Fixed Point Theorems for Decomposable Multi-Valued Maps and Applications

R. Precup

Abstract

We present fixed point theorems for weakly sequentially upper semicontinuous decomposable non-convex-valued maps. They are based on an extension of the Arino-Gautier-Penot Fixed Point Theorem for weakly sequentially upper semicontinuous maps with convex values. Applications are given to abstract operator inclusions in L^{p} spaces. An example is included to illustrate the theory. Keywords: Multi-valued map, operator inclusion, functional-differential inclusion, fixed point, continuation principle, measure of non-compactness, weak topology

AMS subject classification: Primary 54H25, secondary 47H10, 47J35

1. Introduction

Various types of boundary value problems for differential inclusions, integrodifferential inclusions or, more generally, functional-differential inclusions can be equivalently reformulated as operator inclusions of the form

$$
\begin{equation*}
u \in \Psi \Phi u \tag{1.1}
\end{equation*}
$$

in an appropriate space of functions, where by $\Psi \Phi$ we mean the composition $\Psi \circ \Phi$. Most frequently Ψ is an "integral type" map, the inverse of a differential operator, while Φ is a multi-valued map associated with the right-hand side of the functional-differential inclusion.

For the theory of differential inclusions and its applications we refer the reader to the books of Deimling [9], Górniewicz [12], Hu and Papageorgiou [14, 15] and Kamenskii, Obukhovskii and Zecca [16].

[^0] Romania; r.precup@math.ubbcluj.ro

Using a fixed point approach to problem (1.1), we may first try to apply fixed point theorems to the composite multi-valued map $\mathcal{F}=\Psi \Phi$. Several difficulties arise when treating such multi-valued compositions this way. One of them consists in guaranteeing continuity properties for the maps; another one concerns the geometric properties of their values. For example, even if the values of Φ are convex and Ψ is single-valued (but nonlinear), the values of $\mathcal{F}=\Psi \Phi$ can be non-convex. In this connection we may think to use fixed point theorems for non-convex-valued maps, for example, the EilenbergMontgomery Theorem (see Couchouron and Precup [5, 6]). However, it is expectable that one can take advantage from the representation of \mathcal{F} as $\Psi \Phi$. Several authors have done this under various aspects (see Andres and Bader [1], Bader [3] and Górniewicz [12]). The main purpose of the present paper is to develop a fixed point theory for maps which are decomposable into $\Psi \Phi$, with both Φ and Ψ convex-valued maps between Banach spaces. We shall succeed this by considering the Cartezian product map

$$
\Pi(x, y)=\Psi y \times \Phi x
$$

whose values are convex in the corresponding product space $X \times Y$ endowed with the weak topologies on X and Y.

The abstract results established in this paper can be used to prove elementarily that the hypothesis of contractibility asked in Couchouron and Kamenskii [4] and that one of acyclicity from Couchouron and Precup [5, 6] are not necessary (for [4] this was previously shown by Bader [3] by means of a topological fixed-point index theory for decomposable maps, under a stronger compactness condition on $\Psi)$. In Section 3 the abstract continuation principle established in Section 2 is applied to discuss operator inclusions in L^{p} spaces, under general assumptions which were inspired by those in Couchouron and Kamenskii [4] and in Couchouron and Precup [5]. Finally, we present a simple example concerning functional-differential inclusions.

The main contributions of this paper are as follows:

1) A fixed point theory for non-convex-valued maps which can be represented as compositions of two convex-valued maps. This theory improves and extends the results from Couchouron and Kamenskii [4] and from Couchouron and Precup [5, 6]. Also, our theory represents a fixed point alternative to the index theory presented in Bader [3] under some more restrictive conditions (for example, in [3] only Φ is multi-valued).
2) A continuation principle accompanying the Arino-Gautier-Penot Fixed Point Theorem [2] for weakly sequentially upper semicontinuous maps.
3) Theorems of Mönch type for set-valued maps with conditions expressed with respect to the strong or the weak topology. These results complement those in Mönch [17], O'Regan [18] and in O'Regan and Precup [19].

For the remainder of this section we gather together some definitions and results which we will need in what follows.

For any Hausdorff topological space X we define

$$
\begin{aligned}
P_{f}(X) & =\{A \subset X: A \text { is non-empty, closed }\} \\
P_{k}(X) & =\{A \subset X: A \text { is non-empty, compact }\}
\end{aligned}
$$

If X is a closed convex subset of a Banach space, then we define

$$
\begin{aligned}
P_{f c}(X) & =\{A \subset X: A \text { is non-empty, closed, convex }\} \\
P_{k^{w} c}(X) & =\{A \subset X: A \text { is non-empty, weakly compact, convex }\}
\end{aligned}
$$

A multi-valued map $\Phi: X \rightarrow 2^{Y}$, where X and Y are Hausdorff topological spaces, is said to be upper semicontinuous if for every closed subset A of Y the set

$$
\Phi^{-}(A)=\{x \in X: A \cap \Phi x \neq \emptyset\}
$$

is closed in X.
Throughout this paper we shall consider multi-valued maps $\Phi: X \rightarrow 2^{Y}$ where X and Y are subsets of two Banach spaces. We shall use the following terminology:

- Φ is u.s.c. if Φ is upper semicontinuous with respect to the strong topologies of X and Y.
- Φ is w-u.s.c. if Φ is upper semicontinuous with respect to the weak topologies of X and Y.
- Φ is sequentially w-u.s.c. if for every weakly closed subset $A \subset Y$ the set $\Phi^{-}(A)$ is sequentially closed for the weak topology on X.
We recall the following two known fixed point theorems: Theorem 1.1 (Bohnen-blust-Karlin). If X is a Banach space, C is a non-empty compact convex subset of X and $\Phi: C \rightarrow P_{f c}(C)$ is u.s.c., then there exists an $x \in C$ with $x \in \Phi x$.

Theorem 1.2 (Arino-Gautier-Penot). If X is a Banach space (or, more generally, a metrizable locally convex linear topological space), C is a nonempty weakly compact convex subset of X and $\Phi: C \rightarrow P_{f c}(C)$ is sequentially w-u.s.c., then there exists an $x \in C$ with $x \in \Phi x$.

Notice that Theorem 1.2 is an immediate consequence of Ky Fan's Fixed Point Theorem (see Deimling [8: pp. $310-315]$) and of the following lemma (Arino, Gautier and Penot [2], O'Regan [18]) whose proof is based upon
the Eberlein-Šmulian Theorem (see Dunford and Schwartz [11: pp. 430]). Lemma 1.1. Let X, Y be Banach spaces (or, more generally, locally convex linear topological spaces, and X metrizable) and let C be a weakly compact subset of X. Then any sequentially w-u.s.c. map $\Phi: C \rightarrow 2^{Y}$ is w-u.s.c.

Remark 1.1. For a map $\Phi: C \rightarrow 2^{C}$ with C a compact subset of a Banach space, the notions of u.s.c., w-u.s.c. and sequentially w-u.s.c. are identical. Thus in Theorem 1.1Φ can be equivalently assumed to be sequentially w-u.s.c. So Theorem 1.2 appears as a generalization of Theorem 1.1.

Next we recall the definitions of measures of non-compactness and weak non-compactness. By a measure of non-compactness in a closed convex subset C of a Banach space X we mean a real function μ defined on the collection of all non-empty bounded subsets of C, such that

$$
\begin{aligned}
\mu(A) & =\mu(\overline{\operatorname{co}} A) \\
\mu(A)=0 & \Longleftrightarrow A \text { is relatively compact } \\
A \subset B & \Longrightarrow \mu(A) \leq \mu(B) .
\end{aligned}
$$

We shall denote by β_{X} the ball measure of non-compactness in X,

$$
\beta_{X}(A)=\inf \{\varepsilon>0: A \text { admits a finite cover by balls of radius } \varepsilon\} .
$$

By a measure of weak non-compactness in a closed convex subset C of a Banach space we mean a real function χ defined on the collection of all non-empty bounded subsets of C, such that

$$
\begin{aligned}
\chi(A) & =\chi(\overline{\mathrm{co}} A) \\
\chi(A)=0 & \Longleftrightarrow A \text { is relatively weakly compact } \\
A \subset B & \Longrightarrow \chi(A) \leq \chi(B) .
\end{aligned}
$$

For an example of a measure of weak non-compactness see De Blasi [7].
We conclude this section with two well-known compactness criteria in $L^{p}(0, T ; E)$ (see Guo, Lakshmikantham and Liu [13: pp. $\left.15-18\right]$ and Diestel, Ruess and Schachermayer [10], respectively). Here $0<T<\infty, p \in[1, \infty]$ and E is a Banach space with norm $|\cdot|_{E}$. For a function $u:[0, T] \rightarrow E$ we define the translation by $h(0<h<T)$ to be the function $\tau_{h} u:[0, T-h] \rightarrow E$ given by $\tau_{h} u(t)=u(t+h)$. Theorem 1.3. Let $p \in[1, \infty]$. Let $M \subset L^{p}(0, T ; E)$ be countable and assume that there exists a function $\nu \in L^{p}\left(0, T ; \mathbb{R}_{+}\right)$with $|u(t)|_{E} \leq \nu(t)$ a.e. on $[0, T]$, for all $u \in M$. In addition, assume that $M \subset$ $C([0, T] ; E)$ if $p=\infty$. Then M is relatively compact in $L^{p}(0, T ; E)$ if and only if
(i) $\sup _{u \in M}\left|\tau_{h} u-u\right|_{L^{p}(0, T-h ; E)} \rightarrow 0$ as $h \downarrow 0$
(ii) $M(t)=\{u(t): u \in M\}$ is relatively compact in E for a.e. $t \in[0, T]$.

Theorem 1.4. Let $p \in[1, \infty)$. Let $M \subset L^{p}(0, T ; E)$ be countable and assume that there exists a function $\nu \in L^{p}\left(0, T ; \mathbb{R}_{+}\right)$with $|u(t)|_{E} \leq \nu(t)$ a.e. on $[0, T]$, for all $u \in M$. If $M(t)$ is relatively compact in E for a.e. $t \in[0, T]$, then M is weakly relatively compact in $L^{p}(0, T ; E)$.
2. Fixed point theory First we give an extension of the Arino-Gautier-Penot Fixed Point Theorem [2] to decomposable non-convex-valued maps. Theorem 2.1. Let X and Y be Banach spaces (or, more generally, metrizable locally convex linear topological spaces), let A and B be non-empty weakly compact convex subsets of X and Y, respectively, and let

$$
\begin{aligned}
& \Phi: A \rightarrow P_{f c}(B) \\
& \Psi: B \rightarrow P_{f c}(A)
\end{aligned}
$$

be two multi-valued maps. Assume Φ and Ψ are sequentially w-u.s.c. Then there exists at least one $x \in A$ with $x \in \Psi \Phi x$ and, equivalently, there exists at least one $y \in B$ with $y \in \Phi \Psi y$.

Proof. Let $X \times Y$ be endowed with the product topology. In this way, $X \times Y$ is a Banach space (respectively, a metrizable locally convex linear topological space). Consider the multi-valued map acting in $X \times Y, \Pi: A \times B \rightarrow$ $P_{f c}(A \times B)$, given by

$$
\Pi(x, y)=\Psi y \times \Phi x
$$

We have that $A \times B$ is a weakly compact convex subset of $X \times Y$. In addition, Π is sequentially w-u.s.c. (see Kamenskii, Obukhovskii and Zecca [16: Theorem 1.2.12]). Thus we may apply the Arino-Gautier-Penot Fixed Point Theorem. Therefore, there exists a $(x, y) \in A \times B$ with $(x, y) \in \Pi(x, y)$. We have $x \in \Psi y$ and $y \in \Phi x$. Consequently, $x \in \Psi \Phi x$ and $y \in \Phi \Psi y$

Remark 2.1. The Arino-Gautier-Penot Theorem appears as a particular case of Theorem 2.1 , when $X=Y$, $A=B$ and Φ or Ψ is the identity map of A.

Theorem 2.2. Let X, Y be Banach spaces, let C be a closed convex subset of X, and let

$$
\begin{aligned}
& \Phi: C \rightarrow P_{k^{w} c}(Y) \\
& \Psi: \overline{c o} \Phi(C) \rightarrow P_{f c}(C)
\end{aligned}
$$

be two multi-valued maps. Assume that, for every weakly compact convex subset A of C, Φ and Ψ are sequentially $w-u . s . c$. on A and on $\overline{c o} \Phi(A)$, respectively. In addition, assume that there exists an $x_{0} \in C$ such that the condition

$$
\left.\begin{array}{r}
A \subset C \tag{2.1}\\
A=\overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(A))\right)
\end{array}\right\} \quad \Longrightarrow \quad A \text { is weakly compact }
$$

is satisfied. Then there exists at least one $x \in C$ with $\boldsymbol{x} \in \Psi \boldsymbol{\Psi} \boldsymbol{x}$.

Proof. Let \mathcal{M} be the collection of all non-empty closed convex subsets M of C with

$$
\overline{\boldsymbol{c o}}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(M))\right) \subset M
$$

Clearly, $C \in \mathcal{M}$ and $x_{0} \in M$ for every $M \in \mathcal{M}$. Moreover, it is easy to see that

$$
\begin{equation*}
M \in \mathcal{M} \quad \Longrightarrow \quad \overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(M))\right) \in \mathcal{M} \tag{2.2}
\end{equation*}
$$

Define the set

$$
A=\cap\{M: M \in \mathcal{M}\}
$$

We have $A \in \mathcal{M}$. Also, (2.2) implies

$$
A=\overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(A))\right)
$$

Then (2.1) guarantees that A is weakly compact. Now Theorem 2.1 applies to A and $B=\overline{c o} \Phi(A)$. Notice (see Kamenskii, Obukhovskii and Zecca [16: Theorem 1.1.7]) that $\Phi(A)$ is weakly compact since Φ is w-u.s.c. on A (from Lemma 1.1) and has weakly compact values. Then the Krein-Šmulian Theorem (Dunford and Schwartz [11: pp. 434]) implies that $\overline{c o} \Phi(A)$ is weakly compact

Remark 2.2. If in addition C is weakly compact, then condition (2.1) trivially holds and Theorem 2.2 becomes Theorem 2.1.

Theorem 2.2 yields in particular the following result for convex-valued self-maps of a closed convex subset of a Banach space (compare Theorem 4.3 in O'Regan [18] and Theorem 2.1 for single-valued maps in Mönch [17]), an alternative result to Theorem 3.1 in O'Regan and Precup [19]. Corollary 2.1. Let X be a Banach space, C a closed convex subset of X and $\Phi: C \rightarrow P_{k^{w} c}(C)$. Assume Φ is sequentially w-u.s.c. and that there is an $x_{0} \in C$ such that

$$
\left.\begin{array}{r}
A \subset C \tag{2.3}\\
A=\overline{\mathbf{c o}}\left(\left\{x_{0}\right\} \cup \mathbf{\Phi}(A)\right)
\end{array}\right\} \quad \Longrightarrow \quad A \text { is weakly compact. }
$$

Then there exists at least one $x \in C$ with $x \in \Phi x$.
Proof. We apply Theorem 2.2 to $Y=X$ and $\Psi=I_{X}$, the identity map of X. Note that
$\overline{\boldsymbol{c o}}\left(\left\{x_{0}\right\} \cup \Psi(\overline{\boldsymbol{c o}} \Phi(A))\right)=\overline{\boldsymbol{c o}}\left(\left\{x_{0}\right\} \cup \overline{c o} \Phi(A)\right)=\overline{\boldsymbol{c o}}\left(\left\{x_{0}\right\} \cup \Phi(A)\right) \boldsymbol{}$
and the assertion is proved
Remark 2.3. If in addition C is weakly compact, then condition (2.3) trivially holds and Corollary 2.1 becomes the Arino-Gautier-Penot Theorem.

Under a stronger condition than (2.1) and a weaker one on Φ, we have the following result. Theorem 2.3. Let
X and Y be Banach spaces, let C be a closed convex subset of X, and let

$$
\begin{aligned}
& \Phi: C \rightarrow P_{k^{w} c}(Y) \\
& \Psi: \overline{c o} \Phi(C) \rightarrow P_{f c}(C)
\end{aligned}
$$

be two multi-valued maps. Assume that, for every compact convex subset A of C, Φ and Ψ are sequentially $w-u . s . c$. on A and $\overline{c o} \Phi(A)$, respectively. In addition, assume that there exists an $x_{0} \in C$ such that the condition

$$
\left.\begin{array}{r}
A \subset C \tag{2.4}\\
A=\overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(A))\right)
\end{array}\right\} \quad \Longrightarrow \quad A \text { is compact }
$$

is satisfied. Then there exists at least one $x \in C$ with $\boldsymbol{x} \in \boldsymbol{\Psi} \boldsymbol{\Phi} \boldsymbol{x}$.

Next we present a fixed point theorem of Leray-Schauder type (a continuation principle) for decomposable non-convex-valued maps. Theorem 2.4. Let X and Y be $B a$ nach spaces, K a closed convex subset of X, U a convex relatively open subset of $K, x_{0} \in U$ and let

$$
\begin{aligned}
& \Phi: \bar{U} \rightarrow P_{k^{w} c}(Y) \\
& \Psi: \overline{c o} \Phi(\bar{U}) \rightarrow P_{f c}(K)
\end{aligned}
$$

be two multi-valued maps. Assume that, for every compact convex subset A of \bar{U}, Φ and Ψ are sequentially w-u.s.c. on A and $\overline{c o} \Phi(A)$, respectively. In addition, assume that the two conditions

$$
\left.\begin{array}{r}
A \subset \bar{U} \tag{2.5}\\
A \text { closed convex } \\
A \subset \overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(A))\right)
\end{array}\right\} \quad \Longrightarrow \quad A \text { is compact }
$$

and

$$
\begin{equation*}
x \notin(1-\lambda) x_{0}+\lambda \Psi \Phi x \quad \forall x \in \bar{U} \backslash U, \lambda \in(0,1) \tag{2.6}
\end{equation*}
$$

are satisfied. Then there exists at least one $x \in \bar{U}$ with $\boldsymbol{x} \in \boldsymbol{\Psi} \boldsymbol{\Phi} \boldsymbol{x}$.

Proof. If $U=K$, then $\bar{U} \backslash U=\emptyset$, so (2.6) is superfluous and the result follows from Theorem 2.3, where $C=K$. Assume $U \neq K$. Let

$$
C=\overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(\bar{U}))\right)
$$

It clear that $x_{0} \in C \subset K$ and C is closed convex. Since U is open in K, convex, and $x_{0} \in U$, we can define a single-valued operator $P: K \rightarrow \bar{U}$ by

$$
P x= \begin{cases}x & \text { if } x \in \bar{U} \\ (1-\lambda) x_{0}+\lambda x & \text { if } x \notin \bar{U}\end{cases}
$$

where $\lambda \in(0,1)$ is such that $(1-\lambda) x_{0}+\lambda x \in \bar{U} \backslash U$. Clearly, P is continuous.

Consider

$$
\begin{aligned}
\widehat{\Phi}: C \rightarrow P_{k^{w} c}(Y), & \widehat{\Phi} x & =\Phi P x & (x \in C) \\
\widehat{\Psi}: \overline{c o} \widehat{\Phi}(C) \rightarrow P_{f c}(C), & \widehat{\Psi} y & =\Psi y & (y \in \overline{c o} \widehat{\Phi}(C) .
\end{aligned}
$$

We first check that $\hat{\Phi}$ is sequentially w-u.s.c. on any compact convex subset A of C. Indeed, we can see that it suffices to prove this for compact convex sets A with $x_{0} \in A$. In this situation, $P(A)=A \cap \bar{U}$, so $P(A)$ is compact and convex. Now let $B \subset Y$ be weakly closed. We have to show that the set

$$
M=\{x \in A: \widehat{\boldsymbol{\Phi}} x \cap B \neq \emptyset\}
$$

is weakly sequentially closed. Assume $x_{k} \in A, \widehat{\Phi} x_{k} \cap B \neq$ \emptyset and $x_{k} \rightarrow x$ weakly. Since A is compact, there is a
subsequence $\left(x_{k^{\prime}}\right)$ of $\left(x_{k}\right)$ with $x_{k^{\prime}} \rightarrow x$ strongly. Then $P x_{k^{\prime}} \rightarrow P x$ strongly. Since $P(A)$ is compact convex, Φ is sequentially w-u.s.c. on $P(A)$. Consequently, the set

$$
N=\{y \in P(A): \Phi y \cap B \neq \emptyset\}
$$

is weakly sequentially closed. Since $P x_{k^{\prime}}$ belongs to N for all k^{\prime}, we have $P x \in N$, too. Thus $\Phi P x \cap B \neq \emptyset$ with $x \in A$. Therefore, $x \in M$ as desired. It is easy to see that $\widehat{\Psi}$ is sequentially w-u.s.c. on $\overline{c o} \widehat{\Phi}(A)$.

Next we show that (2.4) holds for the couple ($\widehat{\Phi}, \widehat{\Psi}$). Let $A \subset C$ be such that

$$
A=\overline{c o}\left(\left\{x_{0}\right\} \cup \widehat{\Psi}(\overline{c o} \widehat{\Phi}(A))\right)
$$

Clearly,

$$
A=\overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi P(A))\right)
$$

We have

$$
P(A)=A \cap \bar{U} \subset \overline{c o}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi P(A))\right)
$$

where $P(A)$ is a closed convex subset of \bar{U}. Then (2.5) guarantees that $P(A)$ is compact. Let $\left(x_{k}\right)$ be any sequence in A. Since $P(A)$ is compact, there exists a subsequence $\left(x_{k^{\prime}}\right)$ of (x_{k}) with $P x_{k^{\prime}} \rightarrow y$ strongly for some $y \in P(A)$. We have $P x_{k^{\prime}}=\left(1-\lambda_{k^{\prime}}\right) x_{0}+\lambda_{k^{\prime}} x_{k^{\prime}}$ for some $\lambda_{k^{\prime}} \in[0,1]$. Passing eventually to a new subsequence we may assume that $\lambda_{k^{\prime}} \rightarrow \boldsymbol{\lambda}$ for some $\boldsymbol{\lambda} \in[0,1]$. If $\boldsymbol{\lambda}>0$, we immediately find that $\left(x_{k^{\prime}}\right)$ is strongly convergent. Assume $\boldsymbol{\lambda}=0$. Then $\boldsymbol{y}=x_{0}$ and so $P x_{k^{\prime}}=x_{k^{\prime}}$ for all $k^{\prime} \geq \boldsymbol{k}_{0}$. Hence ($x_{k^{\prime}}$) is strongly convergent as well. Hence A is compact.

Thus all the assumptions of Theorem 2.3 are satisfied for the couple $(\widehat{\Phi}, \widehat{\Psi})$. Therefore, there exists $x \in C$ with $x \in \widehat{\Psi} \hat{\Phi} x$. Clearly, $x \in \Psi \Phi P x$. We claim that
$x \in \bar{U}$. Assume the contrary, that is $x \notin \bar{U}$. Then $P x=(1-\lambda) x_{0}+\lambda x$ for some $\lambda \in(0,1)$ and $P x \in \bar{U} \backslash U$. From $x \in \Psi \Phi P x$ we deduce

$$
P x=(1-\lambda) x_{0}+\lambda x \in(1-\lambda) x_{0}+\lambda \Psi \Phi P x
$$

which contradicts (2.6). Hence $x \in \bar{U}$, so $P x=x$ and $\boldsymbol{x} \in \boldsymbol{\Psi} \boldsymbol{\Phi} \boldsymbol{x}$

Theorem 2.4 yields in particular the following continuation principle for convex-valued maps (compare Theorem 2.2 for single-valued maps in Mönch [17]), an alternative result to Theorem 3.2 in O'Regan and Precup [19]. Corollary 2.2. Let X be a Banach space, K a closed convex subset of X, U a convex relatively open subset of $K, x_{0} \in U$ and let

$$
\Phi: \bar{U} \rightarrow P_{k^{w} c}(K)
$$

be a multi-valued map. Assume that $\mathbf{\Phi}$ is sequentially w u.s.c. on each compact convex subset of \bar{U}. In addition, assume that the two conditions

$$
\left.\begin{array}{r}
A \subset \bar{U} \\
A \text { closed convex } \\
A \subset \overline{c o}\left(\left\{x_{0}\right\} \cup \Phi(A)\right)
\end{array}\right\} \quad \Longrightarrow \quad \text { A is compact }
$$

and

$$
x \notin(1-\lambda) x_{0}+\lambda \Phi x \quad \forall x \in \bar{U} \backslash U, \lambda \in(0,1)
$$

are satisfied. Then there exists at least one $x \in \bar{U}$ with $\boldsymbol{x} \in \boldsymbol{\Phi} \boldsymbol{x}$.

Remark 2.4. Let U be bounded, and let Φ and Ψ send bounded sets into bounded sets. If μ is a measure of strong non-compactness in K, χ is a measure of weak
non-compactness on $\overline{c o} \Phi(\bar{U})$, and there are functions $\phi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with ψ non-decreasing such that

$$
\begin{align*}
\psi \phi(\tau) & <\tau \quad(\tau>0) \tag{2.7}\\
\chi(\Phi(M)) & \leq \phi(\mu(M)) \quad(M \subset \bar{U}) \\
\mu(\Psi(M)) & \leq \psi(\chi(M)) \quad(M \subset \overline{c o} \Phi(\bar{U}),
\end{align*}
$$

then condition (2.5) holds. Indeed, if $A \subset \bar{U}$ and $A \subset$ $\overline{\boldsymbol{c o}}\left(\left\{x_{0}\right\} \cup \Psi(\overline{c o} \Phi(A))\right)$, then
$\mu(A) \leq \mu(\Psi(\overline{c o} \Phi(A))) \leq \psi(\chi(\overline{c o} \Phi(A)))=\psi(\chi(\Phi(A))) \leq \psi \phi(\mu(A))$.
Then (2.7) implies $\mu(A)=0$, i.e. A is compact.

3. Operator inclusions in L^{p} spaces

In this section we are concerned with the abstract operator inclusion

$$
\begin{equation*}
w \in \Psi \Phi w \quad(w \in K) \tag{3.1}
\end{equation*}
$$

in a closed convex subset K of $L^{p}(0, T ; F)$, where
$\Phi: K \rightarrow 2^{L^{q}(0, T ; E)}$ is a multi-valued map
$\Psi: L^{q}(0, T ; E) \rightarrow K$ is a single-valued operator.
Here $0<T<\infty, p \in[1, \infty], q \in[1, \infty)$, and E and F are Banach spaces. We shall denote by r the conjugate exponent of q, i.e. $\frac{1}{q}+\frac{1}{r}=1$. By $|\cdot|_{q}$ we shall denote the norm of $L^{q}(0, T ; E)$ and by $\|\cdot\|$ an equivalent norm on the closed subspace of $L^{p}(0, T ; F)$ generated by K.

We now state our assumptions:
($\Psi \mathbf{1}$) There exists a function $\eta:[0, T] \times L^{q}\left(0, T ; \mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$, non-decreasing in its second variable such that, for every $t \in[0, T]$,

$$
\begin{equation*}
\sup _{g \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)}|\eta(t, g+h)-\eta(t, g)| \rightarrow 0 \quad\left(|h|_{q} \rightarrow 0\right) \tag{3.2}
\end{equation*}
$$

and

$$
\left|\left(\Psi f_{1}-\Psi f_{2}\right)(t)\right|_{F} \leq \eta\left(t,\left|\left(f_{1}-f_{2}\right)(\cdot)\right|_{E}\right)
$$

a.e. on $[0, T]$, for all $f_{1}, f_{2} \in L^{q}(0, T ; E)$.
(世2) There exists a constant $L>0$ with $\left\|\Psi f_{1}-\Psi f_{2}\right\| \leq L\left|f_{1}-f_{2}\right|_{q}$ for all $f_{1}, f_{2} \in L^{q}(0, T ; E)$.
($\Psi 3$) For any compact $C \subset E$ and any sequence $\left(f_{k}\right)$ of $L^{q}(0, T ; E)$ with $\left\{f_{k}(t)\right\}_{k \geq 1} \subset C$ for a.e. $t \in[0, T]$, the weak convergence $f_{k} \rightarrow f$ implies $\Psi f_{k} \rightarrow \Psi f$ strongly in $L^{p}(0, T ; F)$.
$(\Phi 1)$ The values of Φ are non-empty, weakly compact, convex, and Φ is sequentially w-u.s.c. on any compact convex subset A of K.
($\Phi 2$) For every $a>0$ there exists a $\nu_{a} \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$such that $|f(t)|_{E} \leq$ $\nu_{a}(t)$ a.e. on $[0, T]$, for all $f \in \Phi w$ and all $w \in K$ satisfying $\|w\| \leq a$.
($\Phi 3$) For every separable closed subspaces E_{0} and F_{0} of E and F, respectively, there exists a map $\zeta: L^{p}\left(0, T ; \mathbb{R}_{+}\right) \rightarrow L^{q}\left(0, T ; \mathbb{R}_{+}\right)$such that $\zeta(0)=0$ and

$$
\begin{equation*}
\beta_{E_{0}}\left(\Phi(M)(t) \cap E_{0}\right) \leq \zeta\left(\beta_{F_{0}}(M(\cdot))\right)(t) \tag{3.3}
\end{equation*}
$$

a.e. on $[0, T]$, for every countable set $M \subset K$ with $M(t) \subset F_{0}$ a.e. on $[0, T]$, for which there exists $\nu \in L^{p}\left(0, T ; \mathbb{R}_{+}\right)$with $|w(t)|_{F} \leq \nu(t)$ a.e. on $[0, T]$ for any $w \in M$. In addition, $\varphi=0$ is the unique solution in $L^{p}\left(0, T ; \mathbb{R}_{+}\right)$to the inequality

$$
\begin{equation*}
\varphi(t) \leq \eta(t, \zeta(\varphi)) \quad \text { a.e. on }[0, T] \text {. } \tag{3.4}
\end{equation*}
$$

(L-S) There exists a bounded convex subset U of K, open in K, and a $w_{0} \in U$ such that $w \notin(1-\lambda) w_{0}+\lambda \Psi \Phi w$ for all $w \in \bar{U} \backslash U$ and $\lambda \in(0,1)$. Theorem 3.1. Let assumptions $(\Psi 1)-(\Psi 3),(\Phi 1)-(\Phi 3)$ and (L-S) hold. Then inclusion problem (3.1) has at least one solution in \bar{U}.

For the proof we need the following Lemmas 3.1 and 3.2. Lemma 3.1. Let assumptions $(\Psi 1)$ and $(\Psi 3)$ hold. Further, let $B \subset L^{q}(0, T ; E)$ be countable with

$$
\begin{equation*}
|f(t)|_{E} \leq \nu(t) \tag{3.5}
\end{equation*}
$$

a.e. on $[0, T]$ for all $f \in B$, where $\nu \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$. At last, let E_{0} and F_{0} be separable closed subspaces of E and F, respectively, with $f(t) \in E_{0}$ and $\Psi f(t) \in F_{0}$ a.e. on $[0, T]$ for every $f \in B$. Then the function φ defined by $\varphi(t)=\beta_{E_{0}}(B(t))$ belongs to $L^{q}\left(0, T ; \mathbb{R}_{+}\right)$and satisfies

$$
\begin{equation*}
\beta_{F_{0}}(\Psi(B)(t)) \leq \eta(t, \varphi) \tag{3.6}
\end{equation*}
$$

a.e. on $[0, T]$.

Proof. Let $B=\left\{f_{n}\right\}_{n \geq 1}$. The space E_{0} being separable, we may represent it as $\overline{\bigcup_{k \geq 1} E_{k}}$ where, for each k, E_{k} is a k-dimensional subspace of E_{0} with $E_{k} \subset E_{k+1}$. The fact that φ is measurable follows from the formula of representation of the ball measure of non-compactness for separable spaces which yields

$$
\begin{equation*}
\varphi(t)=\lim _{k \rightarrow \infty} \sup _{n \geq 1} d\left(f_{n}(t), E_{k}\right) \tag{3.7}
\end{equation*}
$$

From $d\left(f_{n}(t), E_{k}\right) \leq\left|f_{n}(t)\right|_{E}$, (3.5) and (3.7) we have $\varphi(t) \leq \nu(t)$ a.e. on $[0, T]$. Consequently, $\varphi \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$.

Since B is countable, we may suppose that (3.5) holds for all $t \in[0, T]$ and $f \in B$. To prove (3.6), let $\varepsilon>0$ and choose $\delta>0$ such that

$$
\begin{equation*}
|\Theta| \leq \delta \quad \Longrightarrow \quad \int_{\Theta} \nu(t)^{q} d t \leq \varepsilon^{q} \tag{3.8}
\end{equation*}
$$

Here $|\Theta|$ is the Lebesgue measure of Θ. Also, choose a constant $\rho>0$ such that $\left|\Theta_{1}\right|<\frac{\delta}{2}$ for $\Theta_{1}=\{t \in[0, T]: \nu(t)>\rho\}$. So we have $d\left(f_{n}(t), E_{k}\right) \leq$ $\left|f_{n}(t)\right|_{E} \leq \rho$ for $t \in I \backslash \Theta_{1}$ and $n, k \geq 1$. Consequently, $d\left(f_{n}(t), E_{k}\right)=$ $d\left(f_{n}(t), \bar{C}_{k}\right)$ with $\bar{C}_{k}=\left\{x \in E_{k}:|x|_{E} \leq \rho\right\}$.

From (3.7) and Egoroff's Theorem (see Dunford and Schwartz [11: pp. 149]) there is a set $\Theta_{2} \subset[0, T] \backslash \Theta_{1}$ with $\left|\Theta_{2}\right| \leq \frac{\delta}{2}$ and an integer k_{0} such that

$$
\begin{equation*}
\sup _{n \geq 1} d\left(f_{n}(t), \bar{C}_{k}\right) \leq \varphi(t)+\varepsilon \tag{3.9}
\end{equation*}
$$

for $t \in[0, T] \backslash\left(\Theta_{1} \cup \Theta_{2}\right)$ and $k \geq k_{0}$. Since B is a countable set of strongly measurable functions, we may find a set $\Theta_{3} \subset[0, T]$ with $\left|\Theta_{3}\right|=0$ and a countable set $\widetilde{B}=\left\{\widetilde{f}_{n}\right\}_{n \geq 1}$ of finitely-valued functions from $[0, T]$ to E with

$$
\begin{equation*}
\left|f_{n}(t)-\widetilde{f}_{n}(t)\right|_{E} \leq \varepsilon \tag{3.10}
\end{equation*}
$$

for $t \in[0, T] \backslash \Theta_{3}$ and $n \geq 1$. From (3.9) and (3.10) we obtain

$$
d\left(\widetilde{f}_{n}(t), \bar{C}_{k}\right) \leq \varphi(t)+2 \varepsilon
$$

for $n \geq 1, k \geq k_{0}$ and $t \in[0, T] \backslash \Theta$ with $\Theta=\Theta_{1} \cup \Theta_{2} \cup \Theta_{3}$. Then there exists a finitely-valued function $\widehat{f}_{n, k}$ from $[0, T]$ to \bar{C}_{k} with

$$
\begin{equation*}
\left|f_{n}(t)-\widehat{f}_{n, k}(t)\right|_{E} \leq \varphi(t)+3 \varepsilon \tag{3.11}
\end{equation*}
$$

for $n \geq 1, k \geq k_{0}$ and $t \in[0, T] \backslash \Theta$. We put $\widehat{f}_{n, k}(t)=0$ for $t \in \Theta$. Notice that $|\Theta| \leq \delta$.

For each fixed $k \geq k_{0}$, Theorem 1.4 guarantees that the set $\left\{\widehat{f}_{n, k}\right\}_{n \geq 1}$ is weakly relatively compact in $L^{q}(0, T ; E)$. Then, from assumption ($\Psi 3$), the set $\left\{\Psi \widehat{f}_{n, k}\right\}_{n \geq 1}$ is relatively compact in $L^{p}(0, T ; F)$. Therefore, by Theorem 1.3, the set $\left\{\Psi \widehat{f}_{n, k}(t)\right\}_{n \geq 1}$ is relatively compact in F for all $t \in[0, T]$ except a subset of measure zero. Since an at most countable union of sets of measure zero also has measure zero, we may assume that $\left\{\Psi \widehat{f}_{n, k}(t)\right\}_{n \geq 1}$ is relatively compact for all $k \geq k_{0}$ and $t \in[0, T] \backslash \Theta_{0}$, where $\left|\Theta_{0}\right|=0$. Let $t_{0} \in[0, T] \backslash \Theta_{0}$ be arbitrary. Using assumption ($\Psi 1$) and (3.11), we obtain

$$
\begin{align*}
\left|\Psi f_{n}\left(t_{0}\right)-\Psi \widehat{f}_{n, k}\left(t_{0}\right)\right|_{F} & \leq \eta\left(t_{0},\left|f_{n}(\cdot)-\widehat{f}_{n, k}(\cdot)\right|_{E}\right) \tag{3.12}\\
& \leq \eta\left(t_{0}, \varphi\right)+\left|\eta\left(t_{0}, \varphi+h\right)-\eta\left(t_{0}, \varphi\right)\right|
\end{align*}
$$

where

$$
h(t)= \begin{cases}3 \varepsilon & \text { for } t \in[0, T] \backslash \Theta \\ \nu(t) & \text { for } t \in \Theta\end{cases}
$$

Writing

$$
h=h_{1}+h_{2}
$$

with

$$
\begin{aligned}
& h_{1}(t)= \begin{cases}3 \varepsilon & \text { for } t \in[0, T] \backslash \Theta \\
0 & \text { for } t \in \Theta\end{cases} \\
& h_{2}(t)= \begin{cases}0 & \text { for } t \in[0, T] \backslash \Theta \\
\nu(t) & \text { for } t \in \Theta\end{cases}
\end{aligned}
$$

and using (3.8), we find that

$$
|h|_{q} \leq\left|h_{1}\right|_{q}+\left|h_{2}\right|_{q} \leq 3 \varepsilon T^{\frac{1}{q}}+\varepsilon .
$$

Now (3.12) and (3.2) shows that the set $\left\{\Psi f_{n}\left(t_{0}\right)\right\}_{n \geq 1}$ admits a relatively compact ϵ-net of the form $\left\{\Psi \widehat{f}_{n, k}\left(t_{0}\right)\right\}_{n \geq 1}$ for every $\epsilon>\eta\left(t_{0}, \varphi\right)$. Letting $\epsilon \downarrow \eta\left(t_{0}, \varphi\right)$ we obtain (3.6)

Lemma 3.2. Let assumptions ($\Psi 2)$ and ($\Psi 3$) hold. Further, let B be a countable subset of $L^{q}(0, T ; E)$ such that $B(t)$ is relatively compact for a.e. $t \in[0, T]$ and there exists a function $\nu \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$with $|f(t)|_{E} \leq \nu(t)$ a.e. on $[0, T]$, for all $f \in B$. Then the set $\Psi(B)$ is relatively compact in $L^{p}(0, T ; F)$. In addition, Ψ is continuous from B equipped with the relative weak topology of $L^{q}(0, T ; E)$ to $L^{p}(0, T ; F)$ equipped with its strong topology.

Proof. Let $B=\left\{f_{n}\right\}_{n \geq 1}$ and let $\varepsilon>0$ be arbitrary. As in the proof of Lemma 3.1 we can find functions $\widehat{f}_{n, k}$ with values in a compact $\bar{C}_{k} \subset E\left(\bar{C}_{k}\right.$ being a closed ball of a k-dimensional subspace of E) such that $\left|f_{n}-\widehat{f}_{n, k}\right|_{q} \leq \varepsilon$ for every $n \geq 1$. Then assumption ($\Psi 2$) implies

$$
\begin{equation*}
\left\|\Psi f_{n}-\Psi \widehat{f}_{n, k}\right\| \leq L\left|f_{n}-\widehat{f}_{n, k}\right|_{q} \leq \varepsilon L \tag{3.13}
\end{equation*}
$$

On the other hand, the set $\left\{\widehat{f}_{n, k}\right\}_{n \geq 1} \subset L^{q}(0, T ; E)$ is weakly relatively compact in $L^{q}(0, T ; E)$. Next, assumption ($\Psi 3$) guarantees that $\left\{\Psi \widehat{f}_{n, k}\right\}_{n \geq 1}$ is relatively compact in $L^{p}(0, T ; F)$. Hence from (3.13) we see that $\left\{\Psi \widehat{f}_{n, k}\right\}_{n \geq 1}$ is a relatively compact εL-net of $\Psi(B)$ with respect to the norm $\|\cdot\|$. Since ε was arbitrary, we conclude that $\Psi(B)$ is relatively compact in $L^{p}(0, T ; F)$.

Next we show that the graph

$$
\Lambda=\{(f, w): f \in B, w=\Psi f\}
$$

is weakly-strongly sequentially closed in $L^{q}(0, T ; E) \times L^{p}(0, T ; F)$. To this end, assume $\left(f_{k}\right)$ and $\left(w_{k}\right)$ are sequences with $f_{k} \in B$ and $w_{k}=\Psi f_{k}, f_{k} \rightharpoonup f$ weakly and $w_{k} \rightarrow w$ strongly for some $f \in B$ and $w \in L^{p}(0, T ; F)$. We shall prove that $w=\Psi f$. For an arbitrary number $\varepsilon>0$, we have already seen that the proof of Lemma 3.1 provides a compact set P_{ε} and a sequence $\left(f_{k}^{\varepsilon}\right)$ of P_{ε}-valued functions satisfying

$$
\begin{equation*}
\left|f_{k}-f_{k}^{\varepsilon}\right|_{q} \leq \varepsilon \tag{3.14}
\end{equation*}
$$

for every k. The set $\left\{f_{k}^{\varepsilon}\right\}_{k \geq 1}$ being weakly relatively compact in $L^{q}(0, T, E)$, a suitable subsequence $\left(f_{k^{\prime}}^{\varepsilon}\right)$ must be weakly convergent in $L^{q}(0, T, E)$ towards some f^{ε}. Consequently, $\Psi f_{k^{\prime}}^{\varepsilon} \rightarrow \Psi f^{\varepsilon}$ strongly in $L^{p}(0, T ; F)$. Also, Mazur's Lemma and (3.14) imply

$$
\begin{equation*}
\left|f-f^{\varepsilon}\right|_{q} \leq \varepsilon \tag{3.15}
\end{equation*}
$$

Now assumption ($\Psi 2$) and the triangle inequality yields

$$
\begin{aligned}
& \|w-\Psi f\| \\
& \quad \leq\left\|w-\Psi f_{k^{\prime}}\right\|+\left\|\Psi f_{k^{\prime}}-\Psi f_{k^{\prime}}^{\varepsilon}\right\|+\left\|\Psi f_{k^{\prime}}^{\varepsilon}-\Psi f^{\varepsilon}\right\|+\left\|\Psi f^{\varepsilon}-\Psi f\right\| \\
& \quad \leq\left\|w-w_{k^{\prime}}\right\|+L\left|f_{k^{\prime}}-f_{k^{\prime}}^{\varepsilon}\right|_{q}+\left\|\Psi f_{k^{\prime}}^{\varepsilon}-\Psi f^{\varepsilon}\right\|+L\left|f^{\varepsilon}-f\right|_{q} .
\end{aligned}
$$

Using (3.14), (3.15) and $\left\|w-w_{k^{\prime}}\right\| \rightarrow 0$ and $\left\|\Psi f_{k^{\prime}}^{\varepsilon}-\Psi f^{\varepsilon}\right\| \rightarrow 0$ as $k^{\prime} \rightarrow \infty$ we deduce that

$$
\begin{equation*}
\|w-\Psi f\| \leq 2 \varepsilon L \tag{3.16}
\end{equation*}
$$

Since ε was arbitrary, (3.16) gives $w=\Psi f$ and the proof of Lemma 3.2 is complete

Proof of Theorem 3.1. We apply Theorem 2.4 with $x_{0}:=w_{0}, X$ the closed subspace of $L^{p}(0, T ; F)$ generated by K, and $Y:=L^{q}(0, T ; E)$. Notice that, since \bar{U} is bounded in K, there exists $a>0$ such that $\|w\| \leq a$ for all $w \in \bar{U}$. Then from assumption ($\Phi 2$) one has $|f(t)|_{E} \leq \nu_{a}(t)$ a.e. on $[0, T]$ for all $f \in \Phi w$ and $w \in \bar{U}$. It follows that the same inequality is true for all $f \in \overline{\operatorname{co}} \Phi(\bar{U})$.

To guarantee that Ψ is sequentially w-u.s.c. on $\overline{\operatorname{co}} \Phi(A)$ for any compact convex subset A of \bar{U} we have to show that

$$
f_{k} \rightarrow f \text { weakly, } f_{k} \in \overline{\operatorname{co}} \Phi(A) \quad \Longrightarrow \quad \Psi f_{k} \rightarrow \Psi f \text { strongly. }
$$

Let $A_{c} \subset A$ be countable such that $\left\{f_{k}\right\}_{k \geq 1} \subset \overline{\operatorname{co}} \Phi\left(A_{c}\right)$. In virtue of Theorem 1.3, $A_{c}(t)$ is relatively compact in F for a.e. $t \in[0, T]$. Then from (3.3) we deduce that $\beta_{E_{0}}\left(\Phi\left(A_{c}\right)(t) \cap E_{0}\right)=0$ a.e. on $[0, T]$, for every separable closed subspace E_{0} of E. As a result the set $\left\{f_{k}(t)\right\}_{k \geq 1}$ is relatively compact in E for a.e. $t \in[0, T]$. Now Lemma 3.2 guarantees that $\Psi f_{k} \rightarrow \Psi f$ strongly.

It remains to check condition (2.5) for the couple $[\Phi, \Psi]$. Let $A \subset \bar{U}$ be a closed convex set with

$$
A \subset \overline{\mathrm{co}}\left(\left\{w_{0}\right\} \cup \Psi(\overline{\mathrm{co}} \Phi(A))\right)
$$

To prove that A is compact it suffices that every sequence $\left(w_{n}^{0}\right)$ of A has a convergent subsequence. Let $A_{0}=\left\{w_{n}^{0}\right\}_{n \geq 1}$. Clearly, there exists a countable subset

$$
A_{1}=\left\{w_{n}^{1}\right\}_{n \geq 1}
$$

of $A, f_{n}^{1} \in \overline{\operatorname{co}} \Phi\left(A_{1}\right)$ and $v_{n}^{1}=\Psi f_{n}^{1}$ with $A_{0} \subset \overline{\operatorname{co}}\left(\left\{w_{0}\right\} \cup V^{1}\right)$, where $V^{1}=$ $\left\{v_{n}^{1}\right\}_{n \geq 1}$. Furthermore, there exists a countable subset

$$
A_{2}=\left\{w_{n}^{2}\right\}_{n \geq 1}
$$

of $A, f_{n}^{2} \in \overline{\operatorname{co}} \Phi\left(A_{2}\right)$ and $v_{n}^{2}=\Psi f_{n}^{2}$ with $A_{1} \subset \overline{\operatorname{co}}\left(\left\{w_{0}\right\} \cup V^{2}\right)$, where $V^{2}=$ $\left\{v_{n}^{2}\right\}_{n \geq 1}$, and so on. Hence for every $k \geq 1$ we find a countable subset

$$
A_{k}=\left\{w_{n}^{k}\right\}_{n \geq 1}
$$

of A and correspondingly $f_{n}^{k} \in \overline{\operatorname{co}} \Phi\left(A_{k}\right)$ and $v_{n}^{k}=\Psi f_{n}^{k}$ such that $A_{k-1} \subset$ $\overline{\operatorname{co}}\left(\left\{w_{0}\right\} \cup V^{k}\right)$ and $V^{k}=\left\{v_{n}^{k}\right\}_{n \geq 1}$. Let

$$
A^{*}=\cup_{k \geq 0} A_{k}
$$

It is clear that A^{*} is countable, $A_{0} \subset A^{*} \subset A$ and $A^{*} \subset \overline{\operatorname{co}}\left(\left\{w_{0}\right\} \cup V^{*}\right)$, where $V^{*}=\cup_{k \geq 1} V^{k}$. Let $W^{*}:=\left\{f_{n}^{k}\right\}_{n, k \geq 1}$. Since A^{*}, V^{*} and W^{*} are countable sets of strongly measurable functions, we may suppose that their values belong to a separable closed subspace F_{0} of F in the case of A^{*} and V^{*}, respectively E_{0} of E in the case of W^{*}. Since $\left|f_{n}^{k}(t)\right| \leq \nu_{a}(t)$ a.e. on $[0, T]$, Lemma 3.1 guarantees

$$
\begin{equation*}
\beta_{F_{0}}\left(A^{*}(t)\right) \leq \beta_{F_{0}}\left(V^{*}(t)\right) \leq \eta\left(t, \beta_{E_{0}}\left(W^{*}(\cdot)\right)\right) \tag{3.17}
\end{equation*}
$$

while assumption ($\Phi 3$) gives

$$
\begin{equation*}
\beta_{E_{0}}\left(W^{*}(s)\right) \leq \beta_{E_{0}}\left(\Phi\left(A^{*}\right)(s) \cap E_{0}\right) \leq \zeta\left(\beta_{F_{0}}\left(A^{*}(\cdot)\right)\right)(s) . \tag{3.18}
\end{equation*}
$$

Since η is non-decreasing in its second variable, from (3.17) and (3.18) it follows that

$$
\beta_{F_{0}}\left(A^{*}(t)\right) \leq \eta\left(t, \zeta\left(\beta_{F_{0}}\left(A^{*}(\cdot)\right)\right)\right) .
$$

Moreover, the function φ given by $\varphi(t)=\beta_{F_{0}}\left(A^{*}(t)\right)$ belongs to $L^{p}\left(0, T ; \mathbb{R}_{+}\right)$. Consequently, $\varphi \equiv 0$, and so $\varphi(t)=\beta_{F_{0}}\left(A^{*}(t)\right)=0$ a.e. on $[0, T]$. Then (3.18) and $\zeta(0)=0$ guarantee

$$
\begin{equation*}
\beta_{E_{0}}\left(W^{*}(t)\right)=0 \quad \text { a.e. on }[0, T] . \tag{3.19}
\end{equation*}
$$

Let $\left(v_{i}^{*}\right)$ be any sequence of V^{*} and let $\left(f_{i}^{*}\right)$ be the corresponding sequence of W^{*} with $v_{i}^{*}=\Psi f_{i}^{*}$ for all $i \geq 1$. Using (3.19) we have that $\left(f_{i}^{*}\right)$ has a weakly convergent subsequence in $L^{q}(0, T ; E)$, say converging to f. Then the corresponding subsequence of $\left(v_{i}^{*}\right)$ converges to $v=\Psi f$ in $L^{p}(0, T ; F)$. Hence V^{*} is relatively compact. Now Mazur's Lemma guarantees that the set $\overline{\mathrm{co}}\left(\left\{w_{0}\right\} \cup V^{*}\right)$ is compact and so its subset A^{*} is relatively compact. Thus A_{0} possesses a convergent subsequence as we wished. Now the result follows from Theorem 2.4

Remark 3.1.

(a) If the values of Ψ are in $C(0, T ; F)$, then any solution of inclusion problem (3.1) in $K \subset L^{p}(0, T ; F) \quad(1 \leq p \leq \infty)$ belongs to $C(0, T ; F)$.
(b) The existence theory in $C(0, T ; F)$ appears as a particular case, where $p=\infty$ and $K \subseteq C(0, T ; F)$.

Remark 3.2.

(a) The typical example of a function η in assumption $(\Psi 1)$ which occurs in applications is the one defined by $\eta(t, \varphi)=\int_{0}^{T} k(t, s) \varphi(s) d s$ where k : $[0, T]^{2} \rightarrow \mathbb{R}_{+}$and $k(t, \cdot) \in L^{r}(0, T)$ for a.e. $t \in[0, T]$ (see Couchouron and Precup [5, 6], and O'Regan and Precup [21]). In this case condition ($\Psi 2$) is a consequence of condition ($\Psi 1$).
(b) For $k(t, s)=\left\{\begin{array}{ll}0 & \text { if } t<s \\ m & \text { if } s \leq t\end{array}\right.$, where $m>0$ is a constant, the function η is defined as $\eta(t, \varphi)=m \int_{0}^{t} \varphi(s) d s$ and occurs when Ψ is the mild solution operator of the Cauchy problem associated to abstract evolution equations (see Couchouron and Kamenskii [4], and Kamenskii, Obukhovskii and Zecca [16]). In this case, and if

$$
\begin{equation*}
\zeta(\varphi)(t)=m_{0} \varphi(t)+\int_{0}^{t} \delta(s) \varphi(s) d s \tag{3.20}
\end{equation*}
$$

where $m_{0}>0$ and $\delta \in L^{r^{\prime}}\left(0, T ; \mathbb{R}_{+}\right)$with $r^{\prime}>2$, the null function is the unique solution of inequality (3.4). Indeed, if $\varphi(t) \leq \eta(t, \zeta(\varphi))$, then

$$
\begin{aligned}
\varphi(t) \leq & m \int_{0}^{t}\left(m_{0} \varphi(s)+\int_{0}^{s} \delta(\tau) \varphi(\tau) d \tau\right) d s \\
= & m \int_{0}^{t}\left(m_{0} e^{\theta s} \varphi(s) e^{-\theta s}+\int_{0}^{s} e^{\theta \tau} \delta(\tau) \varphi(\tau) e^{-\theta \tau} d \tau\right) d s \\
\leq & m m_{0}\left|e^{\theta s}\right|_{L^{2}(0, t)}\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)} \\
& +m T\left|e^{\theta s}\right|_{L^{r}(0, t)}|\delta|_{L^{r^{\prime}}(0, T)}\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)}
\end{aligned}
$$

where $\frac{1}{r}+\frac{1}{r^{\prime}}+\frac{1}{2}=1$. It follows that

$$
\varphi(t) \leq m e^{\theta t}\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)}\left(\frac{m_{0}}{\sqrt{2 \theta}}+\frac{T|\delta|_{L^{r^{\prime}}(0, T)}}{(\theta r)^{1 / r}}\right)
$$

Divide by $e^{\theta t}$ and take the L^{2}-norm to obtain

$$
\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)} \leq m \sqrt{T}\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)}\left(\frac{m_{0}}{\sqrt{2 \theta}}+\frac{T|\delta|_{L^{r^{\prime}}(0, T)}}{(\theta r)^{1 / r}}\right)
$$

Clearly, if θ is sufficiently large, this implies $\left|\varphi(s) e^{-\theta s}\right|_{L^{2}(0, T)}=0$. Thus $\varphi=0$.

Remark 3.3. Let Ψ satisfy the following stronger compactness condition:
$(\Psi 4)$ If B is any bounded subset of $L^{q}(0, T ; E)$ for which there exists a function $\nu \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$such that $|f(t)|_{E} \leq \nu(t)$ a.e. on $[0, T]$, for all $f \in B$, then $\{\Psi f\}_{f \in B}$ is relatively compact in $L^{p}(0, T ; F)$.

Then the conclusion of Theorem 4.1 is true without assumptions ($\Psi 1$) and $(\Phi 3)$. Indeed, under assumption ($\Psi 4$) the compactness of the set A satisfying (2.5) is immediate since $\Psi(\overline{\mathrm{co}} \Phi(A))$ is relatively compact in $L^{p}(0, T ; F)$.

Condition ($\Psi 4$) has been required in Bader [3]. For a discussion on this condition, when Ψ is the mild solution operator for the initial value problem associated to an m-accretive map, see Vrabie [23].

Example. Let us consider the initial value problem for a functionaldifferential inclusion

$$
\left.\begin{array}{l}
u^{\prime}(t) \in(\Phi u)(t) \text { a.e. on }[0, T] \tag{3.21}\\
u(0)=u_{0}
\end{array}\right\} .
$$

Theorem 3.2. Let E be a Banach space and let $\Phi: C([0, T] ; E) \rightarrow$ $2^{L^{1}(0, T ; E)}$. Let assumptions $(\Phi 1)-(\Phi 3)$ hold with $p=\infty, q=1, E=F, K=$
$C([0, T] ; E)$ and ζ given by (3.20). In addition, assume that there exists $a \in$ $L^{1}\left(0, T ; \mathbb{R}_{+}\right)$and a non-decreasing function $b: \mathbb{R}_{+} \rightarrow(0, \infty)$ such that

$$
|f(t)|_{E} \leq a(t) b\left(|u(t)|_{E}\right)
$$

a.e. on $[0, T]$, for all $u \in C([0, T] ; E)$ and $f \in \Phi u$, and

$$
\int_{0}^{T} a(s) d s<\int_{\left|u_{0}\right|_{E}}^{\infty} \frac{d \tau}{b(\tau)}
$$

Then problem (3.21) has a solution in $W^{1,1}(0, T ; E)$.
Proof. Let $\Psi: L^{1}(0, T ; E) \rightarrow C([0, T] ; E)$ be defined by

$$
(\Psi f)(t)=u_{0}+\int_{0}^{t} f(s) d s
$$

We can easily see that Ψ satisfies assumptions $(\Psi 1)-(\Psi 3)$ with $\eta(t, \varphi)=$ $\int_{0}^{t} \varphi(s) d s$. Then recall Remark 3.2. On the other hand, a standard argument (see O'Regan and Precup [20: pp. 29] and Precup [22: pp. 74]) guarantees the existence of a number $R>0$ with $|u(t)|_{E}<R$ for all $t \in[0, T]$ and any solution u of $u \in \lambda \Psi \Phi u$, for $\lambda \in[0,1]$. Hence $\|u\|:=\max _{t \in[0, T]}|u(t)|_{E}<R$ and so condition (L-S) holds with $U=\{u \in C([0, T] ; E):\|u\|<R\}$. Now the result follows from Theorem 3.1

References

[1] Andres, J. and R. Bader: Asymptotic boundary value problems in Banach spaces. J. Math. Anal. Appl. 274 (2002), 437 - 457.
[2] Arino, O., Gautier, S. and J. P. Penot: A fixed point theorem for sequentially continuous maps with application to ordinary differential equations. Funkcial. Ekvac. 27 (1984), 273 - 279.
[3] Bader, R.: A topological fixed-point index theory for evolution inclusions. Z. Anal. Anw. 20 (2001), $3-15$.
[4] Couchouron, J.-F. and M. Kamenskii: An abstract topological point of view and a general averaging principle in the theory of differential inclusions. Nonlin. Anal. 42 (2000), 1101 - 1129.
[5] Couchouron, J.-F. and R. Precup: Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps. Electron. J. Diff. Equ. 2002 (2002), No. 04, 1 - 21.
[6] Couchouron, J.-F. and R. Precup: Anti-periodic solutions for second order differential inclusions (to appear).
[7] De Blasi, F. S.: On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci. Math. Roum. 21 (1977), $259-262$.
[8] Deimling, K.: Nonlinear Functional Analysis. Berlin et al.: Springer-Verlag 1985.
[9] Deimling, K.: Multivalued Differential Equations. Berlin - New York: Walter De Gruyter 1992.
[10] Diestel, J., Ruess, W. M. and W. Schachermayer: Weak compactness in $L^{1}(\mu$, X). Proc. Amer. Math. Soc. 118 (1993), $447-453$.
[11] Dunford, N. and J. T. Schwartz: Linear Operators. Part I: General Theory. New York: Intersci. 1957.
[12] Górniewicz, L.: Topological approach to differential inclusions. In: Topological Methods in Differential Equations and Inclusions (NATO ASI Series C 472; eds.: A. Granas and M. Frigon). Dordrecht: Kluwer Acad. Publ. 1995, pp. 129-190.
[13] Guo, D., Lakshmikantham, V. and X. Liu: Nonlinear Integral Equations in Abstract Spaces. Dordrecht - Boston - London: Kluwer Acad. Publ. 1996.
[14] Hu, S. and N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. I: Theory. Dordrecht - Boston - London: Kluwer Acad. Publ. 1997.
[15] Hu, S. and N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. II: Applications. Dordrecht - Boston - London: Kluwer Acad. Publ. 2000.
[16] Kamenskii, M., Obukhovskii, V. and P. Zecca: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin - New York: Walter de Gruyter 2001.
[17] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlin. Anal. 4 (1980), 985 - 999.
[18] O'Regan, D.: Fixed point theory of Mönch type for weakly sequentially upper semicontinuous maps. Bull. Austral. Math. Soc. 61 (2000), $439-449$.
[19] O'Regan, D. and R. Precup: Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 245 (2000), 594-612.
[20] O'Regan, D. and R. Precup: Theorems of Leray-Schauder Type and Applications. Amsterdam: Gordon and Breach Sci. Publ. 2001.
[21] O'Regan, D. and R. Precup: Existence theory for nonlinear operator equations of Hammerstein type in Banach spaces. J. Dyn. Syst. Appl. (to appear).
[22] Precup, R.: Methods in Nonlinear Integral Equations. Dordrecht - Boston London: Kluwer Acad. Publ. 2002.
[23] Vrabie, I. I.: Compactness Methods for Nonlinear Evolutions. Harlow: Longman Sci. \& Techn. 1987.

Received 13.02.2003

[^0]: Radu Precup: Babeş-Bolyai University, Fac. Math. \& Comp. Sci., 3400 Cluj,

