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1. Introduction

Over the last twenty years or so, Krasnoselskii’s fixed point theorem in a cone has
played a major role in establishing the existence of nonnegative solutions to second and
higher order boundary value problems, see [2, 3, 4, 8] and the references therein. The
extension to integral equations and inclusions can be found in [1, 5. In this paper we
show how the results for integral equations can be used to establish new existence criteria
for second order boundary value problems ({indeed these results could also be established
directly, with a lot more effort, if one uses the inequalities presented in this paper for the
appropriate Green’s function). To illustrate the method involved, we discuss in particular
the boundary value problems

¥ -ty+afy)=0, 0<t<1
{ ¥(0) =y(1)q: Gy (1.1)
and (
Y +717¥+e¢f(y)=0 0<t<oo
{ ¥(0) =0, lim;0 y(t) = 0. (1.2)

In the literature (1.1}, with 7 = 0, has received a Iot of attention whereas only a handful
of results [7} are available for (1.2). This paper uses the results in [5] together with upper
and lower type inequalities for the appropriate Green’s function to obtain new results for
(1.1) and (1.2). Indeed it is of interest to note here that all the results in the literature to
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date (which make use of Krasnoselskii’s fixed point theorem in a cone) on boundary value
problems for second and higher order equations can be deduced from the results in [5].

2. Differential Equations on Finite Intervals

In this section we use a result of Meehan and O’Regan [5] on integral equations to obtain
many new results for boundary value problems on a finite interval. Indeed the results in
this section improve all known results in the literature (see {1-4] and the references therein).
To motivate the general theory we begin by examining

y' - mPy+gf{y)=0, 0<t<1 2.1)
y{0) = y(1) =0
where
m>0, ¢ € I}0,1] with ¢>0 ae. on [0,1]. 2.2)

Before we state and prove a general existence result for (2.1) we recall the following existence
result [5] for the integral equation

y(ty= [)1 kit,s) f(y(s))ds for te[0,1]. {2.3)

THEOREM 2.1. Let % : [0,1] x [0,1] —+ IR and suppose the following conditions are
satisfied:

0 < ke(.) = k(t, .) € L'{0,1] for each ¢ € {0, 1}, o (24)
the map ¢ — k; is continuous from [0,1} to L'[0,1], (2.5)

30<M<1, k € Li[0,1] and [e,B] C[0,1], & < b, (2.6)

such that k{t,s) > M«x(s) >0, t € [e,b], a.e. s€[0,1], )
k(t,s) < w(s), t €[0,1], a.e. s€[0,1], (2.7)
f:R 3 R is continuous and nondecreasing with f(u) >0 for v >0, (2.8)

@
Jea >0 with >1 (2.9
fla) supyefoy .f& k(t,s)ds
and

3550, 8# o and £ € [0,1] with 5 <1 (2.10)

FMB) [P k(tr,s)ds —
Then (2.3) has at least one nonnegative solution y € C[0,1] with either
(A) 0<a<|ylo<8 and y(t) > Mo, t€a,b] if a<B

or
(B) 0<B8<|ylo<a and y(t) > M3, t€[a,b] if f <
holding; here |ylo = supgejo,q) |¥(t)]-

REMARK 2.1. It is possible to remove the nondecreasing assumption in (2.8) provided
{2.9) and (2.10) are appropriately adjusted.

REMARK 2.2. In certain cases it is possible to apply Theorem 2.1 repeatedly to an integral
equation to yield multiple nonnegative solutions.
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We will apply Theorem 2.1 now to (2.1). Notice we can rewrite (2.1) as
1
vy = [ G(t:5)als) Sy ds, t€ 0,1
where b inh
sinh (m s) sin (m(1- t))1 s<t
G(t,s) = m sinh m
! sinh (m¢) sinh (m(1 - 5))
n , t<s,
m sinh m
Now let
k(t, s} = G(t, ) q(s), (2.11)
and natice (2.4) and (2.5) hold. Let '
x(s) = G(s, s) q(s), (2.12)

and (2.7) is immediate since sinh mz is increasing for 0 < z < 1 and sinh m(l - z) is
decreasing for 0 < z < 1. Next take a, b € (0,1) with a < b. Let

ginh m(1 - b) sinh ma}
sinhm ' sinhm f°

M = min { (2.13)

and notice if s <t we have

k(t,s)  sinh m(1—¢) _ sinh m(1—t) _ sinh m(1 —b)
&(s)  sinhm(l—s)= sinhm = sinhm for ¢ € [a,b],

whereas if s > we have

k{t,s) sinh mt _ sinh mt _ sinh ma
#(s) ~ sinh ms = sinhm =~ sinhm

for ¢ € [a,b].

As a result {2.6) holds. Combine this with Theorem 2.1 and we obtain the following result.

THEOREM 2.2. Assume (2.2) and (2.8) hold. Fix e, b € (0,1} with ¢ < b and suppose
the following two conditions are satisfied:

1
Ja>0 with —— > sup G(t,s)q(s)ds (2.14)
fla) te[0,1] JO

and

'B <
F(MBY f, G(t*,s) q(s) ds ~

here M is as in {2.13). Then (2.1) has at least one nonnegative solution y € W2![0, 1]
with either '

38> 0,8 # o and £ € [0,1] with 1; {2.15)

(A) 0<a<|ylo<8 and y(t) > Ma, t€[a,b if a< B
or
(B) 0<f<lylo<a and y(t) > MB, t€a,b] if f< e
holding.
The argument presented for (2.1) immediately yields a new existence result for the
Dirichlet boundary value problem

{y”—ry+qf(y)=0, 0<t<i

y(0) =y(1)=0, (2.16)
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where o
r€C{0,1)NL'0,1}] with 7 >0 on (0,1) (2.17)
and .

g € L'[0,1] with ¢> 0 a.e.on [0,1] (2.18)
hold. Let ¢ be the unique solution {6] to

' — Tty =10, 0<t<l
{ y(0) =0, ¥'(0) =1; (@19)

notice ¢ is nondecreasing on [0, 1]. Also let 7 be the unique solution to

¥ -ry=0,0<t<1
{ sr(l)=(!l’, y(1)=-1 (2.20) -

notice + is nonincreasing on [0, 1]. We can rewrite (2.16) as

v0) = [ 9.9)96) Fue)ds, D01
where
= { PO o5
, ¢(t) ¢(s)/w0a t<s,
with wo = ¢'(s) ¥(s) — ¢(5) ¥'(s} > 0. Let

k(t,s) = g(t,5) g(s) and &(s) = g(s, s} g(s}, (2.21)
and notice (2.4}, (2.5} and {2. 7) hold. Next take a, b € (0,1) with a < b. Then (2.6) holds
with

a2 90 |
= min {55 01 - &)

THEOREM 2.3. Assume (2.8), (2.17) and (2.18) hold. Fix @, b € (0,1) with a < b and
suppose the following two conditions are satisfied:

1
Ja>0 with ——- > sup f g(t, 8} g(s) ds (2.23)
f (0) tefo,1] S0

and

" . B ] _
38> 0,8 # o and ¢ € {0,1] with F0MB) P 9e5) a) ds < 1 {2.24)

here M is as in (2.22). Then (2.16) has at least one nonnegative solution y € W![0,1]
with either

(A) O0<a<lylo<B and y(t) > Mo, t€(a,b] if < f
OF .

(B) 0<B<lylo<a and y(t) > M3, tela,b)if f<a
holding,.

‘REMARK 2.3. It is possible to replace ¢ € L[0,1] in (2.18) by the less restrictive condition
Jo 9(s,5) g(s) ds < 0.
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REMARK 2.4. An analogue result could ibe presented for the Sturm Liouville problem
Y~ Ty+¢fly)=0, 0<t<1
ozy(O) - ,63}’(0):0: 0120,520
Ty(1) + 8y (1)=0,v>0,6>0

with e+ ay+58y>0.

In fact it is possible to use the ideas in this section to discuss the differential inclusion

[ o ~Tye —flt,y), 0<t<]
{y(ﬂ)=5(1)=o;( . (2:29)

here f:[0,1]xR — K(R) (X (R) denotes the family of nonempty, compact, convex subsets
of R). Our results rely on the following existence result {1] for the integral inclusion

90 € [ K6,9) flou(o)ds, 1€ (0,1 (2.26)

THEOREM 2.4. Let 1 < p < oo and ¢, 1 < g < oo, the conjugate to p, £:(0,1]x[0,1] —
R and f:{0,1] x R — K(R). In addition suppose the following conditions are satisfied:

for each t€{0,1], the map s+ k(f,s) is measurable, {(2.27)
1 /g
sup ;( f Ik (2, s)|qu) < oo, (2.28)
telo,1] o
i
f 1Bt s) — kit, s)|7ds = 0 as - ¢, foreach ¢ €0,1], (2.29)
0
for each ¢ € [0,1], k(t,s) >0 forae s€0,1], {2.30)
| for each measurable »:{0,1] - R, the map t+~» f(t,u(t)) (2.31)
| has measurable single valued selections, ’
for ae. t€10,1], the map u+— f{t,u) is upper semicontinuous, (2.32)
§ foreach r >0, 3k € LP[0,1] with |Ff{t )| < Ae(2) (2 33)
i forae. t€[0,1] and every ye R with |y| <, )
forae. £€]0,1] and all y€ (0,00}, u>0 forall u€ fit,y), (2.34)
Jx e I90,1] with &:10,1] =+ (0,00) and (2.35)
with k(t,s) < x(s) for t€[0,1], ae s€(0,1], A
] 3a, 5, 0<a<b<l and M, 0< M <1, (2.36)
with k(2,5) > M«&(s) for t€[a,b], ae s€0,1],

and nondecreasing on (0,00) with w(y) >0 for y >0, and (2.37)

Ahe LP[0,1] with k:[0,1] = (0,00), and w >0 continvous
| with |f(t, ¥} < () wly) forae. t€{0,1] and all y€(0,00),

37 € L?[a,b] with >0 a.e. on [a,b] and with for a.e. (2.38)
t€la,b] and y€ (0,00), u > r{t) w(y} forall ue€ fit,v), i
Ja>0 with = {2.39)

i
(@) S9Pectos) Jo Kt 6(e) 45 ©
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and

. ; B
38 > 0,8 # a and * € [0, 1] with o B) [ ke, 97057 &5 < 1. (2.40)

Then (2.26) has at least one nonnegative solution y € CJ0, 1] with either
(A) 0<a<|yo<B and y{t) > Mo, te(a,d] if a<p
or .
(B) 0<B<ylo< o and y(t) > MB, t€(ab]if f<a
holding.

Let ¢ (respectively %) be the solution of (2.19) (respectively (2.20}) and let

{ ¢(s) P(t)/wo, s<t

(t'n 3) =

&(t) ¥(s)/wo, t<s,
with wo = ¢'(s) ¥(s) — ¢(s) ¥'(s) > 0. We can rewrite (2.25) as

v) € [ 9t.) flou(sN ds, te 0,1

Let
k(t,s) = g(t,s) and &(s)=g(s,s),
and notice {2.27) - (2.30) and (2.35) — {2.36) are satisfied with M given in (2.22).

THEOREM 2.5. Let 1<p< oo, f:[0,1]x R =+ K(R) and fix e, b € (0,1) with a < b.
Suppese (2.17), (2.31) - (2.34), (2.37), (2.38) hold and in addition assume the following
conditions are satisfied:

Je>0 with @ > 1 , (2.41)

w{@) supepo fol g(t,s) h(s)ds —

and

. . B .
38 > 0,8 # o and * ¢ [0, 1] with w(15) f: o9 7(5) 45 < 1 (2.42)

here M is asin (2.22). Then (2.25) has at least one nonnegative solution y € W?2P[0, 1]
with either

(A) 0<e<|yo€ B and y(t) > Ma, te[a b if a<p

or
(B) 0<B8<|yio<a and y(t) > MB, t€[ab] if f<a
holding,. '

3. Differential Equations on Semi—infinite Intervals

In this section we discuss the boundary value problem

Y+ mPy4gf(y)=0, 0<t<o
y(0) = 0, limyo y(¢) = 0.

Before we state and prove a general existence resu]t for (3. 1), we recall the followmg existence
principle [5] for the integral equation

v = [ ke ) ds, te Do), (32)

(3.1)
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Recall BC[0, o0} denotes the space of bounded, continuous functions defined on [0, o0) with
norm given by |y|o = SuP,efo,00) [¥{2)|- The space 1[0, 00 is a subset of BC0,00) which

consists of all y € BC[0, 00) such that lm, ., y(f) exists.

THEOREM 3.1. Let k : [0,00) X [0,00) & R and suppose the following corditions are

satisfied:
0 < ke(s) = k(t,s) € L'[0, o0) for each ¢ € [0, co),

the map ¢+ k¢ is continuous from [0, 00} to L![0, o),
{ J0< M < 1, k€ LY0,00) and [a,8] C {000}, a < b,
such that k(t,s} > M«&(s) >0, t € [a,B], a.e. s€[0,00),
k(t, 8y < k(s), t €[0,00), a.e. s€[0,00),
ke LY0,00) with k;— & in L'[0,00) as t — oo,
f:R — R is continuous and nondecreasing with f(z) > 0 for u > 0,

Ja> 0 with a > 1

flo) supyeio o0 fo- Kt s)ds ~

and

B
FMB) ok sy ds

Then (3.2) has at least one nonnegative solution y € Cj[0,0c) with either

38 > 0,5 # a and £ € {0, 00) with

(A) 0< o < lylo < B and y(t) > Ma, t€[a,b] if a<p

or
(B)O<P <Yl S and y(t) > MBS, te[ab]if f<a

holding.
We can apply Theorem 3.1 now to (3.1). Suppose

(3.3)
(34)

(3.5)

(3.6)
(3.7)
(3.8)

(3.9)

(3.10)

1
m#0, ¢ € L'[0,00), ¢ 2 0 ae. on [0,00) with Jim e-m"‘/o e tg(s)ds =0 (3.11)

is satisfied. Notice we can rewrite (3.1) as

u®) = [~ 694 Fu(s)) ds, t€0,0)

where 2,
Git, ) = emz [m2, 1], s<t
——1—5[1 e‘"‘z"] t<s
Let

k(t,8) = G(t,s) g(s) and k(s) = G(s,s5)q(s).

Notice (3.3), (3.4) and (3.6) hold since
k(t,8) _ wEv L, es
s(e) ] 1=

1—emis = | —gmis

e—mz | 4 -1 = e—m2 [}

=1, t<s.

(3.12)
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Next take @, b € {0,00) with ¢ < b. Let

M = min {1 —emhe e (3.18)
Notice if s < ¢ we have
k(. s) =™t s mmit s mmTh o e [a, B],
r(s) - -

whereas if 5 >t we have

2¢

k(??‘;) = ;+e—mzs >1-e™t>1-e""¢ for te [a,]-
FA - €

As a result (3.5) holds. Also notice (3.7) holds with % = 0 since (3.11) implies

e—mz [

fu ” lkuls)| ds — [0 t s = 1] g(s) ds+i2 [1- e ft ~ g(s) ds
= [ ats)as - efm"ftjo as) ds+ il = [ eeae)ds

m2

—+ 0 as t — oo.

THEOREM 3.2. Assume (3.8) and (3.11) hold. Fix «, b € (0,00} with ¢ < b and suppose
the following two conditions are satisfied:

Ja >0 with sup ® G{t,s) g(s) ds - (3.14)
f ( o) > t€[0,00) J0

and

- 8 < 1; (3.15)
f(MB) [; G(2*,5) q(s)ds
here M is asin (3.13). Then (3.1) has at least one nonnegative solution y € Cj[0,00) with
either

38> 0,8 # a and £* € {0, o) with

(A) 0<a<|ylw <8 and y(t) > Me, te(ab if a<p
or

(B) 0<B<|ylw < and y(t) > MB, t€[a,b] if <o
holding. ‘

REMARK 3.1. A similar argument can be used (the details are left to the reader) to
establish an analogue of Theorem 3.2 for the boundary value problem

Y4+ 1y +efly) =0, 0<t<o
y(0) =0, lim; o g(t) =10.
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