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Abstract

Based on the probabilistic theory, the paper contains local es-
timates of the rate of convergence for a contraction Co-semigroup.
Simultaneously a class of linear positive operators of Feller-Stancu
type is introdiced, and the local and global rate of convergence for

continuous functions is studied.
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1 Introduction

Probabilistic methods have proved quite useful in the theory of approxi-
mation operators. The purpose of this note is twofold. T he first part is
concerned with Cop-semigroup of linear contractions, named (7T'(¢));>¢. Mo-
tivated by the results of P.L. Butzer and L. Hahn [4], we present a large
class of representation formulae in semigroup theory with the emphasis
upon rates of convergence. The basic aspect is that the order of approx-
imation is expressed in terms of the second modulus of smoothness. Qur
estimations are valid in the pointwise sense for each ¢ > 0 and hold uni-
formly in any compact t-interval [0.T]. The probabilistic concepts have the
advantage of supplying short proofs.

The last section is devoted to the creation of an approximation pro-
cess (An)n>1 by manipulating sequences of independent random variables.
Establishing the behaviour of our operators for the test functions of Ko-
rovliin type, we indicate the rate of convergence in the space of continuous
function C(I), I C R. Sufficient conditions are provided to guarantee that
nan;lo |Anh — h|lo = 0 for every h € C(I), where Il l|loc Tepresents the usual
Sup-norm.
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2 The order of approximation for a contraction
Co-semigroup

For the convenience of the reader we briefly recall the basic elements of the.
theory of Cg-semigroups. Let £ be a.real Banach space and £,(£) be the
space of all bounded linear operators from £ into £ endowed with the norm
|| - || defined by ||S|| = sup ||Sf||, where f belongs to £.

i<t

A one-parameler semigroup of bounded linear operators on £ is a family
(T(t))i>0 of elements of £4(£) such that

() T(0) =1Ig, (i) T(s+1t)=T(s)T(t) for every s;¢t >0, (1)

where I¢ denotes the identity operator on £.
A semigroup (T'(t))s>c on € is said to be strongly continuous if for every
to > 0 and f € £ one has

- (T f = T(to) ]| = 0. (2)

Taking into account the second property in (1), relation (2) holds if
and only if tirg+ |T@)f—fll=0 f(fr every f € £. A strongly continuous
semigroup is -also called a Cy-semigroup.

A contraction Cy-semigroup is a Co-semigroup (T'(t));>o of linear con-
tractions, which means that ||T(t)|| < 1 for every t > 0.

As usual we denote the infinitesimal generator of the semigroup (T'(£)) >0
by A. This linear operator is defined on the linear subspace D(A4) :={f €
£| there exists tﬁr& (T(t)f — f)t~ € £} as follows

Af == lim Tie S for every f € D(A). (3)
t—0F %
Note that if the semigroup (T'(t))i>o verifies gl_i,r& IT(t) — Ig]| = 0 then
D(A) = £ and A is bounded. More details about this rich mathematical
theory can be found e.g.; in the monograph [2; Chapter 1, §1.6] or in [6;
pages 36-47).

On the other hand, throughout the paper let (2,4, P) be an arbitrary
probability space with distribution function Fz of the random variable
Z € R%, defined by Fz(z) = P({w € @ : Z(w) < z}) for every z €
R. Furthermore, let (X;)icn be a sequence of non-negative independent
random variables and ¢ a positive normalizing function,

¢:N— Ry, w(n):o(l) (n — 00), (4:
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o being the Landau symbol.. Many of the limit theorems of probability
theory may be formulated as theorems concerning the ronvergence of §he
- normalized sum -

Un == p(n)S,, where S, = ZX;. (5)

=1

In what follows, let £(X;) and Viar(X;) be the expectation respectively
the variance of the variable X;, i € V.

Remark. If (T'(t))1>0 is a Co-semigroup then T(Z)f is strongly measur-
able for any non-negative random variable Z. Since

J1ir@siar < [ifiap =71, see,
2 Q

by contractiveness, T'(Z) f is integrable and E[T(Z)f] is well defined.

As a first step we establish a Jackson-type inequality.

THEOREM 1. Let (X;)ien be a sequence of non-negative independent
random variables with E(X;) =t € [0, c0) and Var(X;) == v?, < oo,
t€N. Let (T(t))i>0 be a contraction Cy-semigroup. For every f belonging
to D(A?%) and t > 0 one has

BT (Un) 1=T(0) 7]| < [np(n) ~1{||T() £l +n? (m) (tz + %Z) 14 11
=1
where Un, n € N, are defined by (5).

Proof. We consider (Y;);cn asecond sequence of independent identically
distributed random variable, distributed as X', ie., Fy, = Fyt, i € N,
where X" is a random variable with distribution F* xt = €. We recall that
€y represents the unit mass defined by £,(B) = 1 for ¢ € B and &(B) =0
fort ¢ B (teQ,'B e A.

it —1 n
Further on, we define V,, := ZY} and Ry ;o= ZXwa- Z Y;,neN,
2 =1 g=1 J=i+1
1 <2< n, with the convention X, = Yoii =0,
For every f € D(A?) := {h| h € D(A) and Ah ¢ D(A)} we get

n

Z[T(GO(”)(Rn,i+Xf))f—T(80(n)(Rn.H-Ye))f] = T(p(n)Sn) =T (p(n)V,,) £.

i=1

Since ©(n)V, has the distribution no(n)es, clearly -

E[T(p(r)V2) f] = np(n) E[T(X) f] = np(n)T(t) f (6)
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and applying the cperator F to identity (6) we obtain

E[T(p(r)Sn) fl-np(n)T(t) f = ZE (@(m) (R i+ X)) [=T (p(n) (Bn,i+Y:)) ]

In accordance with Butzer and Berens result [3; page 11], if f belongs
to D(A?) then for every s > 0 one has

i 1
T(s)f=f+sAf+ Szf (1 — u)T (us) A% fdu.
¢}
Substituting f € D(A?) by T(s1) f € D(A?), 51 > 0, this yields

T(s1+s)f=T(s1) f+3T(sl)Af+32 [)1(1 » u)T (51 4+ us) A% fdu. (8)

For every n € N and ! < i < n the random variables R, ;, X;, Y; ar
mdependent and consequently, for each f € £, T(R.;:)f, Xi, Y; have the
same property.

Choosing successively in (8) s = ¢(n)X;, s1 = @(n)R,; respectively
s = @(n)Y;, 81 = @(n)Ry,; and knowing that E(Y;) = E(X;) = ¢ for ever:

1 <4< p, we can write

E[T (¢(n)(Bn + Xi)) f1 = E[T(¢(n) (Bn,i + Yi)) f]

(n) [ (1= T (o) B + uXe)) AZFECXY)
T () (R 0¥ A B b 3= By X5 Y A7)

We totalize the above identities with respect to # and taking into accoun’
(6) we get

NEIT(0()Sa) fl — E[T(p(m)Va) fl = anaw(n),i(x,-,n;ﬁf)”'

=1

A Y EXD + BO2) [ (- w)du

1=1

()42 (nt2+ %Z) . @
=" -

We have used the contraction property of the semigroup as well as the
following ‘true relations implied by our assumptions

E(X2) = Var(X;) + B} (X)) = v}, + %, E(Y?) = E[(X")"]
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At the same time, based on (7) we get
LU 1= T@) £l

S NET(e(n)Sa) S = no(m)T(6) fl] + Ingp(n) — 1]||T(t) £,

and with the help of (9) we obtain the claimed result.

In order to evaluate the rate of convergence by using the second modulus
of smoothness of the semigronp, we take advantage that this modulus is
equivalent to the K-functional of Peetre [3; page 192, i.e. there exist
positive constants My, M such that for all f € £ and t > 0

Mywy(t, f) < K(#2, f;€,G) < Maws(t, f).
We recall

waty f) = sup ||(T(s) = Ie)*fIl, K (¢, f;€,G) = inf (||f - g +tlgl),
0<s<t : gEG

where G is any normal Banach subspace of (€, [}, which means that there

is a seminorm |- | on G which makes G become Banach space with respect
to the norm || -|lg = || - ||+ |- |. In our case G = D(A*) and we consider
K (e iinf - £2]| A%g|]).
(0= inf (17 = gl + 2] %))

Gathering the above facts, Theorem 1 allows us to state the main result
of this section.

THEOREM 2. Let (X;)ien be a sequence of non-negative independent
random variables with F(X;) =t € [0,00) and Var(X,) := 'IJ;‘?'!I <oc. i€ N.
Let (T'(t))i>0 be a contraction Co-semigroup. For all f € £ and | > 0 there
holds

WELL () 1] = TO 1] < Ingo(m) = 1T (@) /|

| PO
ni? s Z nf.t, j') ,
=1

where Uy, n € N, are defined by (5) and M is a constant independent of n,
and f. In particular, if X; are inde pendent identically distributed random

+Muw, (59(?1}

variables with Var(X;) :=v2. i € N, then

IET (e (n)S0) 1] = T F1] < Ing(n) = 1| T(t) S|

+1Uw-;(\/ﬁge(n)\/f? + u,?/i )
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Particular cases. (i) Under the general assumptions of Theorem 2 if we
consider ¢(n) =n~', n € N, then we reobtain a known result due to P.L.
Butzer and L. Hahn, see [4; Theorem I].

(ii) If we require nll}ngo n@(n) = 1, then we get an approximation process °
in the Banach space £, in other words we have

lim ||E[T(p(n)Sn) 1 -T(&)J| =0, fEeE.

n—+0o

3 An extension of Feller type

To define the Feller operator, let (X n)n>1 be a sequence of random variables
having the distribution function Fj; . with the expectation E(X,) = z and
the variance ¢2(z) where z is a real continuous parameter. For a function
feC(R ) we deﬁne the linear opera,tor

(af)(a) = BLF (X)) = [ OEL@®) i B <oo. (@)

An important step for constructing operators useful in the theory of
uniform approximation of continpous functions was made by D.D. Stancu
[7] who considered X,, n € N, independent and identically distributed
random variables with the mean = and the variance o?(z), where the pa-
rameter = takes values in an interval I, possibly unbounded If S, is defined
by (5) then (10) is equwa,lent to

(Laf)(@) = Bl (So/m) = [ £ () dFrc), ©)

where F), . is the distribution function of 9.

By Stancu’s method one derives the well-known operators of Bernstein,
Mirakjan-Favard-Szasz, Baskakov, Weierstrass, a variant of Meyer-Konig
and Zeller operators. We should remark that in the same paper, the author
considered an example of random variables which are not independent and
based .on Markov-Pélya urn scheme, he studied an operator of discrete type
which it is known in literature as Stancu operator.

In what follows, let {X,; : 7 = 1,2,...,n; n € N} be a trian-
gular array of independent random variables such that for each fixed n,
X1, Xiiaye s oy Aidz dre identica,[ly distributed with E(X, ;) = e,(z) and
finite variance Var(X,;) = of(z) > 0,j =1T,n, wherez € I C Risa
parameter. We also consider {A,; : j =1,2,...,n; n € N} a triangular
array of positive numbers. With these elements we construct the following
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sequeince of operators given by

(Anh)(z) = E[h(Z,)] = /

R

h( ( Z Anj)u)dEy . (u), b€ L, (10)
i=1

n
where Z, = Z’\"v-fX”J’ For is the distribution function of Zy and L
=1
stands for theilomajn of A, containing the set of all well-defined measurable
functions on R for which the right-hand side in (11) makes sense, in other
words E[h(Z,)] < co. Obviously £ includes all real-measurable bounded
functions on R. X
Remark. To specialize (12), for every n > 1 we choose Agd =% Ay 5 ==
<= App i= @(n). In concordance with (5) one has Z, = U, and (An)n>1
becomes a sequence introduced and studied by Mohammad Kazim Khan
[5]. Furthermore, if Anmind 2 1,m, dre identically distributed for all n,
en() = 2, 02(z) = a2(z) > 0 and ¢(n) = n~! then A, reduces to the
Feller operator presented in (11). '
Setting m; for the j-th monomial, m;(t) =t,tel, je Ny:= Nu{0},
by simple computations we obtain
LEMMA 1. The operators An,n € N, defined by (12) verify

n
A'n.mO = My, Anml = (Z An,j)ena
=1

Apmy = (i )\i!j)ai + (i )\n,j) 263“
J=i J=1

and consequently the central moment of second order H2(An, ) is given by

pia(Ay, ) = ((i,\,,__j)fﬂ(.r) -;L-)2+ (ij)\iij)ag(m), zel. (1)
j=1

J=1

The main goal of this section is to obtain the rate of convergence of
(12) for continuous functions. In this aim we involve the first modulus of
smoothness. w (h, ) associated to any bounded function h. We ennunciate
the following

THEOREM 3. Let the operators Apyn € N, be defined by (12). Then for

every h € C(I) and o > 0 holds true

[(Anh)(z) = A(2)] < (1 + n* iz (A, 2))eor (hy n=>/?) 2 € 1, (12)

where p13(A,,, 2) is given at (13).
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rroof. Among the well-known properties of wy (h,-) we recall that for
every 6 > 0, |h(t) — h(z)] < (1+5‘2(t—.1:)2)w1(h 8), (t,z) € I X I, see e.g.
[2; Chapter 5, §1) or [1; Section 1.9). With the help of both this mcquahtv
and Lemma 1 we get

|(Anh)(2) = h(2)| < E[Ih(Zn) - h(z)l]

< (14 67E[(Z = ) )r (5,8) = (1+ 6 2psn (A 2))eor (b, ).

By taking § = n~%/2 the result follows.
Examining (14) we deduce easily
Corollary. Let A\,,n € N be as defined by (12) If there exists ag > 0

with the properties

(35 hus)en(@) = 2 = oa™%) (n o0,

(i Ai,j)ai(m) =o(n"") (n — o0),

\

then lim [[Anh — hl|lee = 0, for every h € C(I).

In the particular case Z,, = U, (see (5)) the requirements (15) can be re-
stated nip(n)en(z) ~z = o(n~20/%) (n — 00) and /() (z) = o(n—/?)
(n — o0), where o,(z) is the standard deviation of X, ;. Furthermore,
choosing ¢(n) = n~!, for @y = 1 we reobtain the classical result regarding

the Feller operators.
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