4.2 then
the coefficients c;r of the series wavelet (4.3) can be expressed by using
IWT as follows

cin = (Wyf)(277, k279,  (4,k) € Z x L.

Theorem 6.7. Let ¢ € L*(R) be a window basic wavelet. For any two
signals [ and g belonging to L?(R) one has

[7(Jovunia 550 Bb) g7 = Colf-),
R

where Cy, i3 given by (6.5).
Corollary 6.8. If ) € L(R) is a window basic wavelet then every signal
f € LA(R) verifies

/:0 (/|(Tﬂ¢f)(a,b)|2db)% = Cyllfl3.
R

Theorem 6.9. (The reconstruction formula) Let ¢ € L(R) be a window
basic wavelet. If f € L2(R) then

o=z [ ( mf (W0, B0 (1)) 5.

This formula must be understood as follows: if

10 =g [ ([wan@iiuow)g, <o
R

th li - = ).
wen lim |1 = Jellz
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Remark 6.10. In practical research, some mathematical requirements
wavelets are not fulfilled. They surrender and the rigorous frames are bro-

ken.

For example, Jean Morlet used a window basic wavelet defined by

P(t) = e~ V12cos5t, teER.
Since P(0) = ome=25/2 > 0, (6.5) is not verified (Cy = 00), but the value

W(

[1
2
3

[4
[5

0) is approx. 10~5 and practically is considered zero.
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