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ON SOME BERNSTEIN TYPE OPERATORS:
ITERATES AND GENERALIZATIONS

OCTAVIAN AGRATINI

The present paper focuses on two approaches. Firstly, by using the con-
traction principle, we give a method for obtaining the limit of iterates
of a class of linear positive operators. This general method is applied
in studying three sequences of modified Bernstein type operators. Sec-
ondly, we define a generalization of Goodman-Sharma operators. We
investigate the degree of approximation obtaining pointwise and global
estimates in the framework of various function spaces.
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1. Introduction

The Bernstein type approximation processes have been the object of many
investigations serving as a guide for theorems that can be proved for a large
class of positive linear operators on a bounded interval. The purpose of this
note is twofold.

Based on the theory of weakly Picard operators, see e.g. [6], our first aim
is to present a general method for obtaining the limit of iterates of a given
linear operator. This approach will be given in Section 2. In order to illustrate
the method we apply it to three different classes of modified Bernstein oper-
ators. These sequences of operators were introduced respectively by Cheney
and Sharma [2], Stancu [7], Goodman and Sharma [4], and studied in time
intensively by many authors.

Further on, in Section 3, we generalize the Goodman and Sharma operators
by replacing the binomial coefficients with other general coeflicients satisfy-
ing a suitable recursive relation with the help of a given sequence. These new
polynomials P, f, n € N, are associated to any function f belonging to the
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space Lq([0, 1]) and, under some additional conditions, they define an approx-
imation process. This way, the second aim of the paper is to investigate the
new class of linear positive operators. We enlarge upon this study in Section
4, proving that (P,),>; converges to the identity operator multiplied by an
analytic function ¢ and estimating the degree of convergence by using the
modulus of smoothness of first order. We establish both pointwise and global
estimates of the rate of convergence of our operators. Special cases of the
function ¢ are presented in the final part of this section.

2. Operator iterates and contraction principle

Let (X, d) be a metric space and A : X — X an operator. In the sequel
F 4 stands for the fixed point set of A, F4 := {z € X|A(z) = x}. As usual,
we set A = Ix, A' = A, A"t = Ao A™, m € N, where [x indicates the
identity operator of the space X.

Following [6] closely we recall the notion of weakly Picard operators (briefly,
WPOQ) and a characterization of them.

Definition 1. Let (X, d) be a metric space. An operator A : X — X is
weakly Picard operator if the sequence of iterates (A™(z))m>1 converges for
every z € X and the limit is a fixed point of A. -

If the operator A is WPO and F4 has a unique element, say «*, then A
is called a Picard operator (PO).

Theorem 1. ([6]) Let (X, d) be a melric space. The operator A : X — X
is WPO if and only if a partilion of X exists, X = U Xy, such that for

AEA
every A € A one has

(i) XxeZ(A),
(i)  Al|x, : Xa — X is a Picard operalor,

where T(A) :== {Y C X|Y # 0, A(Y) C Y} represents the family of the

non-emply invariani subsels of A.

Further on, if A is WPO we consider A* : X — X defined by

(1) A®(z) = lim A™(z), z€X.

m— 00

If Ais WPO, then one has Fam = Fq # () for all m € N. We deduce that
(2) A®(X) = Fa.

Based on these results, in what follows we consider X = C([0, 1]) or
X = Ly([0,1]). These spaces are respectively endowed with the sup-norm
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1
[|*lloos || flleo = sup |£(z)], and Ly-norm ||-||1, [|fll1 = / |f(t)] dt. Defining
ze[0,1] 0
the sets
(3) Xop ={fEX|f(0)=a, f(1)=p8}, (a,f)eRXR,

we remark that every X, s is a closed subset of X. At the same time, the
system {Xa g : (o, ) € R x R} makes a partition of this space.
Let L : X — X be a linear operator satisfying the following conditions:

(4) (C1) L has a degree of exactness 1,

this meaning that Le; = ej, j € {0,1}, where e; € RI%1 stands, as usual, for
the monomial test-function: eg(z) = 1, e;(z) =2/, jeN, z €[0,1].

(5) (C») L is interpolatory at both ends of the interval [0, 1],

this meaning (Lf)(0) = f£(0) and (Lf)(1) = f(1), for any f € X. Conse-
quently, for all (¢, B)€ R x R, Xq g defined by (3) is an invariant set of L.
In this respect, we can formulate the third condition.

(6) (Ca) Llx.,:Xaps — Xayp is a contraction for every (a,f) € R x R.

At this moment we define py g(z) :=a + ( —a)z, z € [0,1].

Clearly pap € Xap. Since L is linear and relation (4) holds true, L
reproduces the affine functions, and consequently, Pa,p is a fixed point of L.
For any f € X one has f € Xj(0),s) and, by using Theorem 1 combined
with relations (1) and (2), we conclude that

(7) im (L™ f)(2) = £(0) + (f(1) ~ FO)z, =€ [0,1],

in the norm of the space X.
By using this approach we are able to obtain the limit of iterates of some

sequences of Bernstein type operators. At the beginning, we recall the funda-
mental Bernstein polynomials (bn,i);-g7 of degree n, given by

(8) bn,k(-'ﬂ) = (:)mk(l = w)n—k, rE [0, 1]
Also we need
(9) rrhl)n]((l —z)? + %) =279, for every ¢ € N.
TE 1

Example 1. Based on a combinatorial identity of Abel-Jensen, Cheney
and Sharma [2] have introduced and investigated the operators

(10) (Qnf)(2;8) = ank(xﬁ () fec(o,1]), «€0,1], n €N,
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where g, i (z; 8) = (1+np)' =" (z)$(w+kﬁ)"‘1(1_m)[1 —z+(n—k)gn1-*

and f is a non-negative real parameter.

After calculation of some integrals involved, the authors proved that Qn
preserves the constant functions. But these operators seem to be more reward-
ing than the authors imagined. Indeed, in [8] was shown that @, reproduces
the linear functions, thus (4) is fulfilled. Also, it is easy to see that (5) holds
true. Moreover, for any f,g € X, g, see (3), we get

|(an)($) - (Qng)(x)l
< (1= gn,0(z; B) = gn,n(2; 8)) ,,.21[]0')1] [f(z) — g(z)|

_ (1 _ (I-z)(1-z+np)" ! 4z(z+ nﬁ)n_l) I = glloo

(T4 ngy1
(1 —a)*+a"
= (1 = W) [1f = glleo

< |1 1
= 2”—1(1+nﬁ)”‘1

since 3 > 0; also we used (9). Consequently, (6) is fulfilled and, for every
I € C([0, 1]), relation (7) holds true, where L = Q,, n € N.

) 1F = gllens

Example 2. By using a probabilistic method, Stancu [7, Eq. (3.2)]
constructed the operators

(1) (Lnpfle) = :z;j;bn_,«,k(m) {02 (5) ar (221)),

f€C([0,1]), z € [0,1], r is a fixed non-negative integer such that n > 2r and

bn—rk, k = 0,n—r, are given by (8). By a straightforward calculation one
can verify both (4) and (5). Like in the previous example, for f, g belonging
to the space X, g, we have

I(Ln,rf)(ﬂ") - (Ln,,.g)(ﬂl’)l
0= pors@+z 3 paors @} ~ ol
k=1 k=0

= {(1 - "E)(l - Pn—r.ﬂ(w)) + z(1 - pn.—:',n—r'("‘-':))}”f = 9”00
={l—((1==)" "™ + 2" Y|/ - gl
<@ =27")1f = glloo,

see (9). Hence, the condition (C') is verified and the limit of iterates of any
polynomial L, - f, f € C([0, 1]), is given in (7).
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We mention that choosing 8 = 0 in (10) respectively r = 0 in (11)
both classes become the Bernstein polynomials (Bnf)(z) = Z by 1 (z) f(k/n),
k=0
where (bn,k) =07 IS given in (8). Regarding this sequence, the result from (7)
was obtained long time ago by Kelisky and Rivlin [5].

Example 3. Now we are dealing with the operators introduced and stud-
ied by Goodman and Sharma in [4]. For each n > 2, these operators are given
by

U F)(@) = F(O)bno(x) + f(1)bnn(2)
12 n—1 1
(12) +(n.f1)2bn,k(:n)f bp—ak—1(t)f(t)dt,
k=1 o

where f € L1([0,1]) and @ € [0,1]. They share, in some sense, the advantages
both of Bernstein discrete operators B, and Durrmeyer integral operators M,
studied by Derriennic [3],

n 1
(M,,f)(a;):(71.+1)an,k(a,-)f ba k(D) F()dt,  f € Li([0,1]).
k=0 0

Like the Bernstein operator, U, reproduces linear functions and [/, f in-
terpolates f at the vertices of the interval [0,1]. Consequently, the conditions
(Ch), (C5) are fulfilled. Since

1
(13) / bp—a,k—1(t)dt = (n— 1)_1, k=1,n-1,
0

for every f and g belonging to X, g defined in (3), one has

Un D)= Un @] € (bl =slleo < (157 )=l

and this implies that (C3) is satisfied. Thus, (7) takes place for L =U,.
Starting from (12) and keeping in mind a generalization of the classical
Bernstein polynomials By, f due to Campiti and Metafune [1], we present

3. A generalization of Goodman—Sharma operators

We consider a given sequence @ = (5 )n3>1 of real positive numbers and
define the coefficients ¢, 1, 0 < k < n, as follows

(14) Cn,0 = Cpnyn -= Qpy  Cntlk41 = Cn k+1 T Cn ks 0< E<n-— L.
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For convenience of the reader, we indicate some particular values.
Forn=3: c33=c30 = as and 3 = c3p = 2a; +as.
Forn = 4: c44 = €40 = aa, €a,1 = €a3 = 20)+az+az and cq 3 = 2a3+4a;.
For n = 5: ¢50 = ¢55 = as, ¢5,1 = €54 = 2a; + az + az + aq and
c5,2 = ¢5,3 = Bay + 3az + as.

Remarks. For each n > 2 formula (14) implies the following properties.

(1) en,1 = cpyn-1 = 2a1 +az + -+ an_1.
T

k
(3) If the sequence @ is bounded (0 < ¢; < M, i € N), then ¢, , < M(Z),
0<k<n.

(2) If the sequence @ consists of 1’s, then ¢, = ( ), 0<k<n.

For every n € N and k € {0,1,...,n} we define the polynomials
(15)  qn k(@) := cnipni(2), where pni(z) := 2F(1 —2)*~%, 2 €0,1].

Lemma 1. If qn 1, 0 < k < n, are defined by (15), then

n—1 n-1
(16) ZQn,k(ﬂ?): Zﬂm{w(l—w)m-l-(l—n:)a:m}, n> 2.
k=1 m=1

Proof. It is simple and runs by induction. For the sake of brevity we set
Xpmi=z(l—z)"+(1—2)z™, 1<m<n-1

For n = 2 the common value of the two numbers is 2a;2z(1—x). Combining
(14), (15) and taking into account that (16) holds true, for n + 1 we get

n

n n
S gnrrk(@) = D enpparie(®)+ D enk-1Pat1i(z)
k=1

k=1 k=1

n—1
= (Il-=2) Z en kPnk(2) + en n(l — )™

k=1
n—1
teno(l —2)"e+2 Y cnjpai(e)
ji=1
n—1 n=1
= (1-2)) anXm+anXo+2 ) a;X;
m=1 =1
= Z arnXm)

m=1

and this completes the proof. a
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With the help of (16) and (8), for each n > 9 we define the polynomials
(Puf)(z) = fO)1—2)"+f(1)e"

17 n-1 1
4 +(n— l)an,k(ﬂ?)f b—a,k—1(1)f() dt,
k=1 0

where f € L1([0,1]) and = € [0,1].

It is clear that the polynomial Py f is determined uniquely by the sequence
. We can emphasize on this fact by using a more precise notation named
P,{,a}f. Throughout the paper we shall use one or another of the notations as

required by the context.

Let P, be the set of all algebraic polynomials of degree less than or equal to
n. Examining (17) and taking into account our Remarks, in the next theorem
we gathered some evident properties of these operators.

Theorem 2. Let Py, n > 2, be defined by (17).

(i) P is a linear positive operator and maps
the space L1([0, 1]) inlo Pr.

(i)  (Puf)(mo) = f(2o), for 20 € {0, 1}.

(iil)  If the sequences @ = (aﬂ)nzl,_ﬁ' = (“:z_),nzl satisfy the condilion
a, < al, for everyn, then P,(,a)f < F‘,'ia }f
for every positive funclion [ € L1([0,1]).

(iv)  If the sequence a consists of 1's, then P reduces
to the operator U, defined by (12).

(v) IfM is an upper bound for the elements of @, then

for every £ € C([0,1]) one has [|PA” flloo < M| flloo-

Next, we shall study the convergence of our sequence of operators, giving
estimates of the rate of convergence.

4. Approximation properties of P, operators

We need the following two technical results.

Lemma 2. If P, n> 2, are defined by (17) ihen, for z €[0,1],
n—1

(18) (i) (Paeo)(@)=(1—2)" +a"+ > am(z(l =)™+ (1 -2)z").
m=1

(19) (i) [(Paf)(@)| < Bn)(UnlfD)(@), where

(20) B(n) := max{l,a(n)}, a(n):= BT G
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and Uy, 1s given in (12).

Proof. The first statement is implied by Lemma 1.
(ii) The operator P, being linear and positive, we have [Paf| < Pa|f]. On

: n O ,
the other hand, since ¢, < a(n) L for k = I,n — I, we can write

(PalfD(x) < [FO)|(1 = @)™ + | £(1)|z"
n—1 1
+a(n)(n — l)zbn,k(ﬂf)f ba—z,k-1()[£(t)| dt
k=1 0
= a(m)(Unl f)() + (1= a(m)([£O)I(1 — 2)" + |£(1)]=").

The above relation implies: if a(n) > 1, then Palfl £ a(n)Usfl; if a(n) <
L, then P,|f| < U,|f|. Thus, (19) holds true and the proof is finished. O

The quantity My (L,2) := L((e; — zeg)? ) is the second order central
moment of the operator L. Using the properties proved in [4], we find
22(1 — 2)
n+1

Theorem 3. Let Py, n > 2, be defined by (17). For any bounded function
[ from Ly([0,1]) holds the inequality

[(Paf)(z) = f(2)(Paeo)(2)]
SBMI((L —2)" + 2™)wp (1) + (1 + 22(1 — z))wr(l/vn+ 1)},

(21) My(U,,z) = , zelo,1].

z € (0,1], where wy is the first modulus of smoothness of f and B(n) is given
in (20).

Proof. Based on Theorem 2, see (ii), for x € {0,1} the left side of the
inequality vanishes, thus we concentrate only on z € (0,1). We set

Su(fiz):=(n—1) ibn,k(l‘)/ bn—z1—1(t)|f(t) — f(z)]| dt.
k=1 4

Writing (19) for the function f— f(z)eo and using the linearity of P,, we get
[(Paf)() = f(2)(Pueo)()]
(22) < B{IF0) = F@)I(1 = 2)" +|£(1) = f(@)|a" + Sa(f, 2))
S BON((L = 2)" + 2™ )wp (1) + Sa(f, 2)).
The well-known estimate

[F@) = f(z)] < (1 4+ 672%(t — 2)®)wy(6), (L,2)€ [0,1]x [0,1], 6§ >0,
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combined with (13) and (21) as well, allow us to write
Sn(fiz)
n—1 1
< bna(@) + 5 (MU, 2) = "1 = 2)" = (1= z)%a") huoy (6)
k=1

£ (l + H) wy(9).

Choosing 6§ = (n + 1)~/ and returning to (22) we obtain the desired
result. 0

Under the assumption that the sequence @ is bounded, we can define the
numbers 7(n), n > 2, respectively the function ¢ € R[] as follows

y(n) = sup am,
m>2n

o0

23) g0 =pl) =1, p(@) = Y am(z(l-2)"

m=1

+(1 — z)z™), =z € (0,1).

The definition of ¢ was suggested by formula (18). Also, we mention that
the boundedness of @ guarantees that the power series which appears in (23)
has a radius of convergence greater than or equal to 1.

In the particular case @ = {1}, we obtain ¢(z) =1,z € [0,1].

Lemma 3. If y(n) and ¢ are given by (23), then Py, n > 2, salisfy
((Paco)(2) — p(z)] < max{1, y(m)}(1 - 2)" +2"), = €0,1]

Proof. The inequality is clear for z = 0 and = = 1. Assume that z € (0, 1).
Taking into account (18) we can write

|(Preo)(z) = ¢(z)|
=(l—-z)"+2"+ Z am(z(l—2)" + (1 - z)z™)

m=n

00 oo
<(1—a) +2" +9m){z > (-2 +(1-2) > em}
m=n m=it
(1= )" 42" 4 y(m)((1 - 2)" +2"),
and the conclusion of our lemma follows. O

Theorem 4. Let P,, n > 2, be defined by (17) with a bounded sequence
@. For any bounded function f € L1([0,1]) holds the inequality

I(Puf)(@) = (@) /()]
< B {Sews (VD) + (1= 2)" + ") (D) + =)D},
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€ [0,1], where E(n) = max{l, ‘max ap, sup an}.
I<m<n-1 m>n

Proof. Evidenfly,
[(Paf)(@) = p(z)f(2)] < |(Puf)(z) = f(z)(Paeo)(=)|
+/(@)[|(Preo)(2) — ¢(2)]-

With the help of Theorem 3, Lemma 3, the definition of #(n), y(n) and the
elementary result max z(l — 2) = 1/4, the announced inequality is proved.

(24)

z€[0,1]
0]
As usual, we denote by B([0, 1]) the Banach space of all real-valued bounded
functions defined on [0, 1], endowed with the uniform norm || - [|s.

Clearly, m[ax]((l —2)* +2") =1, wi(1) < 2||f|lc. Taking into account
ze[0,1

these facts, Theorem 4 leads us to the main result of this section establishing
that (P,)n defines an approximation process and giving a global estimate of
the rate of convergence.

Theorvem 5. Lel Py, n > 2, be defined by (17) with a bounded sequence
a. For every f € B([0,1]) N Ly([0, 1]), we have

(i)  lim (P, f)(z) = e(2)f(z), uniformly on every
compact K C (0,1) and pointwise on [0, 1].

(i) [1Puf = Flloo < 3B()(|flloo + 27wy (1/v/n+1)).
In order to express the rate of convergence in the Lj-norm we need

Lemuma 4. For every [ from the Hilbert space (Lo([0,1]), || - |l2), holds the

estimate

2l where up(z) = (1 —2)" +z", z €[0,1].

() lufll < L

Proof. Using Cauchy’s inequality, we obtain

/2

([ wwa) i,

211. 2n /3 _ 2”f”2
] (=04 ) de) sl = —i O

Theovem 6. Lel Py, n > 2, be defined by (17) with a bounded sequence
a. For every f € Ly([0,1]),

llwn £l

IA

IA

(26) |1Paf — ef|ls < B(n) {g""’f (_nlﬁ) + llunfll + QWJ;_(I] } ,
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where u, is given by (25).
Moreover, if f € L2([0,1]), then lim P.f = @f in the Ly-norm.

1
Proof. For the first statement we are going to (24) and apply f dz. Since
0

1
] up (z)dz = 2/(n + 1), Theorem 3, combined with Lemma 3, implies (26).
0

The second statement is a consequence of (26) and Lemma 4. O

Particular case. It is obvious that the function ¢ is strongly dependent
on the sequence @. Thus, manipulating @ we can construct different ¢ func-
tions. For examples, we can build up @l(o,1) as a polynomial of degree less
than or equal to ¢, ¢ > 2. To this purpose, we consider a sequence a with
a, = @ for every n 2 ¢. Relation (23) implies

qg—1
(27) () = dug(x) +z(l — ) Z amm—1(z), = €(0,1),

m=1

where ug, k > 0, are given in (25).
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