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Linear Operators Generated
by a Probability Density Function

Octavian Agratini

Abstract. In this paper we deal with linear positive operators of
both discrete and integral type. For the former we obtain the limit of
iterates and for the latter we investigate the order of approximation
in various spaces of functions proving that the sequence becomes an
approximation process.

§1. Introduction

The trend of using probability methods in Approximation Theory has
become of common usage. Following this approach, the aim of the paper
split into five sections, is to introduce and investigate a general sequence
of linear positive operators of integral type. The starting point is a given
approximation process of discrete type, which we manipulate with the help
of the density function of a certain random variable; our construction is
described in Section 2. Further on, in Sections 3 and 4 we establish both
pointwise and global estimates of the rate of convergence of our operators
in the framework of various function spaces. For this purpose we use the
modulus of smoothness, a Lipschitz-type maximal function, the Peetre
functional K, and the Hardy-Littlewood maximal function. We estimate
approximation order in L,-spaces for smooth functions.

In order to illustrate the general class of discrete operators used in
our construction, in the last section we appeal to a polynomial sequence
introduced by E. W. Cheney and A. Sharma. We use this opportunity to
present a new property regarding the limit of iterates of this sequence.
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§2. The Class (An)

Firstly, we present the general notation and definitions we shall use in the
paper.

Let J be a real interval and J its interior. Since an affine substitution
maps (a,b), —00 < a < b < 0o, onto (0,1), R} = (0,00) or R, it is enough
to consider these intervals as being J. Let I,, C 7Z be a set of indices con-
sistent with J, this meaning {k/n: k € I,} C J. Throughout the paper
we will denote by C(J) the space of all real-valued continuous functions
on J; B(J) represents the Banach space of all real-valued bounded func-
tions on J endowed with the sup-norm || - || defined by || || := sup | f(z)],

zEJ

f € B(J). Furthermore, we set Cp(J) := C(J) N B(J), which is endowed
with the same norm || - ||.
Also used in the sequel are the Lebesgue spaces (Ll - )1 £p S

oo, where ||fll, = (/U(a:)l”dt)l/p for 1 < p < o0, and ||flle =
J

esssup | f(z)| for p = oo. Also, e; stands for the j-th monomial, e;(t) = ¥,

z€J
j €Np = N U {0}
Let L, n € IN, be linear operators having the form

Laf)@) = 3 anp(@f(k/n), <€J, (1)

keln

where an € C(J), @nk 20, for every (n, k) € N x I and feFcC R’
such that (1) is well defined. In order for (L) to become an approximation
process we require the following conditions to be fulfilled:

Lneo =€, Lnei=e1, Lnez=¢€2+ W/ Un, (2)

where w € C(J), w(z) > 0 for every T € J and the sequence (Un)n>1
satisfies u, = O(n*) (n — 00) with 0 <A < 2.

Actually, the above requirements imply that Ln, n € IN, have the
degree of exactness 1 and, according to the well-known Bohman-Korovkin
theorem, one has ||Lnf — f|| — 0 on each compact K C J, for all
f e C(J)nF. More complete details in this direction can be found,
for instance, in [2]. Moreover, @n,k >0 and Z Gn . = €o guarantee that

kel
each a,, x belongs to Cp (J)-

Next, let X be a real random variable on a probability space (8P
Denoting by ¥ its probability density function, we assume that 9 € Ly(R)
and supp(¥) C [~mul NJ, p > 0. A bounded compactly supported
¥ € L2(R) is automatically in L,(R). Also, one has ¥ > 0 and

1wm=[wmﬂ=L @3)
R
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We set E(X) := e, Var(X) := o2, the expectation and the variance
of X respectively.
Starting from X we generate the random variables Xaqk defined by

Xpe=n"'X+k—e), (nk)eNxI,. (4)

Consequently Py, ,, the distribution function of Xn,k, satisfies
dPx, , = ny(n-—k+e) and one has E(X, ) = k/n, representing exactly
the mesh of the L,, operators. ,

Letting D := {f € R’ | B(|f o Xnkl) < co for every (n,k) € N x I,,}
~and taking into account L, defined at (1), we introduce the operators
An :D — C(R), n € N, as follows:

Anf = Z ankE(f o n,k) = Z a‘”sk/fo ””k,dP' (5)
Q

kel, kel,

It is obvious that A, n € IN, are linear positive operators and the following
relations

kel,

Maf)@) =1 S ani(z) f F(Eyb(nt - k + e)dt
R

kel,

= Y@ [ f(@+k-a/mpo,
supp(+)) ;

hold true for every f € D and z € J.

We mention that these operators are different from Feller operators
[6] and other generalizations following this line. All of them were based
on independence, and as a rule, identically distributed random variables.
Among the extensions of Feller type we quote a general one due to Mo-
hammad Kazim Khan [7; Eq. (2.1)]. Since X is non-constant, by exam-
ining (4) we deduce that for any (ki,kz) € I, x I,, k1 # ka, the variables
Xnky» Xk, are not independent. All variables Xnk, (n,k) e Nx I, rep-
resent scaled versions of the same variable X, they being obtained from it
by contractions (1/n, n € N) and by translations ((k — €)/n, k € I,). As
regards the domain D it is easy to see that it includes the space Ljyc(J)
consisting of all real-valued functions that are locally Lebesgue integrable,
i.e., integrable on every compact subset of the interval J.

As we will see in the sequel, the operators A, defined at (5) have
the advantage that they can be used for L,-approximation. While these
operators are of integral type, we will prove that they keep the degree of
exactness 1.



4 0. Agratini

§3. Estimates for Continuous Functions
At first we present some technical results gathered in the following
Lemma 1. Let A,, n € N, be defined by (5). Then
(i) the degree of exactness of An is I;
(ii) Anez = ez +0%/n® +w/u,;
(iii) if f € Cp(J) then [|Anf]l < [IF]-

Proof: For the first statement it is enough to show Aneq = €o and Ape; =
¢1. These are consequences of the identities (2) satisfied by L.

The term Lpez from (2) and definition (5) imply the second statement.
Since

(AaD)@I < Y anp@( [ #OR)IA =171, S € Cald)
hels supp(¥)
we deduce that A, f is non-expansive and the last statement is proved. O
Denoting by Q,T, s € Ny, the s-th order central moment of the
operator T, that is Q,T(x) := T((e1 — zeo)*, z), Lemma 1 implies
QOATI = 1) QlAn = 0) Q?‘Aﬂ = 62/”’2 i w/uﬂ' (6)
We give a general estimate of the rate of convergence in terms of the
modulus of smoothness wy, associated to the function h € C(J).
Theorem 1. Let A, n € N, be defined by (5).. For every fec\J),
(i) lim A,f = f uniformly on any compact K C J;
(i) |(Anf)(@) = F(@)] < (1+ealo X 2)wy(n=2), z € J;
(iii) if f is differentiable on J and f' € C(J) then

(Anf)(@) — F(@)] < (0/n+ VW@ tn) L+ a0y N, 2)wp (n72), @ € J.
Here ¢, (o, A\, z) := n*?(a/n + /w(z)/un)-
Proof: Our first assertion follows directly from Lemma 1 - (i) and (ii) -
and the theorem of Bohman-Korovkin.

Since Ane; = ej, j € {0,1}, a general estimate for linear positive
operators (see, e.g. [2; Theorem 5.1.2]) allows us to write

(An))e) ~ $@1 < (1+ 50726 ) w1(B),
respectively

(Anf)(@) = £@)] < @A) 72(0) (14 302 @) wr®),
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for every > 0 and z € J. Because u, = O®*) (n — 00), with0 <A <2,
in the above we choose § = n~*? and by using the inequality v/a+ [0 <
vo+ /B the proof of the last two statements is finished. O

As regards the quantities ca (0, A, ), (n,z) € N x J, we observe that
lim cn(0, ), x) = ¢y/w(z), where ¢ is a constant which does not depend

n—oo

on .
Further on, we present the relationship between the local smoothness

of f and the local approximation. To do this, we recall that a function
f € C(J) is locally Lipa on E (0 < a <1, E C J) if it satisfies the
condition :

|f(z) — f@)| < Mylz —yl*, (z,9) € J % E, (7)
where Mj is a constant depending only on a and f.

It is clear that (7) holds for any z € J and y € E, the closure of
the set E in R. Let (z,z0) € J x E such that |z — zo| = d(z, F) =
inf{|z — y| : vy € E}, the distance between z and E. Since |f — f(z)| <
|f — f(zo0)| + |f(zo) — f(z)| and A, is a positive linear operator, we get

[(Anf)(@) — F(@)| < Ballf = f(@o)l,2) + | f(2) = f(z0)]

8
b (W ) D B .

Knowing that Aph® < AZ/?R? for any h > 0, h € D, (see Holder’s
inequality with parameters r := 2/a and s := 2/(2 — a)), we deduce

Aﬂ(lel & :Ela,a:) = (Q2Aﬂ)a/2(m): z € J. (9)

On the other hand, in the inequality (a+b)* < a*+0%,a>0,b= 0,
0 < a < 1, putting a = |t — z|, b = |z — 0| and using (6), relation (9)
implies
An(Mgler — zol*, z) < My(An(ler — 2%, 2) + |2 — Zo[*)
< My ((Q2A,)**(2) + l& — 20|*)
< M;((o/m)* + (w(@) /un)*’? + |z — 20|*)-

Returning to (8) we can state

Theorem 2. Let A,, n € N, be defined by (5),0 < a <1, and E be any
subset of J. If f is locally Lipa on E then

& af2
(Anf) (&) — F(a)| < My ((f) +(22) 7 2 E)) , zel
n Un
Examining this result we deduce: in particular for E = J, if f satisfies
wf(t) = O(t*) then there exists a constant My, independent of n and z,
such that |Anf — f| < My((o/n)™ + (w/ua)*?).
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The local behaviour of a function can be measured by the Lipschitz-
type maximal function of order @ introduced by B. Lenze [8] as

— f(t
fo(x) :=sup @) = FO )l, zeJ, ae(0,1],
t#z ‘ﬂ: s tla
teJ
for every bounded f € Ljoc(J). The finiteness of f gives a local con-
trol for the smoothness of f. Boundedness of f.’ is, roughly speaking,
equivalent to f € Lipa on J.

Theorem 3. Let A,, n € N, be defined by (5), a€ (0,1] and f € D be
bounded. Then

wils 2 &2 /2
|(Anf)(ac)—f(a:)is(2m“/2( (#) w78 ) @), wed

Up 3n2

Proof: Since |f(z) — f (££=2)| < f3'(z) |z — £E=¢|", with the help of
Hélder’s integral inequality (r := 2/a, s := 2/(2 — a)), we can write

((Anf)(@) = f(@)| < £2(2) Y ank(@) f ‘m _t+k_

et supp(%)
Zan‘k(z)( f (:c %— f P2/ (2= “)(t)dt) f ().
— supp(¥) ' -

o (10)
Denoting the first integral by ¢, x(z) and knowing that supp(y) C
[—u, ¢, we can proceed to write

D ankolf = 3 any(anen)?

kel kel,
(S (st ™) = (5 msens)”
kel, kel, kel,
a/2
< (3 ane f (—(t+k— e)/n)2dt) a (2#9215 +32 Zgg) ;

keI

Relation (2) guarantees Q3 L, = w/u,. Returning to (10) and taking
into account (3), our conclusion follows. O

The last quantitative estimate of this section will be given by using
the Peetre functional K, defined as follows

Ky(f,t) = inf{||f — gl +tllg"ll : g€ C*(J)NCB(J)}, t>0.
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Theorem 4. Let A,, n € N, be defined by (5). If f € Cp(J) then
|(Anf)(z) — f(2)| < 2Ka(f,27 (o/n+ Vw(z)/un)),
Proof: Let us fix g in C*(J)NCa (J) and z in J. Taylor’s formula implies
t
g(t) = g(z) +g'(x)( — z) +f (t —u)g" (u)du.

At the first step, by using the linearity of A, the values Apej, j € {0,1},
(t+k—e)/n
(¢ + & — &)/~ uldu| < (¢ +K—e)/n—2)’

oo
and relation (3) we get successively

the inequality

(h0)@) ~ o) = [ [ (=01 (i)

S et [ ([ ko g wan)ved

by supp(¥)
(t+k—e)/n
<Y ens@ [ (64 k — €)/n — ulg’ (w)du| @)t (11)
kel,
supp(¥)

< 19" Y ane@) / (@t + % —e)n =) p(e)de} 913

kels supp(¥)

11 Y 2@ o) [ (E+k-e)fn—af v

EEln supp(¥)

<11 2 ans@) (T anale) [ (k-0 -zt

k€In kEla supp(¥)

= ||g"1(R240)*(2) < llg"ll(@/n + Vw(z)/tin)- (12)

At the second step, by using (12) for an arbitrary f € Cg(J) we have

1/2

((Anf)(@) — £@)] = [Anlf — 9,2) + 9(x) — f(2) + (Ang)(@) — 9(=)]
< [[An(f — )l +lg = £l + llg"ll(a/n + Vw (@) /un).

We use Lemma 1 and taking the infimum over g € Cc%(J)NCg(J) we
obtain the claimed result. O
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It is known [5] that Peetre functional K is equivalent to the regular
modulus of smoothness w, in other words there exist some constants § > 0
and tg > 0 such that

ﬁ_1w2(f!t) < K'Z(fa tg) < ﬂw2(fat): f E CB(J): 0<t< to,

where wa(f,t) := sup | A2 f||. Here A% f(z) = f(z+h)—2f(z)+ f(z—h)

forzt+hed and vamshes otherwise.
In the light of this equivalence, Theorem 4 implies the following.
If wy(f, t) = O(t%), 0 < @ < 2, then a certain constant 3 exists such that

|(Anf)(@) — F(@)] < Blo/(2n) + @)/ (dun)) /2.

§4. Estimates in L, Spaces

We will focus on the case J = [0, 00) as it exhibits the problems caused by
a finite endpoint and by the unboundedness of the interval. In the sequel
AC“" denotes the space of all real-valued functions that are absolutely
contmuous in every closed bounded and positive interval. Regarding the
function w that appeared in (2), we suppose additional hypotheses to be
fulfilled. More precisely, we impose

w(z) =z"w(z), z€J=[0,00), 0<7<1, (13)

where W € C(J) satisfies 0 < a := mf w(z) and sup w( )i=b< o0.
zeJ

We need the Hardy-Littlewood ma.mmal function Mg of g € Lis:(J),
1 [t '
(Mg)(z) :=sup |—f |g(u)|du‘, zeJ (14)
t#x t—% x )

Let 1 < p < oo and suppose g belongs to Ly(J). Then Mg belongs
to L,(J) and a classical result due to Hardy-Littlewood says that

Mglls < Yllgll (15)
where 7, is a constant depending only on p. Obviously veo = 1. For more
details, [3; Chapter 8, §5] can be consulted.

Lemma 2. Let Ap, n € IN, be given by (5) such that (13) is fulfilled.
(i) If f' exists and f, f' belong to ACY then, for 0 <z <n~?,

loc

[(Anf)(z) = f(2)] < er(n)(Mf') (=),
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where ci(n) :=o/n+ (Irg[%ﬁ] Vw(z))/\/ tn-

(ii) If f" exists énd f,wf" belong to AC} then, for z > n*,
|(Anf)(@) — f(@)] £ ca(n)(Muwf") (),

where ca(n) = a~1(0%/n*™ 4 b/un).
(t+k—e)/n
Proof: (i) Since f((t+Fk— e)/n)— f(z) = / - f'(u)du and using

both (14) and (9) (with a = 1) we obtain :

(ReH@) ~ 1@ € S anete) [ [FEEZE = o] e )

keln supp(¥)

_ Alles — sh Y MP@) < 4 T + 22 Mf @)

Un

Since 0 < z < n~* < 1, the first conclusion follows.

(ii) It is easy to prove that z7|v — u| < u"|z — v| for any 7 € (0,1],
where u lies between z and v, & > 0, v > 0. Using this inequality and
relation (13), we have

lv—ul _ lz—v] _

ool
ww) ~ zw(u) ~ ez”

Choosing, in the above, v := (t + k — €)/n we can write

7 () f"()] (@ (t+k=e)/n)?
@G+ k= e)n—ul € o

Now we rewrite (11) for f and taking into account (14) and (6) we get

(AnD @)@ < MDY ans [ ETEEEZD iy

k€ln  supp(y)

- ) (o) = (o + ) (MO

axT a \ zTn2 Up
Since z > n~*, the second conclusion follows. O

For smooth functions in L,-spaces, the following property holds.
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Theorem 5. Let 1 < p < oo. Let A,, n € N, be defined by (5) such
that (13) is fulfilled. If ', f" exist and f, f',wf" belong to AC}:_NL,(J),
then the following inequality

AnSf = fllo < S ) Il + Nlwsf”ll), (16)
holds, where ¢,(n) is a constant depending on n and p with the property
lim ¢,(n) =
n—oo

Proof: Combining both cases of Lemma 2, for any = > 0 we get

[(Arf) (@) = f(@)] < ea(m)(MSf)(z) + (Muwf") (=),

where c3(n) can be chosen to be ¢;(n)+cz(n). Examining these constants,
clearly we have

lim c3(n) = 0. (17)
For 1 < p < oo, the preceding inequality and Minkowski’s inequality
imply
[Anf = fllp < es(r)(IMF'llp + [Mwf”||).

By virtue of (15) we find out [|Mf'[l, < [l f'llp, [[Muwf”|lp < 5 llwf”|l
and we arrive at (16) with ¢,(n) = c3(n) ma.x{’yp, 1. Relation (17) com-
pletes the proof of our assertion. O

In view of the proofs of this section, we conclude that the case J
bounded, more exactly J = [0, 1], implies that the number ||wl|¢(,) exists.
Instead of (16), the first part of Lemma 2 leads us to the following relation

[Anf = fllp < cp()||f'|lp, if f' exists and f, f’ belong to D N L,(J).

§5. Cheney-Sharma Operators Revisited

Among numerous examples of discrete operators satisfying conditions (1)
we decided upon the following classical sequence which was enriched in
time with new properties. Based on a combinatorial identity of Abel-
Jensen, E. W. Cheney and A. Sharma [4] have investigated the operators

(Quf)(@) = ank(sc of (%), 7ec@), zep, new,
where

G,k (2; 8) = (1+nB)'™" (:)$($+ kB)F 11— z)[1 -z + (n— k)B] 1,
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and [ is a non-negative pararneter.

The authors proved that (Qn)n is an approximation process preserv-
ing the constant functions. In [10] was shown that @, reproduces the
linear functions, thus Qn has the degree of exactness 1 and (1) is fulfilled.
Setting QL = @n, Qrtl = QT oQn, n € N, we bring to light a new
property, proving that these iterates satisfy the following limiting relation

Jim (@QEAE) = FO)+(F0) - FO) fec@1, (89

uniformly on [0,1], for any 8 = 0.

Taking in view the approach presented in [1], the proof runs as follows.

Defining Sap = {f € C((0,1]) : f(0) =a, f(1) =18}, (a,0) ER X R,
every S, p is a closed subset of C([0,1]) and the system (Sa,b)a,p makes
up a partition of this space. It is easy to see that each Q. f interpolates
the function f in 0 and 1. Consequently, for all (a,b) € R X IR, Sap is
an invariant set of Qn. On the other hand, Qnls.p : Sap — Sap is a
contraction for every (a,b) € R x R and n € IN. Indeed, if f; and f2
belong to S, p then we get

|(@nf1)(2)—(@nf2)(@)] < (1=Gn (@i )= ann(®:F)) SUP |f1(2)~fa(@)]
<@ =21 +np) )1 — fall

At this moment we introduce pa b, Pa,s(z) = a + (b — a)z, = € [0,1].
One has pa s € Sap. Since Qy reproduces the affine functions, pap is &
fixed point of Q. For any f € C([0,1]) one has f € S§),5(1)- By using
the characterization of weakly Picard operators due to L. A. Rus [9] and
the contraction principle, we arrived at (18).

In the terminology of [9] this means that the Cheney-Sharma operator
is a weakly Picard operator.

References

1. Agratini, O., On some Bernstein type operators: iterates and gener-
alizations, East Journal on Approximations, 9(2003), 4, 415-426.

2. Altomare, F. and M. Campiti, Korovkin-type Approximation Theory
and its Applications, de Gruyter Series Studies in Mathematics, Vol.
17, Walter de Gruyter & Co., Berlin, New York, 1994.

3. Bennett, C. and R. Sharpley, Interpolation of Operators, Vol. 129,
Series: Pure and Applied Mathematics, Academic Press, Inc., 1988.

4. Cheney, E. W. and A. Sharma, On a generalization of Bernstein poly-
nomials, Riv. Mat. Univ. Parma, (2), 5(1964), 77-84.




12

10.

0. Agratini

Ditzian, Z. and V. Totik, Moduli of Smoothness, Springer Series in
Computational Mathematics, Vol. 9, Springer-Verlag, New York Inc.,
1987.

Feller, W., An Introduction to Probability Theory and its Applica-
tions II, Wiley, New York, 1966.

Khan, M. K., On the rate of convergence of Bernstein power series for
functions of bounded variation, J. Approx. Theory, 57(1989), 90-103.

. Lenze, B., Bernstein—Baskakov—Ka.ntoroviE operators and Lipschitz-

type maximal functions, in Colloquia Mathematica Societatis Jdnos
Bolyai 58, Approximation Theory, Kecskemét, Hungary, J. Szabados
and K. Tandori (eds.), North-Holland Publishing Company, Amster-

dam-Oxford-New York, 1990, 469-496.

. Rus, I. A., Weakly Picard mappings, Commentationes Math. Univ.

Carolinae, 34(1993), 4, 769-773.

Stancu, D. D. and C. Cismasiu, On an approximating linear posi-
tive operators of Cheney-Sharma, Revue d’Analyse Numérique et de
Théorie de I’ Approximation, 26(1997), Nos. 1-2, 221-227.

Octavian Agratini

Babeg-Bolyai University

Faculty of Mathematics and Computer Science
Str. Kogilniceanu, nr. 1

3400 Cluj-Napoca, Romania

agratini@math. ubbcluj.ro



