Electronic Journal of Differential Equations, Vol. 2004(2004), No. 124, pp. 1-17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# ANTI-PERIODIC SOLUTIONS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS 

JEAN-FRANÇOIS COUCHOURON, RADU PRECUP


#### Abstract

In this paper, we extend the existence results presented in 9] for $L^{p}$ spaces to operator inclusions of Hammerstein type in $W^{1, p}$ spaces. We also show an application of our results to anti-periodic boundary-value problems of second-order differential equations with nonlinearities depending on $u^{\prime}$.


## 1. Introduction

This paper concerns the second-order boundary-value problem

$$
\begin{gathered}
-u^{\prime \prime}(t) \in A u(t)+f\left(t, u(t), u^{\prime}(t)\right) \quad \text { for a.e. } t \in[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T),
\end{gathered}
$$

where $0<T<\infty, A$ is an $m$-dissipative multivalued mapping in a Hilbert space $E$ and $f:[0, T] \times E^{2} \rightarrow 2^{E}$. However, in this section, and in Section 2, we shall assume generally that $E$ is a Banach space.

A function $u \in C^{1}([0, T] ; E)$ is said to be $T$-anti-periodic if $u(0)=-u(T)$ and $u^{\prime}(0)=-u^{\prime}(T)$. Note that there exists a close connection between the anti-periodic problem and the periodic one. Indeed, if $u \in W^{2, p}(0, T ; E)(1 \leq p<\infty)$ is a $T$ -anti-periodic solution of the inclusion

$$
-u^{\prime \prime}(t) \in A u(t)+f\left(t, u(t), u^{\prime}(t)\right) \quad \text { a.e. on }[0, T]
$$

and $A, f$ are odd in the following sense:

$$
A(-x)=-A x \quad \text { and } \quad f(t,-x,-y)=-f(t, x, y)
$$

then the function

$$
\widetilde{u}(t)= \begin{cases}u(t), & 0 \leq t \leq T \\ -u(t-T), & T<t \leq 2 T\end{cases}
$$

belongs to $W^{2, p}(0,2 T ; E)$, is $2 T$-periodic, i.e., $\widetilde{u}(0)=\widetilde{u}(2 T), \widetilde{u}^{\prime}(0)=\widetilde{u}^{\prime}(2 T)$, and solves the inclusion

$$
-\widetilde{u}^{\prime \prime}(t) \in A \widetilde{u}(t)+\widetilde{f}\left(t, \widetilde{u}(t), \widetilde{u}^{\prime}(t)\right) \quad \text { a.e. on }[0,2 T]
$$

[^0]where
\[

\widetilde{f}(t, x, y)= $$
\begin{cases}f(t, x, y), & 0 \leq t \leq T \\ f(t-T, x, y), & T<t \leq 2 T\end{cases}
$$
\]

The anti-periodic boundary value problem for various classes of evolution equations has been considered by Aftabizadeh-Aizicovici-Pavel [1], 2]; Aizicovici-Pavel [3], Aizicovici-Pavel-Vrabie 4, Cai-Pavel 6, Coron 7, Haraux 17] and Okochi 19, 20.

Let us denote by $|\cdot|$ the norm of $E$, by $|\cdot|_{p}$ the usual norm of $L^{p}(0, T ; E)$ and by $|\cdot|_{1, p}$ the norm of $W^{1, p}(0, T ; E),|u|_{1, p}=\max \left\{|u|_{p},\left|u^{\prime}\right|_{p}\right\}$. One of the reasons of working with anti-periodic solutions is given by the following proposition.

Proposition 1.1. If $u \in W^{1, p}(0, T ; E)(1 \leq p \leq \infty)$ and $u(0)=-u(T)$, then

$$
\begin{equation*}
|u(t)| \leq \frac{1}{2} T^{\frac{p-1}{p}}\left|u^{\prime}\right|_{p}, \quad t \in[0, T] . \tag{1.1}
\end{equation*}
$$

Proof. Adding $u(t)=u(0)+\int_{0}^{t} u^{\prime}(s) d s$ and $u(t)=u(T)-\int_{t}^{T} u^{\prime}(s) d s$ we have

$$
2 u(t)=\int_{0}^{t} u^{\prime}(s) d s-\int_{t}^{T} u^{\prime}(s) d s
$$

Hence

$$
2|u(t)| \leq \int_{0}^{t}\left|u^{\prime}(s)\right| d s+\int_{t}^{T}\left|u^{\prime}(s)\right| d s=\int_{0}^{T}\left|u^{\prime}(s)\right| d s
$$

Now Hölder's inequality gives (1.1).
Let us denote

$$
C_{a}^{1}=\left\{u \in C^{1}([0, T] ; E): u \text { is } T \text {-anti-periodic }\right\}
$$

In what follows for a subset $K \subset E$, by $P_{a}(K)$ and $P_{k c}(K)$ we shall denote the family of all nonempty acyclic subsets of $K$ and, respectively, the family of all nonempty compact convex subsets of $K$.

Recall that a metric space $\Xi$ is said to be acyclic if it has the same homology as a single point space, and that $\Xi$ is called an absolute neighborhood retract (ANR for short) if for every metric space $Z$ and closed set $A \subset Z$, every continuous map $f: A \rightarrow \Xi$ has a continuous extension $\widehat{f}$ to some neighborhood of $A$. Note that every compact convex subset of a normed space is an ANR and is acyclic.

Our main abstract tools are: The Eilenberg-Montgomery fixed point theorem [13, 18]; a lemma of Petryshyn-Fitzpatrick [14]; and strong and weak compactness criteria in $L^{p}(0, T ; E)$ (see [16] and [12]), where $E$ is a general (non-reflexive) Banach space.

Theorem 1.2. Let $\Xi$ be acyclic and absolute neighborhood retract, $\Theta$ be a compact metric space, $\Phi: \Xi \rightarrow P_{a}(\Theta)$ be an upper semicontinuous map and $\Gamma: \Theta \rightarrow \Xi$ be a continuous single-valued map. Then the map $\Gamma \Phi: \Xi \rightarrow 2^{\Xi}$ has a fixed point.
Lemma 1.3. Let $X$ be a Fréchet space, $D \subset X$ be closed convex and $N: D \rightarrow 2^{X}$. Then for each $\Omega \subset D$ there exists a closed convex set $K$, depending on $N, D$ and $\Omega$, with $\Omega \subset K$ and $\overline{\operatorname{conv}}(\Omega \cup N(D \cap K))=K$.

Theorem 1.4. Let $p \in[1, \infty]$. Let $M \subset L^{p}(0, T ; E)$ be countable and suppose that there exists $a \nu \in L^{p}(0, T)$ with $|u(t)| \leq \nu(t)$ a.e. on $[0, T]$ for all $u \in M$. Assume $M \subset C([0, T] ; E)$ if $p=\infty$. Then $M$ is relatively compact in $L^{p}(0, T ; E)$ if and only if
(i) $\sup _{u \in M}\left|\tau_{h} u-u\right|_{L^{p}(0, T-h ; E)} \rightarrow 0$ as $h \rightarrow 0$
(ii) $M(t)$ is relatively compact in $E$ for a.e. $t \in[0, T]$.

Theorem 1.5. Let $p \in[1, \infty]$. Let $M \subset L^{p}(0, T ; E)$ be countable and suppose there exists $\nu \in L^{p}(0, T)$ with $|u(t)| \leq \nu(t)$ a.e. on $[0, T]$ for all $u \in M$. If $M(t)$ is relatively compact in $E$ for a.e. $t \in[0, T]$, then $M$ is weakly relatively compact in $L^{p}(0, T ; E)$.

Now, we recall the following definition: A map $\psi:[a, b] \times D \rightarrow 2^{Y} \backslash\{\emptyset\}$, where $D \subset X$ and $\left(X,|\cdot|_{X}\right),\left(Y,|\cdot|_{Y}\right)$ are two Banach spaces, is said to be $(q, p)$ Carathéodory $(1 \leq q \leq \infty, 1 \leq p \leq \infty)$ if
(C1) $\psi(., x)$ is strongly measurable for each $x \in D$
(C2) $\psi(t,$.$) is upper semicontinuous for a.e. t \in[a, b]$
(C3) (a) if $1 \leq p<\infty$, there exists $\nu \in L^{q}\left(a, b ; \mathbb{R}_{+}\right)$and $d \in \mathbb{R}_{+}$such that $|\psi(t, x)|_{Y} \leq \nu(t)+d|x|_{X}^{p}$ a.e. on $[a, b]$, for all $x \in D$
(b) if $p=\infty$, for each $\rho>0$ there exists $\nu_{\rho} \in L^{q}\left(a, b ; \mathbb{R}_{+}\right)$such that $|\psi(t, x)|_{Y} \leq \nu_{\rho}(t)$ a.e. on $[a, b]$, for all $x \in D$ with $|x|_{X} \leq \rho$.

## 2. A General Existence Principle

The aim of this section is to extend the general existence principles given in 10 for inclusions in $L^{p}(0, T ; E)$, to inclusions in $W^{1, p}(0, T ; E)$. Here again $E$ a Banach space with norm $|\cdot|$. This extension allows us to consider boundary-value problems for second order differential inclusions with $u^{\prime}$ dependence perturbations and, by this, it complements the theory from [8, 9 and [10].

Let $p \in[1, \infty]$ and $q \in[1, \infty[$. Let $r \in] 1, \infty]$ be the conjugate exponent of $q$, that is $1 / q+1 / r=1$. Let $g:[0, T] \times E^{2} \rightarrow 2^{E}$ and let $G: W^{1, p}(0, T ; E) \rightarrow 2^{L^{q}(0, T ; E)}$ be the Nemytskii set-valued operator associated to $g, p$ and $q$, given by

$$
\begin{equation*}
G(u)=\left\{w \in L^{q}(0, T ; E): w(s) \in g\left(s, u(s), u^{\prime}(s)\right) \text { a.e. on }[0, T]\right\} . \tag{2.1}
\end{equation*}
$$

Also consider a single-valued nonlinear operator

$$
S: L^{q}(0, T ; E) \rightarrow W^{1, p}(0, T ; E)
$$

We have the following existence principle for the operator inclusion

$$
\begin{equation*}
u \in S G(u), \quad u \in W^{1, p}(0, T ; E) \tag{2.2}
\end{equation*}
$$

Theorem 2.1. Let $K$ be a closed convex subset of $W^{1, p}(0, T ; E), U$ a convex relatively open subset of $K$ and $u_{0} \in U$. Assume
(H1) $S G: \bar{U} \rightarrow P_{a}(K)$ has closed graph and maps compact sets into relatively compact sets
(H2) $M \subset \bar{U}, M$ closed, $M \subset \overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup S G(M)\right)$ implies that $M$ is compact
(H3) $u \notin(1-\lambda) u_{0}+\lambda S G(u)$ for all $\left.\lambda \in\right] 0,1[$ and $u \in \bar{U} \backslash U$.
Then 2.2 has a solution in $\bar{U}$.
Proof. Let $D=\overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup S G(\bar{U})\right)$. Clearly $u_{0} \in D \subset K$. Let $P: K \rightarrow \bar{U}$ be given by $P(u)=u$ if $u \in \bar{U}$ and $P(u)=\bar{u}$ if $u \in K \backslash \bar{U}$, where $\bar{u}=(1-\lambda) u_{0}+\lambda u \in \bar{U} \backslash U$, $\lambda \in] 0,1[$. Note $P$ is single-valued, continuous and maps closed sets into closed sets. Let $\widetilde{N}: D \rightarrow P_{a}(K), \widetilde{N}(u)=S G P(u)$. It is easy to see that $\widetilde{N}(D) \subset D$, the graph of $\widetilde{N}$ is closed and $\widetilde{N}$ maps compact sets into relatively compact sets. Let $D_{0}$ be a closed convex set with $D_{0}=\overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup \tilde{N}\left(D_{0} \cap D\right)\right)$ whose existence is guaranteed
by Lemma 1.3. Since $\tilde{N}(D) \subset D$ we have $D_{0} \subset D$ and so $D_{0}=\overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup \tilde{N}\left(D_{0}\right)\right)$. Using the definition of $P$, we obtain

$$
P\left(D_{0}\right) \subset \operatorname{conv}\left(\left\{u_{0}\right\} \cup D_{0}\right)=\overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup \widetilde{N}\left(D_{0}\right)\right)=\overline{\operatorname{conv}}\left(\left\{u_{0}\right\} \cup S G\left(P\left(D_{0}\right)\right)\right)
$$

In addition, since $D_{0}$ is closed, $P\left(D_{0}\right)$ is also closed. Now (H2) guarantees that $P\left(D_{0}\right)$ is compact. Since $S G$ maps compact sets into relatively compact sets, we have that $\widetilde{N}\left(D_{0}\right)$ is relatively compact. Then Mazur's Lemma guarantees that $D_{0}$ is compact. Now apply the Eilenberg-Montgomery Theorem with $\Xi=\Theta=D_{0}$, $\Phi=\widetilde{N}$ and $\Gamma=$ identity of $D_{0}$, to deduce the existence of a fixed point $u \in D_{0}$ of $\widetilde{N}$. If $u \notin \bar{U}$, then $P(u)=(1-\lambda) u_{0}+\lambda u=(1-\lambda) u_{0}+\lambda S G(P(u))$ for some $\lambda \in] 0,1[$. Since $P(u) \in \bar{U} \backslash U$, this contradicts (H3). Thus $u \in \bar{U}$, so $u=S G(u)$ and the proof is complete.

Remark 2.2. Additional regularity for the solutions of (2.2) depends on the values of $S$. In particular if the values of $S$ are in $C_{a}^{1}$ then so are all solutions of 2.2 .

In what follows $K$ will be a closed linear subspace of $W^{1, p}(0, T ; E), u_{0}=0$ and $U$ will be the open ball of $K$,

$$
U=\{u \in K:\|u\|<R\}
$$

with respect to an equivalent norm $\|$.$\| on K$. For $p \in[1, \infty]$ denote

$$
\mu_{p}:=\sup \left\{\frac{|u|_{1, p}}{\|u\|}: u \in K, u \neq 0\right\}, \quad \mu_{0}:=\sup \left\{\frac{|u|_{\infty}}{\|u\|}: u \in K, u \neq 0\right\}
$$

Note that $\mu_{p}$ and $\mu_{0}$ are finite because of the equivalence of norms $\|\cdot\|$ and $|\cdot|_{1, p}$ on $K$ and the continuously embedding of $W^{1, p}(0, T ; E)$ into $C([0, T] ; E)$.

Now we give sufficient conditions on $S$ and $g$ in order that the assumptions (H1)-(H2) be satisfied.
(S1) There exists a function $k:[0, T]^{2} \rightarrow \mathbb{R}_{+}$with $k(t,.) \in L^{r}(0, T)$ and a constant $L>0$ such that

$$
\left|S\left(w_{1}\right)(t)-S\left(w_{2}\right)(t)\right| \leq \int_{0}^{T} k(t, s)\left|w_{1}(s)-w_{2}(s)\right| d s
$$

for a.e. $t \in[0, T]$, and $\left|S\left(w_{1}\right)^{\prime}-S\left(w_{2}\right)^{\prime}\right|_{p} \leq L\left|w_{1}-w_{2}\right|_{q}$ for all $w_{1}, w_{2} \in$ $L^{q}(0, T ; E)$
(S2) $S: L^{q}(0, T ; E) \rightarrow K$ and for every compact convex subset $C$ of $E, S$ is sequentially continuous from $L_{w}^{1}(0, T ; C)$ to $W^{1, p}(0, T ; E)$. (Here $L_{w}^{1}(0, T ; C)$ stands for $L^{1}(0, T ; C)$ endowed with the weak topology of $\left.L^{1}(0, T ; E)\right)$
(G1) $g:[0, T] \times E^{2} \rightarrow P_{k c}(E)$
(G2) $g(., z)$ has a strongly measurable selection on $[0, T]$, for every $z \in E^{2}$
(G3) $g(t,$.$) is upper semicontinuous for a.e. t \in[0, T]$
(G4) If $1 \leq p<\infty$, then $\left|g\left(t, z_{1}, z_{2}\right)\right| \leq \nu(t)$ for a.e. $t \in[0, T]$ and all $z_{1}, z_{2} \in E$ with $\left|z_{1}\right| \leq \mu_{0} R$; if $p=\infty$, then $\left|g\left(t, z_{1}, z_{2}\right)\right| \leq \nu(t)$ for a.e. $t \in[0, T]$ and all $z_{1}, z_{2} \in E$ with $\left|z_{1}\right| \leq \mu_{\infty} R$ and $\left|z_{2}\right| \leq \mu_{\infty} R$. Here $\nu \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$.
(G5) For every separable closed subspace $E_{0}$ of the space $E$, there exists a $(q, \infty)$ Carathéodory function $\omega:[0, T] \times\left[0, \mu_{0} R\right] \rightarrow \mathbb{R}_{+}, \omega(t, 0)=0$, such that for almost every $t \in[0, T]$,

$$
\beta_{E_{0}}\left(g\left(t, M, E_{0}\right) \cap E_{0}\right) \leq \omega\left(t, \beta_{E_{0}}(M)\right)
$$

for every set $M \subset E_{0}$ satisfying $|M| \leq \mu_{0} R$, and $\varphi=0$ is the unique solution in $L^{\infty}\left(0, T ;\left[0, \mu_{0} R\right]\right)$ to the inequality

$$
\begin{equation*}
\varphi(t) \leq \int_{0}^{T} k(t, s) \omega(s, \varphi(s)) d s \quad \text { a.e. on }[0, T] \tag{2.3}
\end{equation*}
$$

Here $\beta_{E_{0}}$ is the ball measure of non-compactness on $E_{0}$. (Recall that for a bounded set $A \subset E_{0}, \beta_{E_{0}}(A)$ is the infimum of $\varepsilon>0$ for which $A$ can be covered by finitely many balls of $E_{0}$ with radius not greater than $\varepsilon$ )
(SG) For every $u \in \bar{U}$ the set $S G(u)$ is acyclic in $K$.
Remark 2.3. If $S$ has values in $C_{a}^{1}$ then a sufficient condition for ( S 1 ) is to exist a function $\theta \in L^{r}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
\left|S\left(w_{1}\right)^{\prime}-S\left(w_{2}\right)^{\prime}\right|_{p} \leq \int_{0}^{T} \theta(s)\left|w_{1}(s)-w_{2}(s)\right| d s
$$

for all $w_{1}, w_{2} \in L^{q}(0, T ; E)$.
Indeed, using Proposition 1.1 and Hölder's inequality, we immediately see that (S1) is satisfied with $k(t, s)=\frac{1}{2} T^{\frac{p-1}{p}} \theta(s)$ and $L=|\theta|_{r}$.
Remark 2.4. In case that $k(t,.) \in L^{\infty}(0, T)$ for a.e. $t \in[0, T]$, we may assume that $\omega$ in (G5) is a ( $1, \infty$ )-Carathéodory function (in order that the integral in 2.3 ) be defined).

As in [10 we can prove the following existence result.
Theorem 2.5. Assume (S1)-(S2), (G1)-(G5) and (SG) hold. In addition assume (H3). Then 2.2 has at least one solution $u$ in $K \subset W^{1, p}(0, T ; E)$ with $\|u\| \leq R$.

The proof is based on Theorem 2.1 and consists in showing that conditions (H1)(H2) are satisfied. We shall use the following analog of [10, lemma 4.4].

Lemma 2.6. Assume (S1), (S2). Let $M$ be a countable subset of $L^{q}(0, T ; E)$ such that $M(t)$ is relatively compact for a.e. $t \in[0, T]$ and there is a function $\nu \in L^{q}\left(0, T ; \mathbb{R}_{+}\right)$with $|u(t)| \leq \nu(t)$ a.e. on $[0, T]$, for every $u \in M$. Then the set $S(M)$ is relatively compact in $W^{1, p}(0, T ; E)$. In addition $S$ is continuous from $M$ equipped with the relative weak topology of $L^{q}(0, T ; E)$ to $W^{1, p}(0, T ; E)$ equipped with its strong topology.

Proof. Let $M=\left\{u_{n}: n \geq 1\right\}$ and let $\varepsilon>0$ be arbitrary. As in the proof of 10 , lemma 4.3], we can find functions $\widehat{u}_{n, k}$ with values in a compact $\bar{B}_{k} \subset E$ ( $\bar{B}_{k}$ being a closed ball of a $k$ dimensional subspace of $E$ ) such that

$$
\left|u_{n}-\widehat{u}_{n, k}\right|_{q} \leq \varepsilon
$$

for every $n \geq 1$. Then assumption (S1) implies

$$
\begin{gather*}
\left|S\left(u_{n}\right)-S\left(\widehat{u}_{n, k}\right)\right|_{p} \leq\left.\left.\left\|\left.\left.k(t, .)\right|_{r}\right|_{p}\left|u_{n}-\widehat{u}_{n, k}\right|_{q} \leq \varepsilon\right\| k(t, .)\right|_{r}\right|_{p},  \tag{2.4}\\
\left|S\left(u_{n}\right)^{\prime}-S\left(\widehat{u}_{n, k}\right)^{\prime}\right|_{p} \leq L\left|u_{n}-\widehat{u}_{n, k}\right|_{q} \leq \varepsilon L \tag{2.5}
\end{gather*}
$$

On the other hand, according to Theorem 1.5, the set $\left\{\widehat{u}_{n, k}: n \geq 1\right\} \subset L^{q}(0, T ; E)$ is weakly relatively compact in $L^{q}(0, T ; E)$. Then assumption (S2) guarantees that $\left\{S\left(\widehat{u}_{n, k}\right): n \geq 1\right\}$ is relatively compact in $W^{1, p}(0, T ; E)$. Hence from (2.4) and 2.5 we see that $\left\{S\left(\widehat{u}_{n, k}\right): n \geq 1\right\}$ is a relatively compact $\varepsilon \varrho$-net of $S(\bar{M})$ with
respect to the norm $|\cdot|_{1, p}$, where $\varrho=\max \left\{L,\left||k(t, .)|_{r}\right|_{p}\right\}$. Since $\varepsilon$ was arbitrary we conclude that $S(M)$ is relatively compact in $W^{1, p}(0, T ; E)$.

Now suppose that the sequence $\left(w_{m}\right)_{m}$ converges weakly in $L^{q}(0, T ; E)$ to $w$ and $w_{m} \in M$ for all $m \geq 1$. In view of the relative compactness of $S(M)$, we may assume that $\left(S\left(w_{m}\right)\right)_{m}$ converges in $K$ towards some function $v \in K$. We have to prove

$$
v=S(w)
$$

For an arbitrary number $\varepsilon>0$, we have already seen that the proof of [10, lemma 4.3] provides a compact set $P_{\varepsilon}$ and a sequence $\left(w_{m}^{\varepsilon}\right)_{m}$ of $P_{\varepsilon}$-valued functions satisfying,

$$
\begin{equation*}
\left|w_{m}-w_{m}^{\varepsilon}\right|_{q} \leq \varepsilon \tag{2.6}
\end{equation*}
$$

for every $m \geq 1$. Now the sequence $\left(w_{m}^{\varepsilon}\right)_{m}$ being weakly relatively compact in $L^{q}(0, T, E)$, a suitable subsequence $\left(w_{m_{j}}^{\varepsilon}\right)_{j}$ must be weakly convergent in $L^{q}(0, T, E)$ towards some $w^{\varepsilon}$. Then Mazur's Lemma and 2.6 provide

$$
\begin{equation*}
\left|w-w^{\varepsilon}\right|_{q} \leq \varepsilon \tag{2.7}
\end{equation*}
$$

The triangle inequality yields

$$
\begin{align*}
|v-S(w)|_{p} \leq & \left|v-S\left(w_{m_{j}}\right)\right|_{p}+\left|S\left(w_{m_{j}}\right)-S\left(w_{m_{j}}^{\varepsilon}\right)\right|_{p} \\
& +\left|S\left(w_{m_{j}}^{\varepsilon}\right)-S\left(w^{\varepsilon}\right)\right|_{p}+\left|S\left(w^{\varepsilon}\right)-S(w)\right|_{p} \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
\left|v^{\prime}-S(w)^{\prime}\right|_{p} \leq & \left|v^{\prime}-S\left(w_{m_{j}}\right)^{\prime}\right|_{p}+\left|S\left(w_{m_{j}}\right)^{\prime}-S\left(w_{m_{j}}^{\varepsilon}\right)^{\prime}\right|_{p}  \tag{2.9}\\
& +\left|S\left(w_{m_{j}}^{\varepsilon}\right)^{\prime}-S\left(w^{\varepsilon}\right)^{\prime}\right|_{p}+\left|S\left(w^{\varepsilon}\right)^{\prime}-S(w)^{\prime}\right|_{p}
\end{align*}
$$

Passing to the limit when $j$ goes to infinity in (2.8), 2.9) and using assumption (S2) we obtain

$$
\begin{gather*}
|v-S(w)|_{p} \leq \limsup _{j}\left|S\left(w_{m_{j}}\right)-S\left(w_{m_{j}}^{\varepsilon}\right)\right|_{p}+\left|S\left(w^{\varepsilon}\right)-S(w)\right|_{p},  \tag{2.10}\\
\left|v^{\prime}-S(w)^{\prime}\right|_{p} \leq \limsup \left|S\left(w_{m_{j}}\right)^{\prime}-S\left(w_{m_{j}}^{\varepsilon}\right)^{\prime}\right|_{p}+\left|S\left(w^{\varepsilon}\right)^{\prime}-S(w)^{\prime}\right|_{p} \tag{2.11}
\end{gather*}
$$

According to 2.6 and 2.7 we deduce from (2.10), 2.11) and assumption (S1) that

$$
|v-S(w)|_{p} \leq\left.\left. 2 \varepsilon| | k(t, .)\right|_{r}\right|_{p}, \quad\left|v^{\prime}-S(w)^{\prime}\right|_{p} \leq 2 \varepsilon L
$$

Hence $|v-S(w)|_{1, p} \leq 2 \varepsilon \varrho$. Since $\varepsilon$ was arbitrary we must have $v=S(w)$ and the proof is complete.

Proof of Theorem 2.5. (a) First we show that $G(u) \neq \emptyset$ and so $S G(u) \neq \emptyset$ for every $u \in \bar{U}$. Indeed, since $g$ takes nonempty compact values and satisfies (G2)(G3), for each strongly measurable function $u:[0, T] \rightarrow E^{2}$ there exists a strongly measurable selection $w$ of $g(., u()$.$) (see [11], Proof of Proposition 3.5$ (a)). Next, if $u \in L^{p}\left(0, T ; E^{2}\right)$, (G4) guarantees $w \in L^{q}(0, T ; E)$. Hence $w \in G(u)$.
(b) The values of $S G$ are acyclic according to assumption (SG).
(c) The graph of $S G$ is closed. To show this, let $\left(u_{n}, v_{n}\right) \in \operatorname{graph}(S G), n \geq 1$, with $\left|u_{n}-u\right|_{1, p},\left|v_{n}-v\right|_{1, p} \rightarrow 0$ as $n \rightarrow \infty$. Let $v_{n}=S\left(w_{n}\right), w_{n} \in L^{q}(0, T ; E) ; w_{n} \in$ $G\left(u_{n}\right)$. Since $\left|u_{n}-u\right|_{1, p} \rightarrow 0$, we may suppose that for every $t \in[0, T]$, there exists a compact set $C \subset E^{2}$ with $\left\{\left(u_{n}(t), u_{n}^{\prime}(t)\right) ; n \geq 1\right\} \subset C$. Furthermore, since $g$ is upper semicontinuous by (G3) and has compact values, we have that $g(t, C)$ is compact. Consequently, $\left\{w_{n}(t): n \geq 1\right\}$ is relatively compact in $E$. If we also take into account (G4) we may apply Theorem 1.5 to conclude that
(at least for a subsequence) $\left(w_{n}\right)$ converges weakly in $L^{q}(0, T ; E)$ to some $w$. As in [15, p. 57], since $g$ has convex values and satisfies (G3), we can show that $w \in G(u)$. Furthermore, by using Lemma 2.6 and a suitable subsequence we deduce $S\left(w_{n}\right) \rightarrow S(w)$. Thus $v=S(w)$ and so $(u, v) \in \operatorname{graph}(S G)$.
(d) We show that $S G(M)$ is relatively compact for each compact $M \subset \bar{U}$. Let $M \subset \bar{U}$ be a compact set and $\left(v_{n}\right)$ be any sequence of elements of $S G(M)$. We prove that $\left(v_{n}\right)$ has a convergent subsequence. Let $u_{n} \in M$ and $w_{n} \in L^{q}(0, T ; E)$ with

$$
v_{n}=S\left(w_{n}\right) \quad \text { and } \quad w_{n} \in G\left(u_{n}\right)
$$

The set $M$ being compact, we may assume that $\left|u_{n}-u\right|_{1, p} \rightarrow 0$ for some $u \in \bar{U}$. As above, there exists a $w \in G(u)$ with $w_{n} \rightarrow w$ weakly in $L^{q}(0, T ; E)$ (at least for a subsequence) and $S\left(w_{n}\right) \rightarrow S(w)$. Hence $v_{n} \rightarrow S(w)$ as we wished. Now (c) and (d) guarantee (H1).
(e) Finally, we check (H2). Suppose $M \subset \bar{U}$ is closed and $M \subset \overline{\operatorname{conv}}(\{0\} \cup S G(M))$. To prove that $M$ is compact it suffices that every sequence $\left(u_{n}^{0}\right)$ of $M$ has a convergent subsequence. Let $M_{0}=\left\{u_{n}^{0}: n \geq 1\right\}$. Clearly, there exists a countable subset $M_{1}=\left\{u_{n}^{1}: n \geq 1\right\}$ of $M, w_{n}^{1} \in G\left(u_{n}^{1}\right)$ and $v_{n}^{1}=S\left(w_{n}^{1}\right)$ with $M_{0} \subset \overline{\operatorname{conv}}\left(\{0\} \cup V^{1}\right)$, where $V^{1}=\left\{v_{n}^{1}: n \geq 1\right\}$. Furthermore, there exists a countable subset $M_{2}=\left\{u_{n}^{2}: n \geq 1\right\}$ of $M, w_{n}^{2} \in G\left(u_{n}^{2}\right)$ and $v_{n}^{2}=S\left(w_{n}^{2}\right)$ with $M_{1} \subset \overline{\operatorname{conv}}\left(\{0\} \cup V^{2}\right)$, where $V^{2}=\left\{v_{n}^{2}: n \geq 1\right\}$, and so on. Hence for every $k \geq 1$ we find a countable subset $M_{k}=\left\{u_{n}^{k}: n \geq 1\right\}$ of $M$ and correspondingly $w_{n}^{k} \in G\left(u_{n}^{k}\right)$ and $v_{n}^{k}=S\left(w_{n}^{k}\right)$ such that $M_{k-1} \subset \overline{\operatorname{conv}}\left(\{0\} \cup V^{k}\right)$, with $V^{k}=\left\{v_{n}^{k}: n \geq 1\right\}$. Let $M^{*}=\bigcup_{k \geq 0} M_{k}$. It is clear that $M^{*}$ is countable, $M_{0} \subset M^{*} \subset M$ and $M^{*} \subset \overline{\operatorname{conv}}\left(\{0\} \cup V^{*}\right)$, where $V^{*}=\bigcup_{k \geq 1} V^{k}$. Since $M^{*}, V^{*}$ and $W^{*}:=\left\{w_{n}^{k}: n \geq 1, k \geq 1\right\}$ are countable sets of strongly measurable functions, we may suppose that their values belong to a separable closed subspace $E_{0}$ of $E$. Since $\left|w_{n}^{k}(t)\right| \leq \nu(t)$ where $\nu \in L^{q}(0, T)$, then [10, Lemma 4.3] guarantees

$$
\beta_{E_{0}}\left(M^{*}(t)\right) \leq \beta_{E_{0}}\left(V^{*}(t)\right)=\beta_{E_{0}}\left(S\left(W^{*}\right)(t)\right) \leq \int_{0}^{T} k(t, s) \beta_{E_{0}}\left(W^{*}(s)\right) d s
$$

while (G5) gives

$$
\begin{equation*}
\beta_{E_{0}}\left(W^{*}(s)\right) \leq \beta_{E_{0}}\left(g\left(s, M^{*}(s), E_{0}\right) \cap E_{0}\right) \leq \omega\left(s, \beta_{E_{0}}\left(M^{*}(s)\right)\right) \tag{2.12}
\end{equation*}
$$

It follows that

$$
\beta_{E_{0}}\left(M^{*}(t)\right) \leq \int_{0}^{T} k(t, s) \omega\left(s, \beta_{E_{0}}\left(M^{*}(s)\right)\right) d s
$$

Moreover the function $\varphi(t)=\beta_{E_{0}}\left(M^{*}(t)\right)$ belongs to $L^{\infty}\left(0, T ;\left[0, \mu_{0} R\right]\right)$. Consequently, $\varphi \equiv 0$, and so

$$
\varphi(t)=\beta_{E_{0}}\left(M^{*}(t)\right)=0
$$

a.e. on $[0, T]$. Let $\left(v_{i}^{*}\right)$ be any sequence of $V^{*}$ and let $\left(w_{i}^{*}\right)$ be the corresponding sequence of $W^{*}$, with $v_{i}^{*}=S\left(w_{i}^{*}\right)$ for all $i \geq 1$. Then, as at step (c), ( $w_{i}^{*}$ ) has a weakly convergent subsequence in $L^{q}(0, T ; E)$, say to $w$. Also 2.12 together with $\omega(t, 0)=0$ implies that the set $\left\{w_{i}^{*}(t): i \geq 1\right\}$ is relatively compact for a.e. $t \in[0, T]$. From Lemma 2.6 we then have that the corresponding subsequence of $\left(S\left(w_{i}^{*}\right)\right)=\left(v_{i}^{*}\right)$ converges to $S(w)$ in $W^{1, p}(0, T ; E)$. Hence $V^{*}$ is relatively compact. Now Mazur's Lemma guarantees that the set $\overline{\operatorname{conv}}\left(\{0\} \cup V^{*}\right)$ is compact and so its subset $M^{*}$ is relatively compact too. Thus $M_{0}$ possesses a convergent subsequence as we wished. Now the result follows from Theorem 2.1.

## 3. The Anti-Periodic Solution Operator

For the rest of this paper $E$ will be a real Hilbert space of inner product (.,.) and norm |.|. Consider the anti-periodic boundary value problem

$$
\begin{gather*}
-u^{\prime \prime}-\varepsilon u^{\prime} \in A u+g\left(t, u, u^{\prime}\right) \quad \text { a.e. on }[0, T]  \tag{3.1}\\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T),
\end{gather*}
$$

in $E$, where $\varepsilon \in \mathbb{R}$ and $A: D(A) \subset E \rightarrow 2^{E} \backslash\{\emptyset\}$ is an odd m-dissipative nonlinear operator.

Let us consider the anti-periodic solution operator associated to $A$ and $\varepsilon$,

$$
S: L^{2}(0, T ; E) \rightarrow H^{2}(0, T ; E) \cap C_{a}^{1}
$$

defined by $S(w):=u$, where $u$ is the unique solution of

$$
\begin{gather*}
-u^{\prime \prime}-\varepsilon u^{\prime} \in A u+w \quad \text { a.e. on }[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T) \tag{3.2}
\end{gather*}
$$

The operator $S$ is well defined as it follows from Theorem 3.1 in Aftabizadeh-Aizicovici-Pavel [1]. It is clear that any fixed point $u$ of $N:=S G$, where $G$ is the Nemytskii set-valued operator given by (2.1) with $p=q=2$, is a solution for (3.1).

Theorem 3.1. The above operator $S$ satisfies (S1) and (S2) for $p=q=2$ and $K=\overline{C_{a}^{1}}$ in $H^{1}(0, T ; E)$ with norm $\|u\|=\left|u^{\prime}\right|_{2}$.

Proof. (I) We first show that $S$ satisfies (S1). Let $w_{1}, w_{2} \in L^{2}(0, T ; E)$ and denote $u_{i}=S\left(w_{i}\right), i=1,2$. Then $-u_{i}^{\prime \prime}-\varepsilon u_{i}^{\prime}=v_{i}+w_{i}$, where $v_{i}(t) \in A u_{i}(t)$ a.e. on $[0, T]$. One has

$$
-\left(u_{1}-u_{2}\right)^{\prime \prime}(t)-\varepsilon\left(u_{1}-u_{2}\right)^{\prime}(t)=\left(v_{1}-v_{2}\right)(t)+\left(w_{1}-w_{2}\right)(t)
$$

Multiplying by $\left(u_{1}-u_{2}\right)(t)$ and using that $A$ dissipative, we obtain

$$
\begin{align*}
& -\left(\left|u_{1}(t)-u_{2}(t)\right|^{2}\right)^{\prime \prime}+2\left|u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right|^{2}-\varepsilon\left(\left|u_{1}(t)-u_{2}(t)\right|^{2}\right)^{\prime} \\
& \leq 2\left(w_{1}(t)-w_{2}(t), u_{1}(t)-u_{2}(t)\right) \tag{3.3}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left|u_{1}(t)-u_{2}(t)\right|^{2} \leq 2 \int_{0}^{T} G(t, s)\left(w_{1}(s)-w_{2}(s), u_{1}(s)-u_{2}(s)\right) d s \tag{3.4}
\end{equation*}
$$

Here $G$ is the Green function of the differential operator $-u^{\prime \prime}-\varepsilon u^{\prime}$ corresponding to the anti-periodic boundary conditions. This yields

$$
\begin{equation*}
\left|S\left(w_{1}\right)(t)-S\left(w_{2}\right)(t)\right| \leq m \int_{0}^{T}\left|w_{1}(s)-w_{2}(s)\right| d s \tag{3.5}
\end{equation*}
$$

where $m=2 \max _{(t, s) \in[0, T]^{2}} G(t, s)$. From (3.3) by integration we obtain

$$
\int_{0}^{T}\left|u_{1}^{\prime}-u_{2}^{\prime}\right|^{2} d s \leq \int_{0}^{T}\left(w_{1}-w_{2}, u_{1}-u_{2}\right) d s
$$

This together with (3.5) yields

$$
\left|S\left(w_{1}\right)^{\prime}-S\left(w_{2}\right)^{\prime}\right|_{2} \leq \sqrt{m T}\left|w_{1}-w_{2}\right|_{2}
$$

(II) The fact that $S$ satisfies (S2) is achieved in several steps: (1) We first show that the graph of $S$ is sequentially closed in $L_{w}^{2}(0, T ; E) \times H^{1}(0, T ; E)$. In this order,
let $w_{j} \rightarrow w$ weakly in $L^{2}(0, T ; E)$ and $S\left(w_{j}\right) \rightarrow u$ strongly in $H^{1}(0, T ; E)$. Then $\left(w_{j}-w, S\left(w_{j}\right)-S(w)\right) \rightarrow 0$ strongly in $L^{1}(0, T ; \mathbb{R})$. Now (3.4) implies

$$
\left|S\left(w_{j}\right)(t)-S(w)(t)\right| \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Hence $S(w)=u$.
(2) For each positive integer $n$ we let

$$
J_{n}=\left(J-\frac{1}{n} A\right)^{-1}, \quad A_{n}=n\left(J_{n}-J\right)
$$

where $J$ is the identity map of $E$. We also consider the operator $S_{n}: L^{2}(0, T ; E)$ $\rightarrow H^{2}(0, T ; E) \cap C_{a}^{1}$, given by $S_{n}(w)=u_{n}$, where $u_{n}$ is the unique solution of

$$
\begin{gather*}
-u_{n}^{\prime \prime}-\varepsilon u_{n}^{\prime}=A_{n} u_{n}+w \quad \text { a.e. on }[0, T] \\
u_{n}(0)=-u_{n}(T), \quad u_{n}^{\prime}(0)=-u_{n}^{\prime}(T) . \tag{3.6}
\end{gather*}
$$

Then

$$
-\left|u_{k}^{\prime \prime}\right|^{2}-\varepsilon\left(u_{k}^{\prime}, u_{k}^{\prime \prime}\right)=\left(A_{k} u_{k}, u_{k}^{\prime}\right)^{\prime}-\left(\left(A_{k} u_{k}\right)^{\prime}, u_{k}^{\prime}\right)+\left(w, u_{k}^{\prime \prime}\right)
$$

Since $A_{k}$ is dissipative, we have

$$
\left(\left(A_{k} u_{k}\right)^{\prime}, u_{k}^{\prime}\right)=\lim _{h \rightarrow 0} \frac{1}{h^{2}}\left(A_{k} u_{k}(t+h)-A_{k} u_{k}(t), u_{k}(t+h)-u_{k}(t)\right) \leq 0
$$

Hence

$$
\left|u_{k}^{\prime \prime}\right|^{2} \leq-\left(A_{k} u_{k}, u_{k}^{\prime}\right)^{\prime}-\left(w, u_{k}^{\prime \prime}\right)-\frac{\varepsilon}{2}\left(\left|u_{k}^{\prime}\right|^{2}\right)^{\prime}
$$

By integration, since $A_{k}$ is odd and $u_{k}$ is anti-periodic, it follows

$$
\left|u_{k}^{\prime \prime}\right|_{2}^{2}=\int_{0}^{T}\left|u_{k}^{\prime \prime}\right|^{2} d t \leq-\int_{0}^{T}\left(w, u_{k}^{\prime \prime}\right) d t \leq \frac{1}{2}\left(|w|_{2}^{2}+\left|u_{k}^{\prime \prime}\right|_{2}^{2}\right)
$$

Consequently,

$$
\begin{equation*}
\left|u_{k}^{\prime \prime}\right|_{2} \leq|w|_{2} \tag{3.7}
\end{equation*}
$$

Using $2\left|u^{\prime}\right|^{2}=\left(|u|^{2}\right)^{\prime \prime}-2\left(u^{\prime \prime}, u\right)$ and $\left(|u|^{2}\right)^{\prime}=2\left(u^{\prime}, u\right)$ we obtain

$$
\begin{align*}
& 2 \int_{0}^{T}\left|u_{k}^{\prime}-u_{m}^{\prime}\right|^{2} d t \\
& =\left(\left|u_{k}-u_{m}\right|^{2}\right)^{\prime}(T)-\left(\left|u_{k}-u_{m}\right|^{2}\right)^{\prime}(0)-2 \int_{0}^{T}\left(u_{k}^{\prime \prime}-u_{m}^{\prime \prime}, u_{k}-u_{m}\right) d t  \tag{3.8}\\
& =-2 \int_{0}^{T}\left(u_{k}^{\prime \prime}-u_{m}^{\prime \prime}, u_{k}-u_{m}\right) d t
\end{align*}
$$

On the other hand

$$
\begin{aligned}
& \left(u_{k}^{\prime \prime}-u_{m}^{\prime \prime}, u_{k}-u_{m}\right) \\
& =-\left(A_{k} u_{k}-A_{m} u_{m}, u_{k}-u_{m}\right)-\varepsilon\left(u_{k}^{\prime}-u_{m}^{\prime}, u_{k}-u_{m}\right) \\
& =-\left(A_{k} u_{k}-A_{m} u_{m}, J_{k} u_{k}-J_{m} u_{m}+\frac{1}{k} A_{k} u_{k}-\frac{1}{m} A_{m} u_{m}\right)-\varepsilon\left(u_{k}^{\prime}-u_{m}^{\prime}, u_{k}-u_{m}\right)
\end{aligned}
$$

and since $A_{k} u_{k} \in A J_{k} u_{k}, A_{m} u_{m} \in A J_{m} u_{m}$ and $A$ is dissipative, we obtain

$$
-\left(u_{k}^{\prime \prime}-u_{m}^{\prime \prime}, u_{k}-u_{m}\right) \leq\left(A_{k} u_{k}-A_{m} u_{m}, \frac{1}{k} A_{k} u_{k}-\frac{1}{m} A_{m} u_{m}\right)+\frac{\varepsilon}{2}\left(\left|u_{k}-u_{m}\right|^{2}\right)^{\prime}
$$

From (3.6) and (3.7), also applying Proposition 1.1 to $u_{k}^{\prime}$, we see that

$$
\left|A_{k} u_{k}\right|_{2} \leq\left|u_{k}^{\prime \prime}\right|_{2}+|w|_{2}+\left|\varepsilon \| u_{k}^{\prime}\right|_{2} \leq\left|u_{k}^{\prime \prime}\right|_{2}+|w|_{2}+|\varepsilon| \frac{T}{2}\left|u_{k}^{\prime \prime}\right|_{2} \leq\left(2+|\varepsilon| \frac{T}{2}\right)|w|_{2}
$$

Then

$$
-\int_{0}^{T}\left(u_{k}^{\prime \prime}-u_{m}^{\prime \prime}, u_{k}-u_{m}\right) d t \leq 2\left(2+|\varepsilon| \frac{T}{2}\right)^{2}|w|_{2}^{2}\left(\frac{1}{k}+\frac{1}{m}\right)
$$

This together with 3.8 shows that

$$
\begin{equation*}
\int_{0}^{T}\left|u_{k}^{\prime}-u_{m}^{\prime}\right|^{2} d t \leq 2\left(2+|\varepsilon| \frac{T}{2}\right)^{2}|w|_{2}^{2}\left(\frac{1}{k}+\frac{1}{m}\right) \tag{3.9}
\end{equation*}
$$

Thus there exists $u \in K$ with $u_{k} \rightarrow u$ in $K$. From (3.9, letting $m \rightarrow \infty$ we have

$$
\begin{equation*}
\left|u_{k}^{\prime}-u^{\prime}\right|_{2}^{2} \leq \frac{2}{k}\left(2+|\varepsilon| \frac{T}{2}\right)^{2}|w|_{2}^{2} \tag{3.10}
\end{equation*}
$$

Now we show that $u$ is the solution of 3.2 . Since $\left(u_{k}^{\prime \prime}\right)$ is bounded in $L^{2}(0, T ; E)$ and $\left(u_{k}^{\prime \prime}\right)$ converges to $w^{\prime}=u^{\prime \prime}$ in $\mathcal{D}^{\prime}(0, \overline{T ; E})$, we may conclude that

$$
\begin{equation*}
u_{k}^{\prime \prime} \rightarrow u^{\prime \prime} \quad \text { weakly in } L^{2}(0, T ; E) \tag{3.11}
\end{equation*}
$$

Let $\mathcal{A}$ be the realization of $A$ in $L^{2}(0, T ; E)$, i.e., $\mathcal{A}: L^{2}(0, T ; E) \rightarrow 2^{L^{2}(0, T ; E)}$,

$$
\mathcal{A} u=\left\{v \in L^{2}(0, T ; E): v(t) \in A u(t) \text { a.e. on }[0, T]\right\} .
$$

Then $\left(\mathcal{A}_{k} u\right)(t)=A_{k} u(t)$ a.e. on $[0, T]$, so that 3.11 implies that

$$
\mathcal{A}_{k} u_{k} \rightarrow-u^{\prime \prime}-\varepsilon u^{\prime}-w \text { weakly in } L^{2}(0, T ; E)
$$

Since $u_{k} \rightarrow u$ strongly in $L^{2}(0, T ; E)$ and $\mathcal{A}$ is $m$-dissipative in $L^{2}(0, T ; E)$, this implies (see Barbu [5, Proposition II. 3.5) $u \in D(\mathcal{A})$ and $\left[u,-u^{\prime \prime}-\varepsilon u^{\prime}-w\right] \in \mathcal{A}$. Thus, $u$ is the solution of $(3.2)$, i.e., $u=S(w)$. Now from (3.10) we see that for each bounded set $M \subset L^{2}(0, T ; E)$ and every $\epsilon>0$, there exists a $k_{0}$ such that

$$
\begin{equation*}
\left\|S_{k}(w)-S(w)\right\| \leq \epsilon \quad \text { for all } k \geq k_{0} \text { and } w \in M \tag{3.12}
\end{equation*}
$$

Hence $S_{k_{0}}(M)$ is an $\epsilon$-net for $S(M)$.
(3) Now we consider a compact convex subset $C$ of $E$ and a countable set $M \subset$ $L^{2}(0, T ; C)$. We shall prove that for each $n$, the set $S_{n}(M)$ is relatively compact in $K$, equivalently, the set $S_{n}(M)^{\prime}$ is relatively compact in $L^{2}(0, T ; E)$. Then, also taking into account (3.12), by Hausdorff's Theorem we shall deduce that $S(M)$ is relatively compact in $K$ as desired. We shall apply Theorem 1.4 to $S_{n}(M)^{\prime}$. From (3.12) and assumption (S1) we see that for each $n$ and any bounded $M \subset$ $L^{2}(0, T ; E)$, the set $S_{n}(M)$ is bounded in $K$. In addition, using

$$
u_{n}(t)=\int_{0}^{T} G(t, s)\left[A_{n} u_{n}(s)+w(s)\right] d s
$$

and the Lipschitz property of $A_{n}$, we obtain

$$
\begin{aligned}
\left|\tau_{h} u_{n}^{\prime}-u_{n}^{\prime}\right|_{2}^{2} & \leq \int_{0}^{T}\left(\int_{0}^{T}\left|G_{t}(t+h, s)-G_{t}(t, s)\right|\left[2 n\left|u_{n}(s)\right|+|w(s)|\right] d s\right)^{2} d t \\
& \leq\left(2 n\left|u_{n}\right|_{2}+|w|_{2}\right)^{2} \int_{0}^{T} \int_{0}^{T}\left|G_{t}(t+h, s)-G_{t}(t, s)\right|^{2} d s d t
\end{aligned}
$$

This implies

$$
\begin{equation*}
\sup _{w \in M}\left|\tau_{h} S_{n}(w)^{\prime}-S_{n}(w)^{\prime}\right|_{L^{2}(0, T-h ; E)} \rightarrow 0 \quad \text { as } h \rightarrow 0 \tag{3.13}
\end{equation*}
$$

We claim that $S_{n}(M)^{\prime}(t)$ is relatively compact in $E$ for every $t \in[0, T]$. Indeed, for any $w \in M$, the unique solution $u_{n}=S_{n}(w)$ of (3.6) satisfies

$$
-u_{n}^{\prime \prime}-\varepsilon u_{n}^{\prime}+n u_{n}=n J_{n} u_{n}+w \quad \text { a.e. on }[0, T] .
$$

If we denote by $\widetilde{G}$ the Green function of the operator $-u^{\prime \prime}-\varepsilon u^{\prime}+n u$ corresponding to the boundary conditions $u(0)=-u(T), u^{\prime}(0)=-u^{\prime}(T)$, then

$$
\begin{equation*}
u_{n}(t)=\int_{0}^{T} \widetilde{G}(t, s)\left[n J_{n} u_{n}(s)+w(s)\right] d s \tag{3.14}
\end{equation*}
$$

Using a result by Heinz, the nonexpansivity of $J_{n}$ and the inclusion $M(s) \subset C$ a.e. on $[0, T]$, from 3.14 , we obtain

$$
\begin{equation*}
\beta_{0}\left(S_{n}(M)(t)\right) \leq n \int_{0}^{T} \widetilde{G}(t, s) \beta_{0}\left(S_{n}(M)(s)\right) d s \tag{3.15}
\end{equation*}
$$

Here $\beta_{0}$ is the ball measure of non-compactness corresponding to a suitable separable closed subspace of $E$. Let

$$
\varphi(t)=\beta_{0}\left(S_{n}(M)(t)\right), \quad v(t)=\int_{0}^{T} \widetilde{G}(t, s) \varphi(s) d s
$$

We have

$$
-v^{\prime \prime}-\varepsilon v^{\prime}+n v=\varphi, \quad v(0)=-v(T), \quad v^{\prime}(0)=-v^{\prime}(T)
$$

According to 3.15, $\varphi \leq n v$. Hence $-v^{\prime \prime}-\varepsilon v^{\prime} \leq 0$. Also since $v \geq 0$ we have $v(0)=v(T)=0$. The maximum principle for the operator $-u^{\prime \prime}-\varepsilon u^{\prime}$ implies $v \leq 0$ on $[0, T]$. Hence $v \equiv 0$. Thus $\beta_{0}\left(S_{n}(M)(t)\right)=0$ for all $t \in[0, T]$, that is $S_{n}(M)(t)$ is relatively compact in $E$. As a result, $S_{n}(M)$ is relatively compact in $C([0, T] ; E)$. Next from (3.14) we have

$$
u_{n}^{\prime}(t)=\int_{0}^{T} \widetilde{G}_{t}(t, s)\left[n J_{n} u_{n}(s)+w(s)\right] d s
$$

whence $S_{n}(M)^{\prime}(t)$ is relatively compact in $E$. This together with 3.13) via Theorem 1.4 implies that $S_{n}(M)^{\prime}$ is relatively compact in $L^{2}(0, T ; E)$.

## 4. Superlinear Inclusions

In this section we establish an existence result for the anti-periodic problem

$$
\begin{gather*}
-u^{\prime \prime}-\varepsilon u^{\prime}-s(u) \in A u+h\left(t, u, u^{\prime}\right) \quad \text { a.e. on }[0, T] \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T) \tag{4.1}
\end{gather*}
$$

in the Hilbert space $E$, where $\varepsilon>0, A: D(A) \subset E \rightarrow 2^{E} \backslash\{\emptyset\}$ is odd $m$ dissipative, $s: E \rightarrow E$ is continuous with a possible superlinear growth, and $h:$ $[0, T] \times E^{2} \rightarrow 2^{E}$. Let $G: H^{1}(0, T ; E) \rightarrow 2^{L^{2}(0, T ; E)}$ be the Nemytskii set-valued operator associated with $g(t, x, y)=s(x)+h(t, x, y)$, that is

$$
G(u)=\left\{v \in L^{2}(0, T ; E): v=s(u)+w, w \in \operatorname{sel}_{L^{2}} h\left(., u, u^{\prime}\right)\right\}
$$

and let $S$ be the anti-periodic solution operator associated to $A$ and $\varepsilon$, already defined in Section 3.

The next result concerns condition (H3) and gives sufficient conditions to obtain a priori bounds of solutions.

Theorem 4.1. Assume that the following conditions hold:
(i) There exist two even real functions $\phi, \psi$ such that $\psi \in C^{1}(E ; \mathbb{R})$ and $A=$ $-\partial \phi$ and $s=\psi^{\prime}$, where $\partial \phi$ stands for the subdifferential of $\phi$
(ii) There are $a, b \in \mathbb{R}_{+}$and $\alpha, \gamma \in[1,2[, \beta \in[0,2[$ with $\beta+\gamma<2$ such that

$$
\begin{equation*}
-(z, y) \leq a|y|^{\alpha}+b|x|^{\beta}|y|^{\gamma} \tag{4.2}
\end{equation*}
$$

for all $x, y \in E, z \in h(t, x, y)$, and for a.e. $t \in[0, T]$.
Then there exists a constant $R>0$ such that $\|u\|=\left|u^{\prime}\right|_{2}<R$ for any solution $u$ of

$$
\begin{equation*}
u \in \lambda S G(u) \tag{4.3}
\end{equation*}
$$

and every $\lambda \in] 0,1[$.
Proof. Let $u$ be any non-zero solution of 4.3 for some $\lambda \in] 0,1\left[\right.$. Let $u_{\lambda}:=\frac{1}{\lambda} u$. Then $u=\lambda u_{\lambda}$ and

$$
u_{\lambda}=S(w), \quad w \in G(u)
$$

that is

$$
\begin{gathered}
-u_{\lambda}^{\prime \prime}-\varepsilon u_{\lambda}^{\prime} \in A u_{\lambda}+w \\
w=s(u)+v \\
v \in \operatorname{sel}_{L^{2}} h\left(., u, u^{\prime}\right)
\end{gathered}
$$

Hence

$$
-u_{\lambda}^{\prime \prime}-s(u)-\varepsilon u_{\lambda}^{\prime}-v \in A u_{\lambda} .
$$

Multiplying by $u^{\prime}=\lambda u_{\lambda}^{\prime}$ and using the formula $\left(A u_{\lambda}, u_{\lambda}^{\prime}\right)=-\left(\phi\left(u_{\lambda}\right)\right)^{\prime}$ (see [5] p. 189]), we obtain

$$
\frac{\lambda}{2}\left(\left|u_{\lambda}^{\prime}\right|^{2}\right)^{\prime}+(\psi(u))^{\prime}+\frac{\varepsilon}{\lambda}\left|u^{\prime}\right|^{2}+\left(v, u^{\prime}\right)=\lambda\left(\phi\left(u_{\lambda}\right)\right)^{\prime} .
$$

Thus,

$$
\left(\frac{\lambda}{2}\left|u_{\lambda}^{\prime}\right|^{2}+\psi(u)-\lambda \phi\left(u_{\lambda}\right)\right)^{\prime}+\frac{\varepsilon}{\lambda}\left|u^{\prime}\right|^{2}=-\left(v, u^{\prime}\right)
$$

By integration from 0 to $T$ and taking into account the anti-periodic boundary conditions and the fact that $\phi$ and $\psi$ are even, we deduce

$$
\varepsilon\left|u^{\prime}\right|_{2}^{2}<\frac{\varepsilon}{\lambda}\left|u^{\prime}\right|_{2}^{2}=-\int_{0}^{T}\left(v(t), u^{\prime}(t)\right) d t
$$

Now using 4.2 and 1.1 we obtain

$$
\begin{aligned}
\varepsilon\left|u^{\prime}\right|_{2}^{2} & <a\left|u^{\prime}\right|_{\alpha}^{\alpha}+b \int_{0}^{T}|u|^{\beta}\left|u^{\prime}\right|^{\gamma} d t \\
& \leq a\left|u^{\prime}\right|_{\alpha}^{\alpha}+b\left(\frac{1}{2}\left|u^{\prime}\right|_{1}\right)^{\beta} \int_{0}^{T}\left|u^{\prime}\right|^{\gamma} d t \\
& =a\left|u^{\prime}\right|_{\alpha}^{\alpha}+b \frac{1}{2^{\beta}}\left|u^{\prime}\right|_{1}^{\beta}\left|u^{\prime}\right|_{\gamma}^{\gamma} .
\end{aligned}
$$

Since $\alpha, \gamma \in\left[1,2\left[\right.\right.$ there are constants $c_{1}, c_{2}$ such that $\left|u^{\prime}\right|_{\alpha} \leq T^{\frac{2-\alpha}{2 \alpha}}\left|u^{\prime}\right|_{2}$ and $\left|u^{\prime}\right|_{\gamma} \leq$ $T^{\frac{2-\gamma}{2 \gamma}}\left|u^{\prime}\right|_{2}$. In addition $\left|u^{\prime}\right|_{1} \leq T^{\frac{1}{2}}\left|u^{\prime}\right|_{2}$. Consequently, one has

$$
\varepsilon\left|u^{\prime}\right|_{2}^{2}<C_{1}\left|u^{\prime}\right|_{2}^{\alpha}+C_{2}\left|u^{\prime}\right|_{2}^{\beta+\gamma},
$$

where the constants $C_{1}, C_{2}$ (independent of $u$ and $\lambda$ ) are:

$$
C_{1}=a T^{\frac{2-\alpha}{2}}, \quad C_{2}=b \frac{1}{2^{\beta}} T^{\frac{2+\beta-\gamma}{2}}
$$

Now the conclusion follows since $\alpha<2$ and $\beta+\gamma<2$.

Remark 4.2. The above result is also true if $\alpha=2$ or $\beta+\gamma=2$ provided that $a$, respectively $b$, is sufficiently small.

Now we are ready to state the main result of this section.
Theorem 4.3. Let $E$ be a Hilbert space, $\varepsilon>0, s: E \rightarrow E, A: E \rightarrow 2^{E}$ and $h:[0, T] \times E^{2} \rightarrow 2^{E}$. Assume:
(i) $s=\psi^{\prime}$ for some even function $\psi \in C^{1}(E ; \mathbb{R})$, and $s$ sends bounded sets into bounded sets
(ii) $A$ is an m-dissipative mapping with $A=-\partial \phi$ for some even real function $\phi$
(iii) $h:[0, T] \times E^{2} \rightarrow P_{k c}(E), h(., z)$ has a strongly measurable selection on $[0, T]$ for every $z \in E^{2}, h(t,$.$) is upper semicontinuous for a.e. t \in[0, T]$, and for each $\tau>0$ there exists $\nu \in L^{2}(0, T)$ with $|h(t, z)| \leq \nu(t)$ for a.e. $t \in[0, T]$ and all $z=\left(z_{1}, z_{2}\right) \in E^{2}$ with $\left|z_{1}\right| \leq \tau$; in addition there are $a, b \in \mathbb{R}_{+}$and $\alpha, \gamma \in[1,2[$ and $\beta \in[0, \infty[$ such that

$$
-(z, y) \leq a|y|^{\alpha}+b|x|^{\beta}|y|^{\gamma}
$$

for all $x, y \in E, z \in h(t, x, y)$, and for a.e. $t \in[0, T]$
(iv) There exists $R>0$ with

$$
\begin{equation*}
\varepsilon R^{2} \geq a T^{\frac{2-\alpha}{2}} R^{\alpha}+b \frac{1}{2^{\beta}} T^{\frac{2+\beta-\gamma}{2}} R^{\beta+\gamma} \tag{4.4}
\end{equation*}
$$

such that for every separable closed subspace $E_{0}$ of $E$, there exists a $(1, \infty)$ Carathéodory function $\omega:[0, T] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for almost every $t \in[0, T]$,

$$
\beta_{E_{0}}\left(g\left(t, M, E_{0}\right) \cap E_{0}\right) \leq \omega\left(t, \beta_{E_{0}}(M)\right)
$$

(where $g(t, x, y)=s(x)+h(t, x, y))$ for every bounded set $M \subset E_{0}$, and $\varphi=0$ is the unique solution in $L^{\infty}\left(0, T ; \mathbb{R}_{+}\right)$to the inequality

$$
\begin{equation*}
\varphi(t) \leq m \int_{0}^{T} \omega(s, \varphi(s)) d s \quad \text { a.e. on }[0, T] \tag{4.5}
\end{equation*}
$$

(v) $S G$ has acyclic values.

Then 4.1 has at least one solution $u \in H^{2}(0, T ; E) \cap C_{a}^{1}$ with $\|u\| \leq R$.
Remark 4.4. (a) Note that we do not assume $\beta+\gamma<2$, so the perturbation term $h\left(t, u, u^{\prime}\right)$ can have a superlinear growth in $u$; inequality 4.4) guarantees that $\|u\| \neq R$ for each solution of (4.3) and $\lambda \in] 0,1[$. This does not exclude the existence of solutions with $\|u\|>R$.
(b) However, according to Theorem 4.1, if $\beta+\gamma<2$, then there exists a sufficiently large constant $R_{0}>0$ such that 4.4 holds with equality. In this case $R_{0}$ is a bound for all solutions to 4.3).
(c) Sufficient conditions for (v) can be found in 10. For example (v) always holds if $A$ is single-valued.

## 5. Applications

In this section we are concerned with two applications of Theorem 4.3 to partial differential inclusions.
(I) First we look for a function $u=u(t, x)=u(t)(x)$ solving the problem

$$
\begin{gather*}
-u_{t t}-\varepsilon u_{t}+\sigma \Delta_{x}^{-1}\left(|u|^{p-2} u\right)+u \in h\left(t, u, u_{t}\right) \quad \text { a.e. on }[0, T] \\
u(t, .) \in H_{0}^{1}(\Omega) \quad \text { for a.e. } t \in[0, T]  \tag{5.1}\\
u(0, x)=-u(T, x), \quad u_{t}(0, x)=-u_{t}(T, x) \quad \text { a.e. on } \Omega .
\end{gather*}
$$

Here $\Omega$ is a bounded domain of $\mathbb{R}^{n}, n \geq 3,2<p<2^{*}=\frac{2 n}{n-2}, \varepsilon>0, \sigma \in \mathbb{R}$ and $\Delta_{x}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is the Laplacian. Also by $|\cdot|$ we mean here the absolute value of a real number.

In this setting we let $E=H_{0}^{1}(\Omega)$ with the inner product $(u, v)_{H_{0}^{1}(\Omega)}=\int_{\Omega} \nabla u$. $\nabla v d x$ and norm $|u|_{H_{0}^{1}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}, A(u)=-u$ with $D(A)=H_{0}^{1}(\Omega)$ and $s(u)=-\sigma \Delta_{x}^{-1}\left(|u|^{p-2} u\right)$. Note that the conditions (i) and (ii) in Theorem 4.3 hold with

$$
\phi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x \quad \text { and } \quad \psi(u)=\frac{\sigma}{p} \int_{\Omega}|u|^{p} d x .
$$

Also note that for any bounded $M \subset H_{0}^{1}(\Omega)$ the set $s(M)$ is relatively compact in $H_{0}^{1}(\Omega)$, that is $\beta_{H_{0}^{1}(\Omega)}(s(M))=0$. Here $\beta_{H_{0}^{1}(\Omega)}$ is the ball measure of noncompactness in $H_{0}^{1}(\Omega)$. Indeed, since $p<2^{*}$ we may choose an $\theta>0$ with $p \leq$ $2^{*}-\frac{\theta}{\left(2^{*}\right)^{\prime}}$, where $\left(2^{*}\right)^{\prime}=\frac{2 n}{n+2}$. This guarantees that $\left(2^{*}\right)^{\prime} \leq \frac{2^{*}-\theta}{p-1}$. Next the embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}-\theta}(\Omega)$ being compact, we have that $M$ is relatively compact in $L^{2^{*}-\theta}(\Omega)$. Then the set $M_{p}:=\left\{|u|^{p-2} u: u \in M\right\}$ is relatively compact in $L^{\frac{2^{*}-\theta}{p-1}}(\Omega)$ and using the continuous embeddings

$$
L^{\frac{2^{*}-\theta}{p-1}}(\Omega) \subset L^{\left(2^{*}\right)^{\prime}}(\Omega) \subset H^{-1}(\Omega)
$$

we find that $M_{p}$ is relatively compact in $H^{-1}(\Omega)$. Thus, $s(M)=-\sigma \Delta_{x}^{-1}\left(M_{p}\right)$ is relatively compact in $H_{0}^{1}(\Omega)$ as desired.

From Theorem 4.3 one obtains the following result.
Theorem 5.1. Let $h:[0, T] \times H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow P_{k c}\left(H_{0}^{1}(\Omega)\right)$ be such that $h(., u, v)$ has a strongly measurable selection on $[0, T]$ for every $u, v \in H_{0}^{1}(\Omega), h(t,$.$) is upper$ semicontinuous for a.e. $t \in[0, T]$, and for each $\tau>0$ there exists $\nu \in L^{2}(0, T)$ such that $|h(t, u, v)|_{H_{0}^{1}(\Omega)} \leq \nu(t)$ for a.e. $t \in[0, T]$ and all $u, v \in H_{0}^{1}(\Omega)$ with $|u|_{H_{0}^{1}(\Omega)} \leq \tau$. Assume there are $a, b, a_{0} \in \mathbb{R}_{+}$and $\alpha, \gamma \in[1,2[$ and $\beta \in[0, \infty[$ such that

$$
-(w, v)_{H_{0}^{1}(\Omega)} \leq a|v|_{H_{0}^{1}(\Omega)}^{\alpha}+b|u|_{H_{0}^{1}(\Omega)}^{\beta}|v|_{H_{0}^{1}(\Omega)}^{\gamma}
$$

for all $u, v \in H_{0}^{1}(\Omega), w \in h(t, u, v)$ and for a.e. $t \in[0, T]$, and that for each bounded $M \subset H_{0}^{1}(\Omega)$,

$$
\beta_{H_{0}^{1}(\Omega)}\left(h\left(t, M, H_{0}^{1}(\Omega)\right)\right) \leq a_{0} \beta_{H_{0}^{1}(\Omega)}(M) .
$$

In addition assume that there exists $R>0$ with

$$
\varepsilon R^{2} \geq a T^{\frac{2-\alpha}{2}} R^{\alpha}+b \frac{1}{2^{\beta}} T^{\frac{2+\beta-\gamma}{2}} R^{\beta+\gamma} .
$$

Then for $a_{0}<\frac{1}{m T}$, 5.1 has at least one solution $u \in H^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with

$$
\left|u^{\prime}\right|_{2}=\left(\int_{0}^{T}\left|u^{\prime}(t)\right|_{H_{0}^{1}(\Omega)}^{2} d t\right)^{\frac{1}{2}} \leq R
$$

Proof. For any bounded $M$, since $\beta_{H_{0}^{1}(\Omega)}(s(M))=0$, one has

$$
\beta_{H_{0}^{1}(\Omega)}\left(g\left(t, M, H_{0}^{1}(\Omega)\right)\right) \leq a_{0} \beta_{H_{0}^{1}(\Omega)}(M)
$$

Recall that the space $H_{0}^{1}(\Omega)$ is separable. It follows that the unique solution $\varphi \in$ $L^{\infty}\left(0, T ; \mathbb{R}_{+}\right)$of 4.5 with $\omega(t, \tau)=a_{0} \tau$ is $\varphi=0$ provided that $a_{0} m T<1$. Thus Theorem 4.3 applies.
Corollary 5.2. For every $f \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ the problem

$$
\begin{gathered}
-u_{t t}-\varepsilon u_{t}+\sigma \Delta_{x}^{-1}\left(|u|^{p-2} u\right)+u=f(t, x) \quad \text { a.e. on }[0, T] \times \Omega \\
\\
u(t, .) \in H_{0}^{1}(\Omega) \quad \text { for a.e. } t \in[0, T] \\
u(0, x)=-u(T, x), \quad u_{t}(0, x)=-u_{t}(T, x) \quad \text { a.e. on } \Omega .
\end{gathered}
$$

has at least one solution $u \in H^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with

$$
\left|u^{\prime}\right|_{2} \leq \frac{|f|_{\infty} \sqrt{T}}{\varepsilon}
$$

Here $|f|_{\infty}=\operatorname{ess} \sup _{t \in[0, T]}|f(t)|_{H_{0}^{1}(\Omega)}$.
Proof. In this case $h(t, u, v)=f(t):=f(t,$.$) . Consequently all the assumptions$ of Theorem 5.1 are satisfied for $a=0, b=|f|_{\infty}, \alpha=1, \beta=0, \gamma=1, a_{0}=0$, $\nu(t)=|f(t)|_{H_{0}^{1}(\Omega)}$ and $R=\frac{|f|_{\infty} \sqrt{T}}{\varepsilon}$.
(II) For the next application we look for a function $u=u(t, x)$ solving the problem

$$
\begin{gather*}
-u_{t t}-\varepsilon u_{t}+\sigma|u|_{L^{2}(\Omega)}^{p-2} u-\Delta_{x} u \in h\left(t, u, u_{t}\right) \quad \text { a.e. on }[0, T] \times \Omega \\
u(t, .) \in H_{0}^{1}(\Omega) \quad \text { for a.e. } t \in[0, T]  \tag{5.2}\\
u(0, x)=-u(T, x), \quad u_{t}(0, x)=-u_{t}(T, x) \quad \text { a.e. on } \Omega .
\end{gather*}
$$

Here again $\Omega$ is a bounded domain of $\mathbb{R}^{n}, p>2, \varepsilon>0$ and $\sigma \in \mathbb{R}$, but we need no upper bound for $p$. Now we let $E=L^{2}(\Omega), A=\Delta_{x}$ be the Laplace operator with $D(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $s(u)=-\sigma|u|_{L^{2}(\Omega)}^{p-2} u$. We note that the conditions (i) and (ii) in Theorem 4.3 hold with

$$
\phi(u)= \begin{cases}\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x, & u \in H^{1}(\Omega) \\ +\infty, & \text { otherwise }\end{cases}
$$

and $\psi(u)=-\frac{\sigma}{p}|u|_{L^{2}(\Omega)}^{p}$. From Theorem 4.3 one obtains the following result.
Theorem 5.3. Let $h:[0, T] \times L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow P_{k c}\left(L^{2}(\Omega)\right)$ be such that $h(., u, v)$ has a strongly measurable selection on $[0, T]$ for every $u, v \in L^{2}(\Omega), h(t,$.$) is upper$ semicontinuous for a.e. $t \in[0, T]$, and for every $\tau>0$ there exists $\nu \in L^{2}(0, T)$ such that $|h(t, u, v)|_{L^{2}(\Omega)} \leq \nu(t)$ for a.e. $t \in[0, T]$ and all $u, v \in L^{2}(\Omega)$ with $|u|_{L^{2}(\Omega)} \leq \tau$. Assume there are $a, b, a_{0} \in \mathbb{R}_{+}$and $\alpha, \gamma \in[1,2[$ and $\beta \in[0, \infty[$ such that

$$
-(w, v)_{L^{2}(\Omega)} \leq a|v|_{L^{2}(\Omega)}^{\alpha}+b|u|_{L^{2}(\Omega)}^{\beta}|v|_{L^{2}(\Omega)}^{\gamma}
$$

for all $u, v \in L^{2}(\Omega), w \in h(t, u, v)$ and for a.e. $t \in[0, T]$, and that for each bounded $M \subset L^{2}(\Omega)$,

$$
\beta_{L^{2}(\Omega)}\left(h\left(t, M, L^{2}(\Omega)\right)\right) \leq a_{0} \beta_{L^{2}(\Omega)}(M)
$$

In addition assume that there exists $R>0$ with

$$
\varepsilon R^{2} \geq a T^{\frac{2-\alpha}{2}} R^{\alpha}+b \frac{1}{2^{\beta}} T^{\frac{2+\beta-\gamma}{2}} R^{\beta+\gamma}
$$

Then for sufficiently small $|\sigma|$ and $a_{0} \sqrt{5.2}$ has a solution $u \in H^{2}\left(0, T ; L^{2}(\Omega)\right)$ with

$$
\left|u^{\prime}\right|_{2}=\left(\int_{0}^{T}\left|u^{\prime}(t)\right|_{L^{2}(\Omega)}^{2} d t\right)^{1 / 2} \leq R
$$

Proof. For any $u, v \in L^{2}(\Omega)$ with $|u|_{L^{2}(\Omega)},|v|_{L^{2}(\Omega)} \leq \eta$, we have

$$
\begin{aligned}
|s(u)-s(v)|_{L^{2}(\Omega)} & =\left.|\sigma|| | u\right|_{L^{2}(\Omega)} ^{p-2} u-\left.|v|_{L^{2}(\Omega)}^{p-2} v\right|_{L^{2}(\Omega)} \\
& \leq|\sigma|\left(\left.\left.| | u\right|_{L^{2}(\Omega)} ^{p-2}(u-v)\right|_{L^{2}(\Omega)}+\left|\left(|u|_{L^{2}(\Omega)}^{p-2}-|v|_{L^{2}(\Omega)}^{p-2}\right) v\right|_{L^{2}(\Omega)}\right) \\
& \leq|\sigma|\left(\eta^{p-2}|u-v|_{L^{2}(\Omega)}+(p-2) \eta^{p-2}|u-v|_{L^{2}(\Omega)}\right) \\
& =|\sigma|(p-1) \eta^{p-2}|u-v|_{L^{2}(\Omega)} .
\end{aligned}
$$

Hence for any bounded $M \subset L^{2}(\Omega)$ one has

$$
\beta_{L^{2}(\Omega)}\left(g\left(t, M, L^{2}(\Omega)\right)\right) \leq\left[|\sigma|(p-1)|M|^{p-2}+a_{0}\right] \beta_{L^{2}(\Omega)}(M)
$$

where, as above, $g(t, u, v)=s(u)+h(t, u, v)$, and $|M|=\sup _{u, v \in M}|u-v|_{L^{2}(\Omega)}$. It is easily seen that the unique solution $\varphi \in L^{\infty}\left(0, T ; \mathbb{R}_{+}\right)$of 4.5 with

$$
\omega(t, \tau)=\left[|\sigma|(p-1) \eta^{p-2}+a_{0}\right] \tau
$$

where $\eta=R \max \{1, \sqrt{T} / 2\}$, is $\varphi=0$ provided that $|\sigma|$ and $a_{0}$ are small enough. Thus Theorem 4.3 applies.

Corollary 5.4. For every $f \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, if $|\sigma|$ is sufficiently small the problem

$$
\begin{gathered}
-u_{t t}-\varepsilon u_{t}+\sigma|u|_{L^{2}(\Omega)}^{p-2} u-\Delta_{x} u=f(t, x) \quad \text { a.e. on }[0, T] \times \Omega \\
u(t, .) \in H_{0}^{1}(\Omega) \quad \text { for a.e. } t \in[0, T] \\
u(0, x)=-u(T, x), \quad u_{t}(0, x)=-u_{t}(T, x) \quad \text { a.e. on } \Omega .
\end{gathered}
$$

has at least one solution $u \in H^{2}\left(0, T ; L^{2}(\Omega)\right)$ with $\left|u^{\prime}\right|_{2} \leq \frac{|f|_{\infty} \sqrt{T}}{\varepsilon}$. Here $|f|_{\infty}=$ $\operatorname{ess}_{\sup }^{t \in[0, T]},|f(t)|_{L^{2}(\Omega)}$.

## References

[1] A. R. Aftabizadeh, S. Aizicovici and N.H. Pavel, Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992), 253-267.
[2] A.R. Aftabizadeh, S. Aizicovici and N.H. Pavel, On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl. 171 (1992), 301-320.
[3] S. Aizicovici and N.H. Pavel, Anti-periodic solutions to a class of nonlinear differential equations in Hilbert spaces, J. Funct. Anal. 99 (1991), 387-408.
[4] S. Aizicovici, N.H. Pavel and I.I. Vrabie, Anti-periodic solutions to strongly nonlinear evolution equations in Hilbert spaces, An. Ştiinţ. Univ. Al.I. Cuza Iaşi Mat. 44 (1998), 227-234.
[5] V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces", Ed. Academiei \& Noordhoff International Publishing, Bucureşti-Leyden, 1976.
[6] Z. Cai and N.H. Pavel, Generalized periodic and anti-periodic solutions for the heat equation in $R^{1}$, Libertas Math. 10 (1990), 109-121.
[7] J.-M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (1983), 272-285.
[8] J.-F. Couchouron and M. Kamenski, A unified topological point of view for integro-differential inclusions, in "Differential Inclusions and Optimal Control" (eds. J. Andres, L. Górniewicz and P. Nistri), Lecture Notes in Nonlinear Anal., Vol. 2, 1998, 123-137.
[9] J.-F. Couchouron, M. Kamenski and R. Precup, A nonlinear periodic averaging principle, Nonlinear Anal. 54 (2003), 1439-1467.
[10] J.-F. Couchouron and R. Precup, Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps, Electronic J. Differential Equations 2002 (2002), No. 04, 1-21.
[11] K. Deimling, "Multivalued Differential Equations", Walter de Gruyter, Berlin-New York, 1992.
[12] J. Diestel, W.M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc. 118 (1993), 447-453.
[13] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer. J. Math. 68 (1946), 214-222.
[14] P.M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math. 54 (1974), 17-23.
[15] M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles, in "Topological Methods in Differential Equations and Inclusions" (eds. A. Granas and M. Frigon), NATO ASI Series C, Vol. 472, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995, 51-87.
[16] D. Guo, V. Lakshmikantham and X. Liu, "Nonlinear Integral Equations in Abstract Spaces", Kluwer Academic Publishers, Dordrecht-Boston-London, 1996.
[17] A. Haraux, Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math. 63 (1989), 479-505.
[18] S. Hu and N.S. Papageorgiou, "Handbook of Multivalued Analysis, Vol. I: Theory", Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.
[19] H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc. Japan 40 (1988), 541-553.
[20] H. Okochi, On the existence of anti-periodic solutions to nonlinear evolution equations associated with odd subdifferential operators, J. Funct. Anal. 91 (1990), 246-258.

Jean-François Couchouron
Université de Metz, Mathématiques InRIA Lorraine, Ile du Saulcy, 57045 Metz, France E-mail address: Jean-Francois.Couchouron@loria.fr

Radu Precup
University Babeg-Bolyai, Faculty of Mathematics and Computer Science, 3400 Cluj, Romania

E-mail address: r.precup@math.ubbcluj.ro


[^0]:    2000 Mathematics Subject Classification. 45N05, 47J35, 34G25.
    Key words and phrases. Anti-periodic solution; nonlinear boundary-value problem;
    dissipative operator; multivalued mapping; fixed point.
    © 2004 Texas State University - San Marcos.
    Submitted May 10, 2004. Published October 18, 2004.

