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A GENERALIZATION OF DURRMEYER-TYPE
POLYNOMIALS AND THEIR APPROXIMATION
PROPERTIES

Octavian Agratini

1. INTRODUCTION

The Bernstein polynomial approximation process of discrete type defined for every func-
tion f belonging to the space C([0,1]) by (Bnf)(z) = Y f_q Pnx(z) f(k/n), where

n

Dak(z) = (k) F(1—z)"*, z e [0,1), (1)

has been the object of many investigations serving as a guide for theorems that can be proved
for a large class of positive linear approximation processes on a bounded interval.
Simultaneously, the Bernstein polynomial basis B, = (Pmk)k=o_,_n' is a treasure of nice
properties.
In order to obtain an approximation process in spaces of integrable functions, J.L. Dur-
rmeyer [5] defined the following integral modification of the Bernstein polynomial:

n 1
(an)(r) = (n'+ 1) Z.'Pn.k(f)fo pﬂ.k(t)f(t)dt: f G Ll([or]']): T € [0, 1]1 (2)
k=0

which can be used for restoring f if its moments fol f(t)t*dt are given. These polynomials
were extensively studied by Marie Madeleine Derriennic [4]. The sequence (D, f)n>1 appears

‘This paper is in final form and no version of it will be submitted for publication elsewhere.

9

FT. Howard (ed.), Applications of Fibonacci Numbers, Volume 9: Proceedings of the Tenth International Research Conference on
Fibonacei Numbers and their Applications. 9-18.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.




10 O. Agratini

more complicated and maybe more difficult to compute but it possesses some desirable prop-
erties, of which the most notable are commutativity, self-adjointness and simple expansions
by Legendre polynomials. It was also shown that D.f, n € N, are positive contractions in
Ly([0,1]), p > 1, spaces. It is the above mentioned properties that make D,, f simpler than the
Bernstein polynomial approximation. Therefore, we are able to prove for (2) approximation
results that we are not able to prove for Bernstein polynomials from which D,, f originate.

In a recent paper Michele Campiti and Giorgio Metafune [3] replaced in the polynomials
By f the binomial coefficents by general ones satisfying similar recursive properties, more
precisely they replaced the sequences of constant value 1 at the sides of Pascal’s triangle with
arbitrary ones and defined the coefficients of their polynomials using the same rule of binomial
coefficients. The new sequence does not converge to the identity operator but to an operator
multiplied by an analytic function, say ¢, depending on the sequences of the sides of Pascal’s
triangle. The authors studied the uniform convergence of these operators together with some
quantitative estimates and regularity properties.

Motivated by all the above researches we propose a new general class of polynomials. The
next section is devoted to construct this class. In Section 3 we investigate the convergence
of the operators giving general estimates in terms of the modulus of smoothness. In the last
section we focus our attention on establishing concrete examples of ¢ function by manipulating
the numerical sequences mentioned above. Also some further ideas are presented.

2. CONSTRUCTION OF THE POLYNOMIALS M, i

At first step we consider two sequences of real positive numbers a = (@n)n>1, b= (bn)n>1.
For every n € N and k € {0,1,..., n} we define the polynomials

q’n.k(m) = Cu.kzk(l = $)ﬂ-k3 s [0: 1]1 (3)
* where the coefficients satisfy the following recursive formulas
Cn+4-1,k :cn,k+cn.k—ls k= 1)"'1"‘: Cn,0 =@Qpn, Cpn :bn- (4)

We shall consider polynomials having the form

n 1
(Maf)@) = (0 +1) Y guale) /0 Prs (), = €0, 1], (5)

k=0

where f € Ly([0,1]).
Actually, the polynomials defined by (3) belong to the space

n
Pl= {sEPnzs(z) :Za,-x"(l—::)“"", a; > 0, z'—O,...,n},

i=0

where P, represents the set of all algebraic polynomials of degree less than or equal to n. Best
of our knowledge, such polynomials were firstly studied by Jurkat and Lorentz [6] who were
concerned with density and degree of approximation questions.
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As regards the relations (4), if aj = b; = 1 for every j = 1,...,m, we have ¢, ; = (z) for
every k=0,...,n. Hence, in this case M, f becomes Dy, f defined by (2).
It is clear that the polynomial M, f is determined uniquely by the two sequences a and

b. We can point out this fact by using a more precise notation named M{*® f- Throughout
the paper, we will use one or another of the notations as required by the context.

Remarks: (i) For every n € N, the operator My, is linear positive and maps the space Ly([0,1])
into P,,. . .
(if) If the sequences o) = (a{),5,, b0) = >, G € {1,2}, satisfy the following

conditions 01(11) < a.,(,z) ,bﬁl) < b,(f) for every n > 1,7 then it is easy to check that

Mr(‘u(l)'b(l))f < M’Sa("‘).b{ﬂ))f, ne N,

for every positive function f € L1([0,1]). In particular, if M is an upper bound for the
sequences a and b, then

MR s < MMM _ 3D, . (6)

(iii) By using (5) and (4) we observe that MY depends linearly on the given sequences
a and b.
Further on, we are going to investigate the sequence (M, f)n>1.

3. PROPERTIES OF THE POLYNOMIALS M, f

We will emphasize the convergence of our sequence-and we will also give estimates of the
rate of convergence preceded by the presentation of the following property.

Theorem 1: Let the operator M, be defined by (5). If f and ¢ belong to L1([0,1]) then the
following identity

/ (Mo )(2)g(e)ds = [ 100450

holds. Particularly, M, is a self-adjoint operator on the space Ly([0, 1]).
Proof: We can write successively '

/I(Mnf)(:c)g(:c)dx =(n+ I)Z_/ Qn,k(z)g(ﬂ}')d;{,‘f ok (t) F(2)dE
0 - =0 0

= /:f(t) {(n+ 1)§cn|kt"(l — )k /: (;:)a:k(l - x)"_kg(a:)dm} dt
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= [o £ Mag) @)

If f and g belong to the complex Hilbert space Ly([0, 1]) then the above relation implies

(M f,9)Lo(0,1)) = (f, Mng) Lo (0,1)»

where (-,-)z,((0,17) stands for the inner product. We recall: (f,9) L0, = ful f(=)g(z)dsz,
where f,g € Ly([0,1]). This completes the proof. o

In what follows e; stands for the j-th monomial, e;(t) = ¢/, ¢t € [0,1], j € Ng :=Nu{0}.
We need the following result.

Lemma 1: If My, is defined by (5) then the following identity

n—1

(Maeo)(®) = 3~ (ama(L — 2)™ + bnz™(1 — £)) + an(1 — )" + bya™, (7)

m=1

z € [0,1], holds true.
Proof: By using the Beta function B(.,-) we obtain

! n : 1
n®dt= (7 )Bk+Ln—k+1)=—— k=0,1,...,n
j;p,k()t (k)(+nk+) —— k=0,1,..,n

and consequently (Myep)(z) = Y F_;cnez¥(1 — )" *. Based on Remark (iii) we shall find
the operators Am,n, Bmq, m = 1,n which are associated to the sequences a,b and verify the
identity

n n
My=MED =Y 0+ > bmB. (8)
m=1

m=1
Following the same technique as in [3], firstly we choose b = 0 and a — 8m, where

dm = (bm,n)n>1, Om n being the symbol of Kronecker. We obtain Amneg = M,E‘s""o)eu. Taking
into account the relations (4) we get

Umpc)e) = 3 ("7 1)eH -2yt =, i = T,

and (An qe0)(z) = (1 - )"
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Secondly we choose a = 0, b = 4, and this leads to the identity B, neo =.M,SD‘6'“)eg.
The same relations (4) imply

(Brneo))= Y ("7

k=m

n—1
(n-m—l)zk(l —n)"F=(1-z)z™ fm=T,n—1,

and (By neo)(x) = z™.
Substituting the above expressions of the function AmneoyBmner, m = 1,n, in the
identity (8) we obtain the claimed result. O

Remark: From (7) we deduce (Mpneo)(0) = a, and (Mpeo)(1) = b,. This means that the
convergence of (My)n>1 implies the convergence of the sequences @ and b. In what follows we
assume that these sequences converge and set

nli’ngo an =g, n.ll}u(}o by = Ip. 9)

Because of the above assumption we can define the functions o, 7, belonging to RO a5
follows

[l ' 5= 0; [T bms™(1-1), 0<z <],
o(z) = o0 - m(z) =
Yomeiomz(l—z)™, 0<z<1 Iy, z =1,

and
p=0+T. (10)

These definitions were suggested by the formula (7). Also, we mention that the bounded-
ness of a and b guarantee that the power series which appear in the definition of & and r have
radii of convergence greater than or equal to 1.

Moreaver, |o(z)| < (1 — ) sup,;»; |am| and |7(z)| < zsup,,5; |bu| for every z € [0, 1).

In order to estimate the degree of convergence we involve wy, the first modulus of smooth-
ness corresponding to a bounded function f: [0,1] — R,

wr(@) = sup{|f(z) = fW)| : zy € [0,1], |z - y| <6}, 0<a<1.
Among its remarkable properties we recall that for every § > 0
I£(8) = f(=)| £ A +87%(t - 2)*)ws(8), (t,2) €[0,1] % [0,1], (11)

see e.g. [2; Chapter 5, §. 1].
On the other hand we need the following identity due to Derriennic [4; page 327]:

2nz(l — ) — 6z(1l — z) + 2
R [ | R 12

ii’n.k(l‘)[] Puk(t)(t — z)%dt =

k=0
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Theorem 2: Let M, be defined by (5). For every z € [0,1] one has

|(My f)(z) — f(z)(Mreo)(z)| £ p(r)(1 + An(2))ws(1/vVR+2),
where |

pn) = Eg{am,bm} and Ay(z) :=2((n —3)z(1 -z)+1)/(n+3). . (13)

Proof: By using Remark (ii), for every natural n we get

i1 1
[(Mah)(2)| < (n+1) ) enpz™(1 — Z)“"’/; P k() [R(8)]dt < p(n)(Dnlkl)(z).

k=0

Further on, choosing h = f — f(z)eq and knowing that M, is linear, the relations (11)
and (12) allow us to write

(Mo f)() — () (Mneo)(z)| < u(n n+1zpnk / Pk () — £(z)ldt

< u(n) n+1)Zpuk(m‘ ( ! 62,[ pnk(t)(t—a:)"dt) w(8)

k=0

N 2 (n—3)z(1 —z) +1
‘“(”)(Ha—z n+2)(m+3) )“’f@'

By taking § = 1/+/n + 2 the conclusion of our theorem follows. O

Theorem 3: Let My be defined by (5) such that the sequences a and b converge. For every
z € [0, 1] one has

[(Mn f)(2) = p(z)f ()] < p(n)(1 + An(2))ws (/v +2) + ((1 = 2)" + z™)u(n)|f ()],
where @, p(n), An(z) are defined by (10) respectively (13) and v(n) is given by

v(n) := sup max{la; — an|, [b; — ba|}. . (14)
jz2n

Proof: We can write

|(Mn f)(z) — p()f ()] < [(Mnf)(2) — f(z)(Maeo)(z)| + | f(z) || (Mneo)(z) — p(z)|.
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For the first quantity we apply Theorem 2. As regards the second quantity we use both
Lemma 1 and the expression of the function ¢, see (10). For every 0 < 2 < 1 we have

|(Mneo)(z) — ¢(z)]

an(l—z)* 4 bpz™ - Z amz(l — )™ — Z bnz™(1 - x)

m=n m=n

1-=)" E(an — antk)z(l — z)* + 5" Z(b“ ~ bayr)z®(1 — z)
k=0 k=0

< (1~ )" +"w(n).

If £ =0o0r £ =1itis easy to see that the previous inequality holds true.
Combining the above statements we obtain the desired result. a
By a straightforward calculation we obtain

1
max ., ., (1 —z)" +2") = 1 and f An(z)ds = %
0

for every positive integer n. Also, for every z € [0, 1}, we deduce Ay (z) < 1/2, Ao(z) < 2/5 and
for n 2 3, An(z) < An(1/2) = (n — 1)/(n +3) consequently we can state An(z) < 1. Taking

into account these facts, Theorem 3 leads to the following
Corollary: Let M, be defined by (5) such that the sequences a and b converge.

(%) If f € C([0,1]) then || M f — f ||< 2pu(n)wy(1/v/nF2) +v(n) || £ ||, where -1 s
the sup-norm defined by || h ||= SUP¢epo, [R(2)]-

(#8) If f € Ly([0, 1]) then || Muf = of [:< 3p(n)eos (1/v/mF 2) +v(n) || £ ||s, where Il 1l

is the usual norm of this space defined by || b ||,= ful |h(2)|dt.

Using the Remark of this section and Theorem 3 we can completely describe the conver-
gence of (My)n>;.
Theorem 4: Let My, be defined by (5) and X be a normed linear space, where X = C([0, 1))
or X = Ly([0,1]). The sequence (Mp)n>1 converges on X if and only if the sequences a and
b converge.

In this case, if ¢ denotes the function defined by (10), we have

Jlin Mot = o1

in the norm of the space X, for every f € X.
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In addition we point out the behaviour of M, f when f belongs to any Lebesgue space
Ly([0,1]), 1 < p < 00, endowed with the usual norm || « ||, (0,1
Theorem 5: Let M, be defined by (5) such that the sequences a and b admit an upper bound
M less or equal to 1. Then M, f is a contraction in Ly([0,1]) for every f € L,([0,1]), where
1<p<oo
Proof: At first we recall that these classes of functions are nested as follows: C(lo,1]) c
Loo([0,1]) € Ly([0,1]) C L1([0,1]), for any p € (1,00).

The proof is simple and runs taking into account that it is sufficient to prove the result for
p=o0 and p =1 as we can use the Riesz-Thorin theorem to obtain the result for 1 < p < o0
from these special cases.

In fact, || f | 2o (j0,1)= €55 suP.eo,1) | f(z)| and by using (6) we have

| Mo f l|zeotto, ) I f M2,y MM Moo = B || £ ll2eo01)) Dreo <[ £ llz. 0,1,

since Dpeg = eg. At the same time, for p = 1 choosing in the proof of Theorem 1 g = ep, we
easily obtain

1 1
Il My f fIL.(lu,1}}S]{1 £ (®)|(Mpeo)(t)dt < Hfu [F@I(Dneo)(t)dt <|| £ I, o)) -

This way, the announced result is proved. ]

4. SPECIAL CASES

It has become clear that the function ¢ is strongly dependent on the sequences a and b.
The aim of this Section is to point out the numerous possibilities regarding the structure of
the function ¢ when we choose the mentioned sequences.

Firstly, we keep in mind the construction of ¢ as a polynomial of degree less or equal
to g(¢ € P,;). We consider the sequences @ and b such that beginning with the rank g they
are definitively constant, which means a, = @ and bn = b for every n > gq. After some
manipulations, the relation (10) implies

Ple) = (1) + 529 +2(1 - 2) 3" (am(l = &)™ 4 bpe™ ), ze 0,1, (15)

m=1

The relations (13) and (14) will have a new look, that is

#(n) = p(g) and ¥(n) =0, n=q,q+1,9+2,...,

and consequently, for every f € L([0,1]), one has

4
| Muf —f h< 3H@ui(l/Vn+2), n=q,q+1,q+2,....
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Conversely, it is not difficult to prove that every polynomial ¢ belonging to the space P,

-can be written as in (15) from which we can obtain the corresponding sequences a and b. In

this respect we make the first step indicating the constants @ and b; one has @ = ¢(0), b = e(1).

Secondly, let’s consider a and b non-decreasing sequences. Putting d,, = an —ay—1, dl, :=

bn — bn—1 for every n > 1 with the convention ag = by = 0, one has a,, = Y18k by =
> kw1 4 and from (10), after a few calculations, we obtain

e@) =) da(l-2)"+ Y dpz™, ze€(0,1]. (16)

m=1

By a suitable selection of (dm)m>1 and (d],)m>1 we can create a function ¢ with expo-
nential growth.

For example, choosing d,, = 0 and d!, = 1/m!, m > 1, one obtains p(z) = e — 1.
Alternatively if d;, = Ly /m!, where (L) is the well-known Lucas sequence, then one arrives
at the exponential generating function of this sequence, more exactly o(z) = e*= 4 ef* — 9
with @ = (1 +v/5)/2 and 8 = (1 — v/5)/2.

(a)m

In the same relation (16) we put d,, = 0 and d,, = mr);;;!, m > 1, where @ and 8 are

positive fixed numbers. We recall (a)o =1 and (a)r = a{a+1)...(a+k—1) for k> 1. This
choice leads us to the confluent hypergeometric function

o(z) =1 Fi(e, B32) ~ 1, z€[0,1]. a7

However, this is a convergent series for all values of = and by using Kummer’s equation,
we get -
d%p

de
IEEE-{—(,B—:U)E—QQO—Q.

We have free hands to give & and 8 various values obtaining in (17) functions with a great
personality, as reflected in [1, § 13.6, p. 509).

Final remarks: We consider the sequence (M, Fnp>1 a fertile field of investigation. Practi-
cally, we keep in mind the following directions: the study of the iterates, asymptotic properties
as Voronovskaja-type formula, some qualitative properties of the function i studying the se-
quences a and b, results concerning the convergence of derivatives of M, f for a differentiable
function f, and also linear combinations of our operators.
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