0. AGRATINI

ON SOME NEW OPERATORS OF DISCRETE TYPE

Estratto

Supplemento ai Rendiconti del Circolo Matematico di Palermo
Serie Il - Numero 68 - Anno 2002

PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON
FUNCTIONAL ANALYSIS AND APPROXIMATION THEORY

ACQUAFREDDA DI MARATEA (POTENZA - ITALY), SEPTEMBER 22-28, 2000

DIREZIONE E REDAZIONE
VIA ARCHIRAFI, 34 - PALERMO (ITALY)




RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie 11, Suppl. 68 (2002) pp. 229-243

ON SOME NEW OPERATORS OF DISCRETE TYPE

O. AGRATINI

ABSTRACT. In this paper we are dealing with a general class of linear and
positive operators of discrete type. We investigate the convergence of the
operators and we give estimates of the rate of convergence by using the
classical modulus of continuity, Ditzian-Totik weighted moduli, as well as
the weighted K-functional of second order. In some cases we prove that
these operators leave invariant the class of increasing functions respectively
the convex and the Hélder continuous functions. Also a Voronovskaja type

formula is established and some concrete examples are presented.

1. INTRODUCTION

The positive approximation processes have been the object of many investiga-
tions. In the last years, it comes out a further development of their study in connection
with some evolution problems via semigroup theory. We point out that F. Altomare
and his Bari school deepened the study of elliptic-parabolic equations by means of

positive operators. New types of linear operators have been introduced in order to
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enlarge the class of evolution equations whose solutions can be approximated by con-
structive approximation processes. A detailed analysis of these aspects can be found in
the monograph [3].

Motivated by this research direction we deal with a sequence of positive linear ap-
proximation operators of discrete type. The paper is split into four sections. The next
section is devoted to construct this general class of operators and to present some
concrete examples. In Section 3 we investigate the convergence of the operators giv-
ing general estimates in terms both of the modulus of continuity and of Ditzian-Totik
weighted moduli. Furthermore we study some particular cases in which these opera-
tors leave invariant the classes of monotone functions, convex functions and Lipschitz
functions. In the last section we focus our attention to establish a Voronoskaja type

formula. This result provides a link with the generation problem for certain differential

operators.

2. CONSTRUCTION OF THE SEQUENCE (Ln)n>1

Let D be a general interval of the real line. The Landau symbols will be denoted
by o() and O(+), as usual. Also ¢; stands for the j-th monomial, e;(t) =/, t € D, j
being a non-negative integer. Throughout the paper we will denote by C(D) the vector
space of all real-valued continuous functions on D. Also Cg(D) represents the subspace
of C(D) of all real-valued bounded continuous functions on D endowed with the natural
order and the sup-norm || - || defined by ||f|| = sup |f(z)|, f € Cp(D), with respect to
which it becomes a Banach lattice. We set N, :£=€DN U {0}. For each integer n > 1 we
consider a set of indexes A, C Ny and a net on D namely (2, t)kea, with the following
property: for every k € A, there 7 > 0 exists such that z, x = o(n™7). Let (¢nr)rea,

be a sequence of continuous functions on D verifying the following conditions:

(I) d"n,k 2 0, Z ¢",k - 1,
k€A,
2) Y bup(@)tas =1, z€D,
kEA,
“ Z k(@) = 2* + Tf:(gzﬂ;)! €D,

ke,
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where 1, € C(D) and u(n) = O(n®), n — 00, for some constant & > 0. Furthermore

we require

(4) lim ¥(2)

5% u(n)

= 0 uniformly on any compact K C D.
The above data satisfying conditions (1)-(4) can be indicated briefly as

(5) (D: An;$n,k,¢n.k($); wmu>; (n, k) eENxA,, ze€D.

Actually, this system leads us to a particular case of a sequence of linear and positive
operators of discrete type which, in time, has been investigated in many papers. For
any f € C(D) it defines the operators
(6) (taf)x) = Y dui(@)f(ang), €D, neEN

k€A,

Under our assumptions we have l,ey(z) = 1, (le;)(z) = z and (l,ex)(z) = z* +
1/}3((—1). Consequently, by using the well-known theorem of Bohman-Korovkin it follows
tltlta? lim (I, f)(z) = f(x) uniformly on each compact K C D, for all f € C(D).

W: ;.:t recall the best known and intensively studied operators given by particular

cases of the systems (5).
1° (Bernstein operators) by, : <[U, 1],{0,1,...,n}, g, (:) zF(1 — )" F e - ez,el>,

(@)=Y ()7 (5)=a-ar

k=0

5 . k —-nT (nz)k
2° (Favard-Szasz-Mirakjan operators) s, : ( [0,00), Ny, —, e j€1,€1 ),
n

k!
ie.
sa(f)(z) = e'mz f( )
3° (Baskakov operators) v, : <[0 00), N(;,,:_il (n ) (14z)™ ke + 32,€1>,
le.

vﬂ<f)(:c):=k_0(”+’° l)f() i aH

4° (Stancu operators)

dée) <[0, 1,{0,1,...,n}, g (:) W (2, @); (na+ 1) (e — e2), (1 + a)el>
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where
k-1 n—k-1

(z + i) H (1-z+ja)
i=0 j=0
(1+a)(l+2a)...(1+ (n—1)a)’
« being a real parameter which may depend on the natural number n. It turns out

8@ =3 ()7 (£) stz

k=0
If 0< @ = a(n)— 0, n = oo, then the sequence converges to the identity operator.

Wa(z, a) =

that

As a particular case we have d) = b,. Also, if @ = —1 /n then this operator becomes
the Lagrange interpolation operator corresponding to the equally spaced nodes k/n.

In what follows we use two sequences of operators of the type (6), namely
l(l <[0 1] Imzn ks nk( ) "»bl,mui> (ﬂ, k-) € N x Im T e [U, 1],

(2) ([0 665 Ty B s g (B); ifiz,n,ug), (n,k) e Nx J,, z€][0,00),
such that 0 € I, N J, and z, o = 0. Regarding these sequences we impose the following
admissibility condition to be satisfied: for any n € N, a function ¢, € C([0, 00)) exists

such that

(7) Tnpth2p(T) = ua(p) Tir((i)), PEL, z20

If this condition is fulfilled then the pair (! (l) (2)) will be called compatible approx-

imation processes.
Let .S be a set of indexes. For every f.€ S we will fix a function ws € C([0, 00)) such
that lim wg(z)e,(z) is finite and wy(z) > 0 for z > 0. By using this weighted function
I—00

wg we introduce the space
Cuy = {f € C([0,00)) : gl wp(z)|f(z)| < oo}.
Endowed with the natural order and the norm || - ||, defined by
£ llws = llwafll, f € Cuy,

the space becomes a Banach lattice. Clearly, the test functions e;, j € {0,1,2}, belong

to C,, and taking into account the properties of ws one has

I/ llws < llwsllllfl, for every f € Ca([0, 00)).
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Using this net of weights w = (wg)ges we set
Ce= | Clos
pes

which becomes a vector subspace of C([0, 00)).

Finally we consider a function A € C([0,00)) such that 0 < A(z) < 1 for every z > 0.
Now we are able to present the announced sequence of operators
8)  (Lapf)(z)= Z Z MA@t (@) f (TnpTpk + (1 = Znp)z), 20,

pElL ked,

where f € C,,.

Considering the function f, , : [0,00) = R defined by

(9) fﬂ,p,r( ) = (“':n.pt +(1 xn,p)m) (t>0)

for fixed z > 0, n € N and p € I, we can describe of the operators L, ,, n € N, in
terms of the [512) operators as follows
(10) Lo N@) = AupA@) (G fapa) (@), =20,

peln

If 0 € [, then léE) denotes the identity operator on C,,.

We are going to present two examples.

Example A. Let S = (0,00). For any f € S we consider the weighted function wg,
wp(z) = exp(—pz). We choose 1) = b, and I{? = s, the Bernstein and the Favard-
Szasz-Mirakjan operator of order n, respectively. Plainly we obtain u;(n) =n, n € N,
ua(p) = p, p € Ny, ¥a,(z) = 2, 2 > 0, and ¥n(z) = z, £ > 0. Thus, condition (7) is
fulfilled. Tt turns out that

(Ln,)«f){z) = (Mn,)\f)(m) =

S5 () -ty (24 (-2)2).

Il

p=0 k=0
where f € Ey 1= U{q € C([0,00)) : supexp(—pz)|f(z)| < oo}. If A = eq, then My, .,
A>0 =20

becomes the n'* Favard-Szasz-Mirakjan operator s,. The M,, ) operator was introduced
by F. Altomare and I. Carbone and studied in several papers (2], [4], [6].
Example B. Let S = {2,3,4,...}. For any m € S we consider the function wy,,

wr(z) = (1 +2™)~". Now we choose 1) = b, and I = v, the Bernstein and the
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Baskakov operator of n'* order. We have u(n) = n, n € N, us(p) = p, p € Ny,
Yy p(z) = 24127, £ > 0, and consequently 1,[7,,(3:) = z+12?% z > 0. Again the compatible

condition (7) is verified and we obtain

(Lnaf)(@) = (Byaf)(z) =

()R () () (-2

p=0 k=0

where f € | ) Ep, By = {g € C([0,00)) : sup ~——"- @l oo}. Clearly B, is the

e z>0 1+ 2™

n* Baskakov operator. The B, » operator was introduced and studied by F. Altomare

and E.M. Mangino [5].

3. PROPERTIES OF THE SEQUENGCE (Ln»)u>1

At first we will emphasize the convergence of our sequence and we will also give

estimates of the rate of convergence.

Theorem 1. Let the operator Ly be defined by (8). The following identities hold
true:

(i) Loae; = €;, j € {0,1},

(#) Lopes = e + Mb"
where P, is mtmduced by (7).

Proof. (i) Since the sequences (l,(f))nzl, j € {1,2}, are of the type described by (5),
they verify both condition (1) and (2). Thus

Ly peo)(z) = Z z Anp(A(z)) »U'p, Z An .p "5)) =1

pEln keJy pel,
and
(Lure))(@) = D Mg A@)np Y k(@20 + Y Thnp(A(@)) (1=2n ) Y tpa(a) =
pElL keJp PEl kedp

= 2(le1)(A(z)) + 2((e0) \)) ~ (Ver)A@)} = 2.
(ii) Following the same motivation as in the previous point and taking conditions

(3) and (7) into account we can write successively

(Lnae2)(z)= Z Anp(A (E))I:,p Z Hpk (E)mﬁ,#?ﬁ { Z Anp(A(2))Zn,p Z Hp k(Z)Tp—

PEl kedy PElL keldp
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= Z /\n,p(’\ n,p Z ﬂpk z):‘gpk} + Z Anp(A 33)) zn,p Z o k(T

pEln . keJdp p€ln kedy
PR (+ 220 a2 0@) - (Pen) e} +
1271~ 200 e) @) + (e ()} =27 (3e) + 2Bl
* 2 hldene (()) (3@ - vy - el

Pin(A (ﬁ))) ()
m() ) =% Ty
Remarks. (i) Every operator L,y maps continuously Cs([0, 00)) into itself. Indeed,
for f € Cp([0,00)) and z > 0,
[(Laaf)(z)] < Z Anp(A(7)) Z Hp(z "f" =|I71l-

peln keJyp

(1—2)\3:)+/\2()+

Moreover, Ly eq = €q, hence ||Ln|lcq(i0,00)) = 1-
(ii) Let 7,(Ly », ) be the r** central moment of Ly ,, defined by

Te(Lap, T) = Loa((er — zep)", ), 7€ Np.

Theorem 1 implies

AMz)a(z
(11) 7(Lpp,z) =0 and 7p(Lny,z) = —(u),q(pn—)()
Theorem 1 together with the theorem of Bohman-Korovkin allow us to state
Theorem 2. Let the operator L, 5 be defined by (8) and a,b real numbers such that
0<a<bh._
If lim e ; = 0 uniformly on [a,b] then Iim (Ln A)(2) = f(z) uniformly on [a,b].
Byn vf:t::é(of the classical results regardmg the rate of convergence (see for example
3], Theorem 5.1.2) Theorem 1 leads us to the following result.

Theorem 3. Let the operator Ly be defined by (8).
() I 1 € Cal(0,00)) then |(Lunf)(&) - @] S [ 145 M(—)) n(f;3), for

every z > 0 and d > 0.
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(i) If f is differentiable on [0,00) and f' € Cp([0,00)) then one has

o Ma)in(z) [, 1 [Mz)n(z) "
[(Lapf)(z) = f(2)] < W (1 + 5 W)_) wi(f';6),

Sfor everyx > 0 and & > 0.
Remark. In particular, for § := (,(z)/ui(n))"/? the above statements become

(under the same assumptions on the function f)

|(Lapf)(z) = fz)] < (1 3 \/)@) - (f; z!)n(z)) |

uy(n)

respectively

Aa)i(2) 1 [ Pn@)
(Lapf)(a) — F(@)] < —ma*@+¢WﬂM(ﬁJmm)'

In order to give another type of local and global estimates of the approximation

error we need to introduce the weighted K-functional of second order for f € C([0, 00))
defined by
Kay(fit) = A oo (I =91l + teq"ll), t>o,
where g’ € AC,([0,00)) means that g is differentiable and g’ is absolutely continous
in every compact [a, b] C [0, 00).
Let z > 0 be fixed and g : [0,00) = R be arbitrary such that ¢' € AC},([0,00)).

Starting from Taylor’s expansion
o) = 9(a) + @)=+ [ SO0, w20,
and knowing that L, ) reproduces linear functions, we have
(L)) =3(6) = o ([ 0cn = Ytz ).

We consider ¢ : [0,00) = R an admissible step weighted function such that ? is

€1

€0

concave. For every ¢t = (1 — n)u + nz, 7 € [0, 1], we get
©*(t) = ¢*((1 = n)u+792) 2 (1~ n)p*(u) + np’(z) 2 ne*(z)
and consequently

lt—ul _nlz—v| _ |z—ul
e t) M) T @iz)
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It turns out that

‘It - L
dt| <
fz w*(t)
= () ©*(z)
Applying the linear and positive operator Ly, we have

Loa ([ 0= 0itz) < g1 2ons?,

€

L “ 0w t)dt‘ < 19

< i’y

and further
|(Lupf) (@) = f(2)] < |Laa(f — 9,2)] + 9(2) = f(2)] + |(Lapg)(z) = 9(z)] <

<2)f - gl + g 22 Bt ]

Now we take the infimum over all g with g’ € ACj,.([0, 00)) and we get

(Easf)(a) - 10)) < 21 1, 2ms2))

On the other hand it is well-known that K, ,(f,t?) functional and Ditzian-Totik

modulus of smoothness of second order ws ,(f;t)o are equivalent [7]). We recall

wap(fit)eo = sup  sup - |f(z — p(z)h) — 2f(z) + f(z + @(z)h)].

0<h<t sthyp(c)>0

With the help of (11), by using the above results we get the following pointwise
approximation.
Theorem 4. Let L, be defined by (8). If ¢ : [0,00) = R is an admissible step

weight function with ¢* concave then

!(Ln,Af)(I) - f(‘r)l < 2Ky, (f ul(n)fpz :E))

and

A ot < o[ 5L [ME)(2)
[(Lupf)(z) = f(z)] < Coway f'(p(a:) ui(n) )

hold true for every x > 0. Here C,, is a constant independent of f and n.
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Remark. On the light of this theorem for every a € (0,2] we have the following

implication

i ~ a/2
o3 oo = O(E)(t = 0%) = |(Lon ) (&) - £(3)] < C, (%—)) far—o0).

Returning to Example A, for Altomare’s operator Anx we can choose ¢(z) = /z,
z > 0, and we are able to infer

M) ) |

n

(A 1)(@) - F(@)] < 2K,y (f,

and
(A 1)(z) = £(2)| < Cptny (£iVAGITE) |, 220

Because A < 1 and wyy(f;")eo is an increasing function, we reobtain the global

estimation due to Altomare, (see [2], Theorem 2.2.(4))
lAnaf = fI| < Cownlf; ”-1/2)00-

Unfortunately, this theorem cannot be applied for Example B because in this case
the step weight function ¢?*(z) = 2? + z is not concave.

Further on, we study the particular case A(z) = ¢ (c - constant), > 0. As it will
turn out below, under some additional conditions, our operators Ly, . leave invariant the
classes of monotone functions as well as of convex and Lipschitz continuous functions.

First of all we recall that a function A : I — R is said to be Lipschitz continuous of

order p, i € (0,1], if there exists a constant A > 0 such that
|h(z) — h(y)| < Alz —yl*, (V) (z,y) € I x 1I.

In this case we will write h € Lipp(I) or simply h € Lipp.

Now we can state and prove the following result.

Theorem 5. Let L, ; be defined by (8), where ¢ € [0,1] is @ constant. Also we assume
that the hypotheses of Theorem 1 are fulfilled.

(i) The function f is increasing if and only if L, .f is increasing for each n € N.

(ti) If the operator i preserves the convezity for anyn € N, then f is convez if and

only if Ly . f is convez for each n € N.
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(iii) If f € Lipap and 1 fope € Lipampt for every (n,p) € N x I then

Lucf € Lipanps where A" = A+ Z Anp(c)A (n, p).

pEln

The function f,p5 is defined by (9).

Proof. (i) We consider an increasing function f. Let n € N, z > 0, y > 0 be
fixed such that z < y. From (9) it is clear that f,,z < fapy and £ Tope B 1% Frisw
for every p € I,. We have used the fact that l},z}, being linear and positive, is mono-
tone. Simultaneously, the function f, . is increasing and by using (10) we can deduce
successively

(Ln cf Z )‘ ,p l fn,p, Z ’\ ,P l fﬂ,ﬂ:ﬂ) (:E)

pEl, peln

< Z An p((') fn.p,y = (Ln,cf)(v),

pEln
in other words Ly .f is increasing. We have also used the positivity of the functions

Aups (n,p) ENX L.
Under the hypothesis that Ly, .f is increasing for every n natural, the converse im-

plication follows by using Theorem 2.

We point out that for the operators A, (Example A) a similar result was obtained
by Ingrid Carbone, see [6] Proposition 2.2.
(ii) The proof of this statement follows the same steps like those established in the

proof of Theorem 2.3 in [6], so we omit it.

(iii) By using (10) we have

](Ln,cf)(y) - (Ln,cf)(m)l < Z )‘n,p(c)“l;(az}fn,p.y(y) = l;(?)fn.p,y(x)l‘i'

pEl,

+!li(lz)fﬂ-my($) - l)gz)fn,p,:c(x)l}'
On the other hand, since f € Lipsp and z,, € [0,1] for every (n,p) € N x I,, we

have

l(l;(f)fn,p.y - l;(zz)fn,p.m)(m)l < Z P (Z) f (ZnpTp + (1 = ‘Tﬂsﬂ)y)_

kedp

—f(@npTps + (L — Tnp)z| < Z Hp(2) Al = zppl*ly — z|* < Aly — |,
kedy
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By using the above inequalities and knowing that 11(12) Japy € Lipa(npp we obtain

|(Ln,cf)(y) = (Ln,cf)(:r)l < (Z )\n,p(c)Ar(n:p) + A) |y - z|¥,

pEl,
and the conclusion follows.

Remark. We return to the Examples A4, B. It is known that both Favard-Szasz and
Baskakov operators preserve Lipschitz constants. By using probabilistic tools, more
exactly the splitting property of a random vector, M.K. Khan and M.A. Peters [8]
have obtained very elegantly the mentioned results. We have: if f € Lip,p then f, . €
Lipgep ,p Taking all these facts into account, both for Example A and B we obtain

A=A+ A (1) - o/ = A+ ()0
=0
This way, for Example A we reobtain Theorem 3.3 in [6].

4, AN ASYMPTOTIC FORMULA

The aim of this section is to establish a Voronovskaja-type formula. This result
represents the answer in a certain direction regarding to the speed with which L, , f
tends to f. Based on the approach of P.C. Sikkema ([9], page 328) we will denote by
H®([0,00),£) the set of all real functions f which are defined on [0,00) and possess
the following three properties:

(i) f is two times differentiable at = = £ > 0,

(ii) f is bounded on every subinterval [a,b] C [0, cc),

(iii) f(z) = O(z?), z — oo. .

Our operator L, , is well defined for every f € H®)([0,00),£). Let all the operators
Ly 5 be applicable to (e; —£)® and to (e;—£)*. In addition, we assume that the following
further requirements are fulfilled. :

In relation (7) we can separate n from z; so the functions % and @, exist such that
(12) () Jur (n) = P(z)/q(n), forevery z>0,

and

(13) (L, €) = 0 ( ) (n = co).

1
U (ﬂ)
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Since f € H®)([0,00),£) we can write for every ¢ > 0

b)) se=s©+e-0r©+ S e +e-erre-o),

where r is bounded on the domain and ]il’[{l) r(u) = 0. Taking r(0) = 0, it becomes
u—

contimious at u = 0. Consequently for every £ > 0 there exists 7. > 0 such that
|r(t = €)| < € for each t € R with |t — £| < 7.

From the boundedness of r it follows that there exists a constant M > 0 such that

lr(t — &)| < M for all L. Using the above relations we can write
(15) Ir(t = €)| < e+ Msgy, (1), teR,

where s¢; (1) = 0if |t — £| < 7. and s¢,, (8) = 1if |t — | > 7. Since Ly, , is a linear
and positive operator, the identity (14) implies
(Ln,)\f)(f) f{E) n ,\Eu) (E) + ff f)'rl( nAy )+
) s, 8+ Laal(c — €97~ 80,8),

2
and by using (11), (12), (15) we get

(Enrf)O) = 160 = 1" ONO 4 DD 1 g1 (- ),

The last term is non zero for those real ¢ satisfying |t — £| > 7. which implies

1 < (t — €)*n;*. The monotonicity of L, , together with (13) gnarantees that

MLn,)«((' - E)Esﬁ,ns?’f) < MT}E_QLH,A((' - 5)41 E) = M'o (ﬁltn)) (n - OO))

where M’ is a constant. We have obtained

(Lnr£)(€) = 1(€) = 51 (OXO @) (E)w(a) (

”1:”)) ¥ ok

where £ > 0 is arbitrary.

This relation leads us to the following result.

Theorem 6. Let L, be defined by (8) such that the assumptions (12) and (13)
hold. If f € H®([0,00),&) then one has

i T (0) (Lo f)(€) — €)= 37" ONEHE).
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Remark. For the Altomare’s operators My 5, By, y we identify (z) = z, @ (n) =n
respectively ¥(z) = z? + z, @ (n) = n where z > 0 and n € N. Actually, for these

operators the authors have established the asymptotic behavior of the remainders as

follows
(i) ,}l{n n((Maaf)(z) — f(z)) = %(m)f"(:c) uniformly on [0, 00), for every

[ € BN C*([0,00)) such that f” is bounded and uniformly continuous on [0, 0), see
2, Eq.(3.7)]. .

(i) lim (Do f)(a) — £(2)) = ZEH 1N
m > 3, where f € C*([0,00)) such that f* € Cp([0,00)), see [4, Eq.(5.1)].

We conclude this paper by noticing that this stage of the research opens new per-

f"(z) in E3 and hence in E,, for every

spectives of investigation. Theorem 6 can help to solve a generation problem for a
certain differential operator. For a given function o € C([0, 00)), the problem consists
in constructing a sequence (Ly)n> of linear and positive operators defined on a Banach

space B verifying the condition
lim n(Lp,f — f) = af" in B,
00

for every function f defined on a subspace F C BN C?([0,00)) such that af” € B.

For more details on this problem [1] is a valuable work that we quote.

Final remark. Thanks to Prof. Altomare I have been able to get a copy of the pa-
per "Some remarks on a general construction of approximation processes” by Lorenzo
D’Ambrosio and Elisabetta Mangino, submitted by the authors for the same Proceed-
ings.

In their article they start with an arbitrary positive approximation process and they
consider its modification by using the Altomare type transformation. In some concerns,
these new operators include my operators as a particular case but on the other hand
the authors consider only particular knots rather than general knots as found in the
present paper. Comparing the papers, the reader can .conclude that the results are
different because of the different situations.

Acknowledgement. The seeds of this paper have germinated during my 2-week
teaching mobility at the University of Bari in April 2000 under the guidance of Prof.
F. Altomare. I use this opportunity to thank him again for his generous help, as well

as for his critical reading of the manuscript.
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