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ANTI-PERIODIC SOLUTIONS FOR SECOND ORDER
DIFFERENTIAL INCLUSIONS

JEAN-FRANÇOIS COUCHOURON, RADU PRECUP

Abstract. In this paper, we extend the existence results presented in [9] for

Lp spaces to operator inclusions of Hammerstein type in W 1,p spaces. We also

show an application of our results to anti-periodic boundary-value problems
of second-order differential equations with nonlinearities depending on u′.

1. Introduction

This paper concerns the second-order boundary-value problem

−u′′(t) ∈ Au(t) + f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ),

where 0 < T < ∞, A is an m-dissipative multivalued mapping in a Hilbert space
E and f : [0, T ] × E2 → 2E . However, in this section, and in Section 2, we shall
assume generally that E is a Banach space.

A function u ∈ C1([0, T ];E) is said to be T -anti-periodic if u(0) = −u(T ) and
u′(0) = −u′(T ). Note that there exists a close connection between the anti-periodic
problem and the periodic one. Indeed, if u ∈ W 2,p(0, T ;E) (1 ≤ p < ∞) is a T -
anti-periodic solution of the inclusion

−u′′(t) ∈ Au(t) + f(t, u(t), u′(t)) a.e. on [0, T ]

and A, f are odd in the following sense:

A(−x) = −Ax and f(t,−x,−y) = −f(t, x, y),

then the function

ũ(t) =

{
u(t), 0 ≤ t ≤ T

−u(t− T ), T < t ≤ 2T

belongs to W 2,p(0, 2T ;E), is 2T -periodic, i.e., ũ(0) = ũ(2T ), ũ′(0) = ũ′(2T ), and
solves the inclusion

−ũ′′(t) ∈ Aũ(t) + f̃(t, ũ(t), ũ′(t)) a.e. on [0, 2T ]
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where

f̃(t, x, y) =

{
f(t, x, y), 0 ≤ t ≤ T

f(t− T, x, y), T < t ≤ 2T.

The anti-periodic boundary value problem for various classes of evolution equations
has been considered by Aftabizadeh-Aizicovici-Pavel [1], [2]; Aizicovici-Pavel [3],
Aizicovici-Pavel-Vrabie [4], Cai-Pavel [6], Coron [7], Haraux [17] and Okochi [19, 20].

Let us denote by | · | the norm of E, by | · |p the usual norm of Lp(0, T ;E) and
by | · |1,p the norm of W 1,p(0, T ;E), |u|1,p = max{|u|p, |u′|p}. One of the reasons of
working with anti-periodic solutions is given by the following proposition.

Proposition 1.1. If u ∈W 1,p(0, T ;E) (1 ≤ p ≤ ∞) and u(0) = −u(T ), then

|u(t)| ≤ 1
2
T

p−1
p |u′|p, t ∈ [0, T ]. (1.1)

Proof. Adding u(t) = u(0) +
∫ t

0
u′(s)ds and u(t) = u(T )−

∫ T

t
u′(s)ds we have

2u(t) =
∫ t

0

u′(s)ds−
∫ T

t

u′(s)ds.

Hence

2|u(t)| ≤
∫ t

0

|u′(s)|ds+
∫ T

t

|u′(s)|ds =
∫ T

0

|u′(s)|ds.

Now Hölder’s inequality gives (1.1). �

Let us denote

C1
a = {u ∈ C1([0, T ];E) : u is T -anti-periodic}.

In what follows for a subset K ⊂ E, by Pa(K) and Pkc(K) we shall denote
the family of all nonempty acyclic subsets of K and, respectively, the family of all
nonempty compact convex subsets of K.

Recall that a metric space Ξ is said to be acyclic if it has the same homology
as a single point space, and that Ξ is called an absolute neighborhood retract (ANR
for short) if for every metric space Z and closed set A ⊂ Z, every continuous map
f : A → Ξ has a continuous extension f̂ to some neighborhood of A. Note that
every compact convex subset of a normed space is an ANR and is acyclic.

Our main abstract tools are: The Eilenberg-Montgomery fixed point theorem
[13, 18]; a lemma of Petryshyn-Fitzpatrick [14]; and strong and weak compactness
criteria in Lp(0, T ;E) (see [16] and [12]), where E is a general (non-reflexive) Banach
space.

Theorem 1.2. Let Ξ be acyclic and absolute neighborhood retract, Θ be a compact
metric space, Φ : Ξ → Pa(Θ) be an upper semicontinuous map and Γ : Θ → Ξ be a
continuous single-valued map. Then the map ΓΦ : Ξ → 2Ξ has a fixed point.

Lemma 1.3. Let X be a Fréchet space, D ⊂ X be closed convex and N : D → 2X .
Then for each Ω ⊂ D there exists a closed convex set K, depending on N , D and
Ω, with Ω ⊂ K and conv(Ω ∪N(D ∩K)) = K.

Theorem 1.4. Let p ∈ [1,∞]. Let M ⊂ Lp(0, T ;E) be countable and suppose that
there exists a ν ∈ Lp(0, T ) with |u(t)| ≤ ν(t) a.e. on [0, T ] for all u ∈ M . Assume
M ⊂ C([0, T ];E) if p = ∞. Then M is relatively compact in Lp(0, T ;E) if and
only if
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(i) supu∈M |τhu− u|Lp(0,T−h;E) → 0 as h→ 0
(ii) M(t) is relatively compact in E for a.e. t ∈ [0, T ].

Theorem 1.5. Let p ∈ [1,∞]. Let M ⊂ Lp(0, T ;E) be countable and suppose
there exists ν ∈ Lp(0, T ) with |u(t)| ≤ ν(t) a.e. on [0, T ] for all u ∈M . If M(t) is
relatively compact in E for a.e. t ∈ [0, T ], then M is weakly relatively compact in
Lp(0, T ;E).

Now, we recall the following definition: A map ψ : [a, b] × D → 2Y \ {∅},
where D ⊂ X and (X, | · |X), (Y, | · |Y ) are two Banach spaces, is said to be (q, p)-
Carathéodory (1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞) if

(C1) ψ(., x) is strongly measurable for each x ∈ D
(C2) ψ(t, .) is upper semicontinuous for a.e. t ∈ [a, b]
(C3) (a) if 1 ≤ p < ∞, there exists ν ∈ Lq(a, b; R+) and d ∈ R+ such that

|ψ(t, x)|Y ≤ ν(t) + d|x|pX a.e. on [a, b], for all x ∈ D
(b) if p = ∞, for each ρ > 0 there exists νρ ∈ Lq(a, b; R+) such that
|ψ(t, x)|Y ≤ νρ(t) a.e. on [a, b], for all x ∈ D with |x|X ≤ ρ.

2. A General Existence Principle

The aim of this section is to extend the general existence principles given in [10]
for inclusions in Lp(0, T ;E), to inclusions in W 1,p(0, T ;E). Here again E a Banach
space with norm | · |. This extension allows us to consider boundary-value problems
for second order differential inclusions with u′ dependence perturbations and, by
this, it complements the theory from [8], [9] and [10].

Let p ∈ [1,∞] and q ∈ [1,∞[. Let r ∈]1,∞] be the conjugate exponent of q, that
is 1/q + 1/r = 1. Let g : [0, T ] × E2 → 2E and let G : W 1,p(0, T ;E) → 2Lq(0,T ;E)

be the Nemytskii set-valued operator associated to g, p and q, given by

G(u) = {w ∈ Lq(0, T ;E) : w(s) ∈ g(s, u(s), u′(s)) a.e. on [0, T ]}. (2.1)

Also consider a single-valued nonlinear operator

S : Lq(0, T ;E) →W 1,p(0, T ;E).

We have the following existence principle for the operator inclusion

u ∈ SG(u), u ∈W 1,p(0, T ;E). (2.2)

Theorem 2.1. Let K be a closed convex subset of W 1,p(0, T ;E), U a convex rel-
atively open subset of K and u0 ∈ U . Assume

(H1) SG : U → Pa(K) has closed graph and maps compact sets into relatively
compact sets

(H2) M ⊂ U , M closed, M ⊂ conv({u0} ∪ SG(M)) implies that M is compact
(H3) u /∈ (1− λ)u0 + λSG(u) for all λ ∈]0, 1[ and u ∈ U \ U .

Then (2.2) has a solution in U .

Proof. LetD = conv({u0}∪SG(U)). Clearly u0 ∈ D ⊂ K. Let P : K → U be given
by P (u) = u if u ∈ U and P (u) = u if u ∈ K \U , where u = (1−λ)u0 +λu ∈ U \U ,
λ ∈]0, 1[. Note P is single-valued, continuous and maps closed sets into closed sets.
Let Ñ : D → Pa(K), Ñ(u) = SGP (u). It is easy to see that Ñ(D) ⊂ D, the graph
of Ñ is closed and Ñ maps compact sets into relatively compact sets. Let D0 be a
closed convex set with D0 = conv({u0}∪Ñ(D0∩D)) whose existence is guaranteed
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by Lemma 1.3. Since Ñ(D) ⊂ D we haveD0 ⊂ D and so D0 = conv({u0}∪Ñ(D0)).
Using the definition of P , we obtain

P (D0) ⊂ conv({u0} ∪D0) = conv({u0} ∪ Ñ(D0)) = conv({u0} ∪ SG(P (D0))).

In addition, since D0 is closed, P (D0) is also closed. Now (H2) guarantees that
P (D0) is compact. Since SG maps compact sets into relatively compact sets, we
have that Ñ(D0) is relatively compact. Then Mazur’s Lemma guarantees that D0

is compact. Now apply the Eilenberg-Montgomery Theorem with Ξ = Θ = D0,
Φ = Ñ and Γ = identity of D0, to deduce the existence of a fixed point u ∈ D0

of Ñ . If u /∈ U , then P (u) = (1 − λ)u0 + λu = (1 − λ)u0 + λSG(P (u)) for some
λ ∈]0, 1[. Since P (u) ∈ U \ U , this contradicts (H3). Thus u ∈ U , so u = SG(u)
and the proof is complete. �

Remark 2.2. Additional regularity for the solutions of (2.2) depends on the values
of S. In particular if the values of S are in C1

a then so are all solutions of (2.2).

In what follows K will be a closed linear subspace of W 1,p(0, T ;E), u0 = 0 and
U will be the open ball of K,

U = {u ∈ K : ‖u‖ < R}

with respect to an equivalent norm ‖.‖ on K. For p ∈ [1,∞] denote

µp := sup{ |u|1,p

‖u‖
: u ∈ K, u 6= 0}, µ0 := sup{ |u|∞

‖u‖
: u ∈ K, u 6= 0}.

Note that µp and µ0 are finite because of the equivalence of norms ‖ · ‖ and | · |1,p

on K and the continuously embedding of W 1,p(0, T ;E) into C([0, T ];E).
Now we give sufficient conditions on S and g in order that the assumptions

(H1)-(H2) be satisfied.

(S1) There exists a function k : [0, T ]2 → R+ with k(t, .) ∈ Lr(0, T ) and a
constant L > 0 such that

|S(w1)(t)− S(w2)(t)| ≤
∫ T

0

k(t, s)|w1(s)− w2(s)|ds

for a.e. t ∈ [0, T ], and |S(w1)′ − S(w2)′|p ≤ L|w1 − w2|q for all w1, w2 ∈
Lq(0, T ;E)

(S2) S : Lq(0, T ;E) → K and for every compact convex subset C of E, S is se-
quentially continuous from L1

w(0, T ;C) to W 1,p(0, T ;E). (Here L1
w(0, T ;C)

stands for L1(0, T ;C) endowed with the weak topology of L1(0, T ;E))
(G1) g : [0, T ]× E2 → Pkc(E)
(G2) g(., z) has a strongly measurable selection on [0, T ], for every z ∈ E2

(G3) g(t, .) is upper semicontinuous for a.e. t ∈ [0, T ]
(G4) If 1 ≤ p < ∞, then |g(t, z1, z2)| ≤ ν(t) for a.e. t ∈ [0, T ] and all z1, z2 ∈ E

with |z1| ≤ µ0R; if p = ∞, then |g(t, z1, z2)| ≤ ν(t) for a.e. t ∈ [0, T ] and
all z1, z2 ∈ E with |z1| ≤ µ∞R and |z2| ≤ µ∞R. Here ν ∈ Lq(0, T ; R+).

(G5) For every separable closed subspace E0 of the space E, there exists a (q,∞)-
Carathéodory function ω : [0, T ]× [0, µ0R] → R+, ω(t, 0) = 0, such that for
almost every t ∈ [0, T ],

βE0(g(t,M,E0) ∩ E0) ≤ ω(t, βE0(M))
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for every set M ⊂ E0 satisfying |M | ≤ µ0R, and ϕ = 0 is the unique
solution in L∞(0, T ; [0, µ0R]) to the inequality

ϕ(t) ≤
∫ T

0

k(t, s)ω(s, ϕ(s))ds a.e. on [0, T ]. (2.3)

Here βE0 is the ball measure of non-compactness on E0. (Recall that for a
bounded set A ⊂ E0, βE0(A) is the infimum of ε > 0 for which A can be
covered by finitely many balls of E0 with radius not greater than ε)

(SG) For every u ∈ U the set SG(u) is acyclic in K.

Remark 2.3. If S has values in C1
a then a sufficient condition for (S1) is to exist

a function θ ∈ Lr(0, T ; R+) such that

|S(w1)′ − S(w2)′|p ≤
∫ T

0

θ(s)|w1(s)− w2(s)|ds

for all w1, w2 ∈ Lq(0, T ;E).

Indeed, using Proposition 1.1 and Hölder’s inequality, we immediately see that
(S1) is satisfied with k(t, s) = 1

2T
p−1

p θ(s) and L = |θ|r.

Remark 2.4. In case that k(t, .) ∈ L∞(0, T ) for a.e. t ∈ [0, T ], we may assume
that ω in (G5) is a (1,∞)-Carathéodory function (in order that the integral in (2.3)
be defined).

As in [10] we can prove the following existence result.

Theorem 2.5. Assume (S1)-(S2), (G1)-(G5) and (SG) hold. In addition assume
(H3). Then (2.2) has at least one solution u in K ⊂W 1,p(0, T ;E) with ‖u‖ ≤ R.

The proof is based on Theorem 2.1 and consists in showing that conditions (H1)-
(H2) are satisfied. We shall use the following analog of [10, lemma 4.4].

Lemma 2.6. Assume (S1), (S2). Let M be a countable subset of Lq(0, T ;E)
such that M(t) is relatively compact for a.e. t ∈ [0, T ] and there is a function
ν ∈ Lq(0, T ; R+) with |u(t)| ≤ ν(t) a.e. on [0, T ], for every u ∈ M . Then the
set S(M) is relatively compact in W 1,p(0, T ;E). In addition S is continuous from
M equipped with the relative weak topology of Lq(0, T ;E) to W 1,p(0, T ;E) equipped
with its strong topology.

Proof. Let M = {un : n ≥ 1} and let ε > 0 be arbitrary. As in the proof of [10,
lemma 4.3], we can find functions ûn,k with values in a compact Bk ⊂ E (Bk being
a closed ball of a kdimensional subspace of E) such that

|un − ûn,k|q ≤ ε

for every n ≥ 1. Then assumption (S1) implies

|S(un)− S(ûn,k)|p ≤ ||k(t, .)|r|p|un − ûn,k|q ≤ ε||k(t, .)|r|p, (2.4)

|S(un)′ − S(ûn,k)′|p ≤ L|un − ûn,k|q ≤ εL. (2.5)

On the other hand, according to Theorem 1.5, the set {ûn,k : n ≥ 1} ⊂ Lq(0, T ;E)
is weakly relatively compact in Lq(0, T ;E). Then assumption (S2) guarantees that
{S(ûn,k) : n ≥ 1} is relatively compact in W 1,p(0, T ;E). Hence from (2.4) and
(2.5) we see that {S(ûn,k) : n ≥ 1} is a relatively compact ε%-net of S(M) with
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respect to the norm | · |1,p, where % = max{L, ||k(t, .)|r|p}. Since ε was arbitrary
we conclude that S(M) is relatively compact in W 1,p(0, T ;E).

Now suppose that the sequence (wm)m converges weakly in Lq(0, T ;E) to w and
wm ∈ M for all m ≥ 1. In view of the relative compactness of S(M), we may
assume that (S(wm))m converges in K towards some function v ∈ K. We have to
prove

v = S(w).
For an arbitrary number ε > 0, we have already seen that the proof of [10, lemma
4.3] provides a compact set Pε and a sequence (wε

m)m of Pε-valued functions satis-
fying,

|wm − wε
m|q ≤ ε (2.6)

for every m ≥ 1. Now the sequence (wε
m)m being weakly relatively compact in

Lq(0, T, E), a suitable subsequence (wε
mj

)j must be weakly convergent in Lq(0, T, E)
towards some wε. Then Mazur’s Lemma and (2.6) provide

|w − wε|q ≤ ε. (2.7)

The triangle inequality yields
|v − S(w)|p ≤ |v − S(wmj )|p + |S(wmj )− S(wε

mj
)|p

+ |S(wε
mj

)− S(wε)|p + |S(wε)− S(w)|p
(2.8)

and
|v′ − S(w)′|p ≤ |v′ − S(wmj

)′|p + |S(wmj
)′ − S(wε

mj
)′|p

+ |S(wε
mj

)′ − S(wε)′|p + |S(wε)′ − S(w)′|p.
(2.9)

Passing to the limit when j goes to infinity in (2.8), (2.9) and using assumption
(S2) we obtain

|v − S(w)|p ≤ lim sup
j

|S(wmj
)− S(wε

mj
)|p + |S(wε)− S(w)|p, (2.10)

|v′ − S(w)′|p ≤ lim sup
j

|S(wmj )
′ − S(wε

mj
)′|p + |S(wε)′ − S(w)′|p . (2.11)

According to (2.6) and (2.7) we deduce from (2.10), (2.11) and assumption (S1)
that

|v − S(w)|p ≤ 2ε||k(t, .)|r|p, |v′ − S(w)′|p ≤ 2εL.
Hence |v − S(w)|1,p ≤ 2 ε%. Since ε was arbitrary we must have v = S(w) and the
proof is complete. �

Proof of Theorem 2.5. (a) First we show that G(u) 6= ∅ and so SG(u) 6= ∅ for
every u ∈ U . Indeed, since g takes nonempty compact values and satisfies (G2)-
(G3), for each strongly measurable function u : [0, T ] → E2 there exists a strongly
measurable selection w of g(., u(.)) (see [11], Proof of Proposition 3.5 (a)). Next, if
u ∈ Lp(0, T ;E2), (G4) guarantees w ∈ Lq(0, T ;E). Hence w ∈ G(u).
(b) The values of SG are acyclic according to assumption (SG).
(c) The graph of SG is closed. To show this, let (un, vn) ∈ graph (SG), n ≥ 1, with
|un − u|1,p, |vn − v|1,p → 0 as n → ∞. Let vn = S(wn), wn ∈ Lq(0, T ;E);wn ∈
G(un). Since |un − u|1,p → 0, we may suppose that for every t ∈ [0, T ], there
exists a compact set C ⊂ E2 with {(un(t), u′n(t));n ≥ 1} ⊂ C. Furthermore,
since g is upper semicontinuous by (G3) and has compact values, we have that
g(t, C) is compact. Consequently, {wn(t) : n ≥ 1} is relatively compact in E.
If we also take into account (G4) we may apply Theorem 1.5 to conclude that
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(at least for a subsequence) (wn) converges weakly in Lq(0, T ;E) to some w. As
in [15, p. 57], since g has convex values and satisfies (G3), we can show that
w ∈ G(u). Furthermore, by using Lemma 2.6 and a suitable subsequence we deduce
S(wn) → S(w). Thus v = S(w) and so (u, v) ∈ graph (SG).
(d) We show that SG(M) is relatively compact for each compact M ⊂ U . Let
M ⊂ U be a compact set and (vn) be any sequence of elements of SG(M). We
prove that (vn) has a convergent subsequence. Let un ∈ M and wn ∈ Lq(0, T ;E)
with

vn = S(wn) and wn ∈ G(un).
The set M being compact, we may assume that |un − u|1,p → 0 for some u ∈ U .
As above, there exists a w ∈ G(u) with wn → w weakly in Lq(0, T ;E) (at least for
a subsequence) and S(wn) → S(w). Hence vn → S(w) as we wished. Now (c) and
(d) guarantee (H1).
(e) Finally, we check (H2). Suppose M ⊂ U is closed and M ⊂ conv({0}∪SG(M)).
To prove that M is compact it suffices that every sequence (u0

n) of M has a con-
vergent subsequence. Let M0 = {u0

n : n ≥ 1}. Clearly, there exists a count-
able subset M1 = {u1

n : n ≥ 1} of M , w1
n ∈ G(u1

n) and v1
n = S(w1

n) with
M0 ⊂ conv({0} ∪ V 1), where V 1 = {v1

n : n ≥ 1}. Furthermore, there exists
a countable subset M2 = {u2

n : n ≥ 1} of M , w2
n ∈ G(u2

n) and v2
n = S(w2

n)
with M1 ⊂ conv({0} ∪ V 2), where V 2 = {v2

n : n ≥ 1}, and so on. Hence for
every k ≥ 1 we find a countable subset Mk = {uk

n : n ≥ 1} of M and corre-
spondingly wk

n ∈ G(uk
n) and vk

n = S(wk
n) such that Mk−1 ⊂ conv({0} ∪ V k), with

V k = {vk
n : n ≥ 1}. Let M∗ =

⋃
k≥0Mk. It is clear that M∗ is countable,

M0 ⊂ M∗ ⊂ M and M∗ ⊂ conv({0} ∪ V ∗), where V ∗ =
⋃

k≥1 V
k. Since M∗, V ∗

and W ∗ := {wk
n : n ≥ 1, k ≥ 1} are countable sets of strongly measurable functions,

we may suppose that their values belong to a separable closed subspace E0 of E.
Since |wk

n(t)| ≤ ν(t) where ν ∈ Lq(0, T ), then [10, Lemma 4.3] guarantees

βE0(M
∗(t)) ≤ βE0(V

∗(t)) = βE0(S(W ∗)(t)) ≤
∫ T

0

k(t, s)βE0(W
∗(s))ds,

while (G5) gives

βE0(W
∗(s)) ≤ βE0(g(s,M

∗(s), E0) ∩ E0) ≤ ω(s, βE0(M
∗(s))). (2.12)

It follows that

βE0(M
∗(t)) ≤

∫ T

0

k(t, s)ω(s, βE0(M
∗(s)))ds.

Moreover the function ϕ(t) = βE0(M
∗(t)) belongs to L∞(0, T ; [0, µ0R]). Conse-

quently, ϕ ≡ 0, and so
ϕ(t) = βE0(M

∗(t)) = 0
a.e. on [0, T ]. Let (v∗i ) be any sequence of V ∗ and let (w∗i ) be the corresponding
sequence of W ∗, with v∗i = S(w∗i ) for all i ≥ 1. Then, as at step (c), (w∗i ) has
a weakly convergent subsequence in Lq(0, T ;E), say to w. Also (2.12) together
with ω(t, 0) = 0 implies that the set {w∗i (t) : i ≥ 1} is relatively compact for a.e.
t ∈ [0, T ]. From Lemma 2.6 we then have that the corresponding subsequence of
(S(w∗i )) = (v∗i ) converges to S(w) in W 1,p(0, T ;E). Hence V ∗ is relatively compact.
Now Mazur’s Lemma guarantees that the set conv({0} ∪ V ∗) is compact and so its
subset M∗ is relatively compact too. Thus M0 possesses a convergent subsequence
as we wished. Now the result follows from Theorem 2.1. �
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3. The Anti-Periodic Solution Operator

For the rest of this paper E will be a real Hilbert space of inner product (., .)
and norm |.|. Consider the anti-periodic boundary value problem

−u′′ − εu′ ∈ Au+ g(t, u, u′) a.e. on [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ),
(3.1)

in E, where ε ∈ R and A : D(A) ⊂ E → 2E \ {∅} is an odd m-dissipative nonlinear
operator.

Let us consider the anti-periodic solution operator associated to A and ε,

S : L2(0, T ;E) → H2(0, T ;E) ∩ C1
a

defined by S(w) := u, where u is the unique solution of

−u′′ − εu′ ∈ Au+ w a.e. on [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ) .
(3.2)

The operator S is well defined as it follows from Theorem 3.1 in Aftabizadeh-
Aizicovici-Pavel [1]. It is clear that any fixed point u of N := SG, where G is the
Nemytskii set-valued operator given by (2.1) with p = q = 2, is a solution for (3.1).

Theorem 3.1. The above operator S satisfies (S1) and (S2) for p = q = 2 and
K = C1

a in H1(0, T ;E) with norm ‖u‖ = |u′|2.

Proof. (I) We first show that S satisfies (S1). Let w1, w2 ∈ L2(0, T ;E) and denote
ui = S(wi), i = 1, 2. Then −u′′i − εu′i = vi +wi, where vi(t) ∈ Aui(t) a.e. on [0, T ].
One has

−(u1 − u2)′′(t)− ε(u1 − u2)′(t) = (v1 − v2)(t) + (w1 − w2)(t).

Multiplying by (u1 − u2)(t) and using that A dissipative, we obtain

− (|u1(t)− u2(t)|2)′′ + 2|u′1(t)− u′2(t)|2 − ε(|u1(t)− u2(t)|2)′

≤ 2(w1(t)− w2(t), u1(t)− u2(t)).
(3.3)

Consequently,

|u1(t)− u2(t)|2 ≤ 2
∫ T

0

G(t, s)(w1(s)− w2(s), u1(s)− u2(s))ds. (3.4)

Here G is the Green function of the differential operator −u′′ − εu′ corresponding
to the anti-periodic boundary conditions. This yields

|S(w1)(t)− S(w2)(t)| ≤ m

∫ T

0

|w1(s)− w2(s)|ds (3.5)

where m = 2max(t,s)∈[0,T ]2 G(t, s). From (3.3) by integration we obtain∫ T

0

|u′1 − u′2|2ds ≤
∫ T

0

(w1 − w2, u1 − u2)ds.

This together with (3.5) yields

|S(w1)′ − S(w2)′|2 ≤
√
mT |w1 − w2|2.

(II) The fact that S satisfies (S2) is achieved in several steps: (1) We first show that
the graph of S is sequentially closed in L2

w(0, T ;E) × H1(0, T ;E). In this order,
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let wj → w weakly in L2(0, T ;E) and S(wj) → u strongly in H1(0, T ;E). Then
(wj − w,S(wj)− S(w)) → 0 strongly in L1(0, T ; R). Now (3.4) implies

|S(wj)(t)− S(w)(t)| → 0 as j →∞.

Hence S(w) = u.
(2) For each positive integer n we let

Jn =
(
J − 1

n
A

)−1
, An = n(Jn − J),

where J is the identity map of E. We also consider the operator Sn : L2(0, T ;E)
→ H2(0, T ;E) ∩ C1

a , given by Sn(w) = un, where un is the unique solution of

−u′′n − εu′n = Anun + w a.e. on [0, T ]

un(0) = −un(T ), u′n(0) = −u′n(T ) .
(3.6)

Then
−|u′′k |2 − ε(u′k, u

′′
k) = (Akuk, u

′
k)′ − ((Akuk)′, u′k) + (w, u′′k).

Since Ak is dissipative, we have

((Akuk)′, u′k) = lim
h→0

1
h2

(Akuk(t+ h)−Akuk(t), uk(t+ h)− uk(t)) ≤ 0 .

Hence
|u′′k |2 ≤ −(Akuk, u

′
k)′ − (w, u′′k)− ε

2
(|u′k|2)′.

By integration, since Ak is odd and uk is anti-periodic, it follows

|u′′k |22 =
∫ T

0

|u′′k |2dt ≤ −
∫ T

0

(w, u′′k)dt ≤ 1
2
(|w|22 + |u′′k |22) .

Consequently,
|u′′k |2 ≤ |w|2. (3.7)

Using 2|u′|2 = (|u|2)′′ − 2(u′′, u) and (|u|2)′ = 2(u′, u) we obtain

2
∫ T

0

|u′k − u′m|2dt

= (|uk − um|2)′(T )− (|uk − um|2)′(0)− 2
∫ T

0

(u′′k − u′′m, uk − um)dt

= −2
∫ T

0

(u′′k − u′′m, uk − um)dt .

(3.8)

On the other hand

(u′′k − u′′m, uk − um)

= −
(
Akuk −Amum, uk − um

)
− ε(u′k − u′m, uk − um)

= −
(
Akuk −Amum, Jkuk − Jmum +

1
k
Akuk −

1
m
Amum

)
− ε(u′k − u′m, uk − um)

and since Akuk ∈ AJkuk, Amum ∈ AJmum and A is dissipative, we obtain

−(u′′k − u′′m, uk − um) ≤ (Akuk −Amum,
1
k
Akuk −

1
m
Amum) +

ε

2
(|uk − um|2)′.

From (3.6) and (3.7), also applying Proposition 1.1 to u′k, we see that

|Akuk|2 ≤ |u′′k |2 + |w|2 + |ε||u′k|2 ≤ |u′′k |2 + |w|2 + |ε|T
2
|u′′k |2 ≤ (2 + |ε|T

2
)|w|2.
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Then

−
∫ T

0

(u′′k − u′′m, uk − um)dt ≤ 2(2 + |ε|T
2

)2|w|22(
1
k

+
1
m

).

This together with (3.8) shows that∫ T

0

|u′k − u′m|2dt ≤ 2(2 + |ε|T
2

)2|w|22(
1
k

+
1
m

). (3.9)

Thus there exists u ∈ K with uk → u in K. From (3.9), letting m→∞ we have

|u′k − u′|22 ≤
2
k

(2 + |ε|T
2

)2|w|22. (3.10)

Now we show that u is the solution of (3.2). Since (u′′k) is bounded in L2(0, T ;E)
and (u′′k) converges to w′ = u′′ in D′(0, T ;E), we may conclude that

u′′k → u′′ weakly in L2(0, T ;E). (3.11)

Let A be the realization of A in L2(0, T ;E), i.e., A : L2(0, T ;E) → 2L2(0,T ;E),

Au = {v ∈ L2(0, T ;E) : v(t) ∈ Au(t) a.e. on [0, T ]}.
Then (Aku)(t) = Aku(t) a.e. on [0, T ], so that (3.11) implies that

Akuk → −u′′ − εu′ − w weakly in L2(0, T ;E).

Since uk → u strongly in L2(0, T ;E) and A is m-dissipative in L2(0, T ;E), this
implies (see Barbu [5], Proposition II. 3.5) u ∈ D(A) and [u,−u′′ − εu′ − w] ∈ A.
Thus, u is the solution of (3.2), i.e., u = S(w). Now from (3.10) we see that for
each bounded set M ⊂ L2(0, T ;E) and every ε > 0, there exists a k0 such that

‖Sk(w)− S(w)‖ ≤ ε for all k ≥ k0 and w ∈M. (3.12)

Hence Sk0(M) is an ε-net for S(M).
(3) Now we consider a compact convex subset C of E and a countable set M ⊂
L2(0, T ;C). We shall prove that for each n, the set Sn(M) is relatively compact
in K, equivalently, the set Sn(M)′ is relatively compact in L2(0, T ;E). Then, also
taking into account (3.12), by Hausdorff’s Theorem we shall deduce that S(M)
is relatively compact in K as desired. We shall apply Theorem 1.4 to Sn(M)′.
From (3.12) and assumption (S1) we see that for each n and any bounded M ⊂
L2(0, T ;E), the set Sn(M) is bounded in K. In addition, using

un(t) =
∫ T

0

G(t, s)[Anun(s) + w(s)]ds

and the Lipschitz property of An, we obtain

|τhu′n − u′n|22 ≤
∫ T

0

( ∫ T

0

|Gt(t+ h, s)−Gt(t, s)|[2n|un(s)|+ |w(s)|]ds
)2

dt

≤ (2n|un|2 + |w|2)2
∫ T

0

∫ T

0

|Gt(t+ h, s)−Gt(t, s)|2dsdt.

This implies

sup
w∈M

|τhSn(w)′ − Sn(w)′|L2(0,T−h;E) → 0 as h→ 0. (3.13)

We claim that Sn(M)′(t) is relatively compact in E for every t ∈ [0, T ]. Indeed, for
any w ∈M , the unique solution un = Sn(w) of (3.6) satisfies

−u′′n − εu′n + nun = nJnun + w a.e. on [0, T ].
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If we denote by G̃ the Green function of the operator −u′′−εu′+nu corresponding
to the boundary conditions u(0) = −u(T ), u′(0) = −u′(T ), then

un(t) =
∫ T

0

G̃(t, s)[nJnun(s) + w(s)]ds. (3.14)

Using a result by Heinz, the nonexpansivity of Jn and the inclusion M(s) ⊂ C a.e.
on [0, T ], from (3.14), we obtain

β0(Sn(M)(t)) ≤ n

∫ T

0

G̃(t, s)β0(Sn(M)(s))ds. (3.15)

Here β0 is the ball measure of non-compactness corresponding to a suitable sepa-
rable closed subspace of E. Let

ϕ(t) = β0(Sn(M)(t)) , v(t) =
∫ T

0

G̃(t, s)ϕ(s)ds.

We have
−v′′ − εv′ + nv = ϕ, v(0) = −v(T ), v′(0) = −v′(T ).

According to (3.15), ϕ ≤ nv. Hence −v′′ − εv′ ≤ 0. Also since v ≥ 0 we have
v(0) = v(T ) = 0. The maximum principle for the operator −u′′− εu′ implies v ≤ 0
on [0, T ]. Hence v ≡ 0. Thus β0(Sn(M)(t)) = 0 for all t ∈ [0, T ], that is Sn(M)(t)
is relatively compact in E. As a result, Sn(M) is relatively compact in C([0, T ];E).
Next from (3.14) we have

u′n(t) =
∫ T

0

G̃t(t, s)[nJnun(s) + w(s)]ds,

whence Sn(M)′(t) is relatively compact in E. This together with (3.13) via Theorem
1.4 implies that Sn(M)′ is relatively compact in L2(0, T ;E). �

4. Superlinear Inclusions

In this section we establish an existence result for the anti-periodic problem

−u′′ − εu′ − s(u) ∈ Au+ h(t, u, u′) a.e. on [0, T ]

u(0) = −u(T ), u′(0) = −u′(T )
(4.1)

in the Hilbert space E, where ε > 0, A : D(A) ⊂ E → 2E \ {∅} is odd m-
dissipative, s : E → E is continuous with a possible superlinear growth, and h :
[0, T ] × E2 → 2E . Let G : H1(0, T ;E) → 2L2(0,T ;E) be the Nemytskii set-valued
operator associated with g(t, x, y) = s(x) + h(t, x, y), that is

G(u) = {v ∈ L2(0, T ;E) : v = s(u) + w, w ∈ sel L2h(., u, u′)},

and let S be the anti-periodic solution operator associated to A and ε, already
defined in Section 3.

The next result concerns condition (H3) and gives sufficient conditions to obtain
a priori bounds of solutions.

Theorem 4.1. Assume that the following conditions hold:
(i) There exist two even real functions φ, ψ such that ψ ∈ C1(E; R) and A =

−∂φ and s = ψ′, where ∂φ stands for the subdifferential of φ
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(ii) There are a, b ∈ R+ and α, γ ∈ [1, 2[, β ∈ [0, 2[ with β + γ < 2 such that

−(z, y) ≤ a|y|α + b|x|β |y|γ (4.2)

for all x, y ∈ E, z ∈ h(t, x, y), and for a.e. t ∈ [0, T ].
Then there exists a constant R > 0 such that ‖u‖ = |u′|2 < R for any solution u of

u ∈ λSG(u) (4.3)
and every λ ∈]0, 1[.

Proof. Let u be any non-zero solution of (4.3) for some λ ∈]0, 1[. Let uλ := 1
λu.

Then u = λuλ and
uλ = S(w), w ∈ G(u)

that is

−u′′λ − εu′λ ∈ Auλ + w,

w = s(u) + v,

v ∈ sel L2h(., u, u′).

Hence
−u′′λ − s(u)− εu′λ − v ∈ Auλ.

Multiplying by u′ = λu′λ and using the formula (Auλ, u
′
λ) = −(φ(uλ))′ (see [5, p.

189]), we obtain
λ

2
(|u′λ|2)′ + (ψ(u))′ +

ε

λ
|u′|2 + (v, u′) = λ(φ(uλ))′.

Thus, (λ
2
|u′λ|2 + ψ(u)− λφ(uλ)

)′ + ε

λ
|u′|2 = −(v, u′).

By integration from 0 to T and taking into account the anti-periodic boundary
conditions and the fact that φ and ψ are even, we deduce

ε|u′|22 <
ε

λ
|u′|22 = −

∫ T

0

(v(t), u′(t))dt.

Now using (4.2) and (1.1) we obtain

ε|u′|22 < a|u′|αα + b

∫ T

0

|u|β |u′|γdt

≤ a|u′|αα + b(
1
2
|u′|1)β

∫ T

0

|u′|γdt

= a|u′|αα + b
1
2β
|u′|β1 |u′|γγ .

Since α, γ ∈ [1, 2[ there are constants c1, c2 such that |u′|α ≤ T
2−α
2α |u′|2 and |u′|γ ≤

T
2−γ
2γ |u′|2. In addition |u′|1 ≤ T

1
2 |u′|2. Consequently, one has

ε|u′|22 < C1|u′|α2 + C2|u′|β+γ
2 ,

where the constants C1, C2 (independent of u and λ) are:

C1 = aT
2−α

2 , C2 = b
1
2β
T

2+β−γ
2 .

Now the conclusion follows since α < 2 and β + γ < 2. �
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Remark 4.2. The above result is also true if α = 2 or β + γ = 2 provided that a,
respectively b, is sufficiently small.

Now we are ready to state the main result of this section.

Theorem 4.3. Let E be a Hilbert space, ε > 0, s : E → E, A : E → 2E and
h : [0, T ]× E2 → 2E. Assume:

(i) s = ψ′ for some even function ψ ∈ C1(E; R), and s sends bounded sets into
bounded sets

(ii) A is an m-dissipative mapping with A = −∂φ for some even real function
φ

(iii) h : [0, T ] × E2 → Pkc(E), h(., z) has a strongly measurable selection on
[0, T ] for every z ∈ E2, h(t, .) is upper semicontinuous for a.e. t ∈ [0, T ],
and for each τ > 0 there exists ν ∈ L2(0, T ) with |h(t, z)| ≤ ν(t) for a.e.
t ∈ [0, T ] and all z = (z1, z2) ∈ E2 with |z1| ≤ τ ; in addition there are
a, b ∈ R+ and α, γ ∈ [1, 2[ and β ∈ [0,∞[ such that

−(z, y) ≤ a|y|α + b|x|β |y|γ

for all x, y ∈ E, z ∈ h(t, x, y), and for a.e. t ∈ [0, T ]
(iv) There exists R > 0 with

εR2 ≥ aT
2−α

2 Rα + b
1
2β
T

2+β−γ
2 Rβ+γ (4.4)

such that for every separable closed subspace E0 of E, there exists a (1,∞)-
Carathéodory function ω : [0, T ] × R+ → R+ such that for almost every
t ∈ [0, T ],

βE0(g(t,M,E0) ∩ E0) ≤ ω(t, βE0(M))

(where g(t, x, y) = s(x) + h(t, x, y)) for every bounded set M ⊂ E0, and
ϕ = 0 is the unique solution in L∞(0, T ; R+) to the inequality

ϕ(t) ≤ m

∫ T

0

ω(s, ϕ(s))ds a.e. on [0, T ] (4.5)

(v) SG has acyclic values.

Then (4.1) has at least one solution u ∈ H2(0, T ;E) ∩ C1
a with ‖u‖ ≤ R.

Remark 4.4. (a) Note that we do not assume β + γ < 2, so the perturbation
term h(t, u, u′) can have a superlinear growth in u; inequality (4.4) guarantees that
‖u‖ 6= R for each solution of (4.3) and λ ∈]0, 1[. This does not exclude the existence
of solutions with ‖u‖ > R.
(b) However, according to Theorem 4.1, if β+γ < 2, then there exists a sufficiently
large constant R0 > 0 such that (4.4) holds with equality. In this case R0 is a
bound for all solutions to (4.3).
(c) Sufficient conditions for (v) can be found in [10]. For example (v) always holds
if A is single-valued.

5. Applications

In this section we are concerned with two applications of Theorem 4.3 to partial
differential inclusions.
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(I) First we look for a function u = u(t, x) = u(t)(x) solving the problem

−utt − εut + σ∆−1
x (|u|p−2u) + u ∈ h(t, u, ut) a.e. on [0, T ]

u(t, .) ∈ H1
0 (Ω) for a.e. t ∈ [0, T ]

u(0, x) = −u(T, x), ut(0, x) = −ut(T, x) a.e. on Ω.

(5.1)

Here Ω is a bounded domain of Rn, n ≥ 3, 2 < p < 2∗ = 2n
n−2 , ε > 0, σ ∈ R and

∆x : H1
0 (Ω) → H−1(Ω) is the Laplacian. Also by | · | we mean here the absolute

value of a real number.
In this setting we let E = H1

0 (Ω) with the inner product (u, v)H1
0 (Ω) =

∫
Ω
∇u ·

∇vdx and norm |u|H1
0 (Ω) = (

∫
Ω
|∇u|2dx) 1

2 , A(u) = −u with D(A) = H1
0 (Ω) and

s(u) = −σ∆−1
x (|u|p−2u). Note that the conditions (i) and (ii) in Theorem 4.3 hold

with

φ(u) =
1
2

∫
Ω

|∇u|2dx and ψ(u) =
σ

p

∫
Ω

|u|pdx.

Also note that for any bounded M ⊂ H1
0 (Ω) the set s(M) is relatively compact

in H1
0 (Ω), that is βH1

0 (Ω)(s(M)) = 0. Here βH1
0 (Ω) is the ball measure of non-

compactness in H1
0 (Ω). Indeed, since p < 2∗ we may choose an θ > 0 with p ≤

2∗ − θ
(2∗)′ , where (2∗)′ = 2n

n+2 . This guarantees that (2∗)′ ≤ 2∗−θ
p−1 . Next the

embedding of H1
0 (Ω) into L2∗−θ(Ω) being compact, we have that M is relatively

compact in L2∗−θ(Ω). Then the set Mp := {|u|p−2u : u ∈M} is relatively compact

in L
2∗−θ
p−1 (Ω) and using the continuous embeddings

L
2∗−θ
p−1 (Ω) ⊂ L(2∗)′(Ω) ⊂ H−1(Ω)

we find that Mp is relatively compact in H−1(Ω). Thus, s(M) = −σ∆−1
x (Mp) is

relatively compact in H1
0 (Ω) as desired.

From Theorem 4.3 one obtains the following result.

Theorem 5.1. Let h : [0, T ]×H1
0 (Ω)×H1

0 (Ω) → Pkc(H1
0 (Ω)) be such that h(., u, v)

has a strongly measurable selection on [0, T ] for every u, v ∈ H1
0 (Ω), h(t, .) is upper

semicontinuous for a.e. t ∈ [0, T ], and for each τ > 0 there exists ν ∈ L2(0, T )
such that |h(t, u, v)|H1

0 (Ω) ≤ ν(t) for a.e. t ∈ [0, T ] and all u, v ∈ H1
0 (Ω) with

|u|H1
0 (Ω) ≤ τ . Assume there are a, b, a0 ∈ R+ and α, γ ∈ [1, 2[ and β ∈ [0,∞[ such

that
−(w, v)H1

0 (Ω) ≤ a|v|αH1
0 (Ω) + b|u|β

H1
0 (Ω)

|v|γ
H1

0 (Ω)

for all u, v ∈ H1
0 (Ω), w ∈ h(t, u, v) and for a.e. t ∈ [0, T ], and that for each bounded

M ⊂ H1
0 (Ω),

βH1
0 (Ω)(h(t,M,H1

0 (Ω))) ≤ a0βH1
0 (Ω)(M).

In addition assume that there exists R > 0 with

εR2 ≥ aT
2−α

2 Rα + b
1
2β
T

2+β−γ
2 Rβ+γ .

Then for a0 <
1

mT , (5.1) has at least one solution u ∈ H2(0, T ;H1
0 (Ω)) with

|u′|2 = (
∫ T

0

|u′(t)|2H1
0 (Ω)dt)

1
2 ≤ R.
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Proof. For any bounded M , since βH1
0 (Ω)(s(M)) = 0, one has

βH1
0 (Ω)(g(t,M,H1

0 (Ω))) ≤ a0βH1
0 (Ω)(M).

Recall that the space H1
0 (Ω) is separable. It follows that the unique solution ϕ ∈

L∞(0, T ; R+) of (4.5) with ω(t, τ) = a0τ is ϕ = 0 provided that a0mT < 1. Thus
Theorem 4.3 applies. �

Corollary 5.2. For every f ∈ L∞(0, T ;H1
0 (Ω)) the problem

−utt − εut + σ∆−1
x (|u|p−2u) + u = f(t, x) a.e. on [0, T ]× Ω

u(t, .) ∈ H1
0 (Ω) for a.e. t ∈ [0, T ]

u(0, x) = −u(T, x), ut(0, x) = −ut(T, x) a.e. on Ω.

has at least one solution u ∈ H2(0, T ;H1
0 (Ω)) with

|u′|2 ≤
|f |∞

√
T

ε
.

Here |f |∞ = ess supt∈[0,T ] |f(t)|H1
0 (Ω).

Proof. In this case h(t, u, v) = f(t) := f(t, .). Consequently all the assumptions
of Theorem 5.1 are satisfied for a = 0, b = |f |∞, α = 1, β = 0, γ = 1, a0 = 0,
ν(t) = |f(t)|H1

0 (Ω) and R = |f |∞
√

T
ε . �

(II) For the next application we look for a function u = u(t, x) solving the problem

−utt − εut + σ|u|p−2
L2(Ω)u−∆xu ∈ h(t, u, ut) a.e. on [0, T ]× Ω

u(t, .) ∈ H1
0 (Ω) for a.e. t ∈ [0, T ]

u(0, x) = −u(T, x), ut(0, x) = −ut(T, x) a.e. on Ω.

(5.2)

Here again Ω is a bounded domain of Rn, p > 2, ε > 0 and σ ∈ R, but we need no
upper bound for p. Now we let E = L2(Ω), A = ∆x be the Laplace operator with
D(A) = H2(Ω) ∩H1

0 (Ω) and s(u) = −σ|u|p−2
L2(Ω)u. We note that the conditions (i)

and (ii) in Theorem 4.3 hold with

φ(u) =

{
1
2

∫
Ω
|∇u|2dx, u ∈ H1(Ω)

+∞, otherwise.

and ψ(u) = −σ
p |u|

p
L2(Ω). From Theorem 4.3 one obtains the following result.

Theorem 5.3. Let h : [0, T ]×L2(Ω)×L2(Ω) → Pkc(L2(Ω)) be such that h(., u, v)
has a strongly measurable selection on [0, T ] for every u, v ∈ L2(Ω), h(t, .) is upper
semicontinuous for a.e. t ∈ [0, T ], and for every τ > 0 there exists ν ∈ L2(0, T ) such
that |h(t, u, v)|L2(Ω) ≤ ν(t) for a.e. t ∈ [0, T ] and all u, v ∈ L2(Ω) with |u|L2(Ω) ≤ τ .
Assume there are a, b, a0 ∈ R+ and α, γ ∈ [1, 2[ and β ∈ [0,∞[ such that

−(w, v)L2(Ω) ≤ a|v|αL2(Ω) + b|u|βL2(Ω)|v|
γ
L2(Ω)

for all u, v ∈ L2(Ω), w ∈ h(t, u, v) and for a.e. t ∈ [0, T ], and that for each bounded
M ⊂ L2(Ω),

βL2(Ω)(h(t,M,L2(Ω))) ≤ a0βL2(Ω)(M).
In addition assume that there exists R > 0 with

εR2 ≥ aT
2−α

2 Rα + b
1
2β
T

2+β−γ
2 Rβ+γ .
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Then for sufficiently small |σ| and a0 (5.2) has a solution u ∈ H2(0, T ;L2(Ω)) with

|u′|2 =
( ∫ T

0

|u′(t)|2L2(Ω)dt
)1/2

≤ R.

Proof. For any u, v ∈ L2(Ω) with |u|L2(Ω), |v|L2(Ω) ≤ η, we have

|s(u)− s(v)|L2(Ω) = |σ|||u|p−2
L2(Ω)u− |v|

p−2
L2(Ω)v|L2(Ω)

≤ |σ|(||u|p−2
L2(Ω)(u− v)|L2(Ω) + |(|u|p−2

L2(Ω) − |v|
p−2
L2(Ω))v|L2(Ω))

≤ |σ|(ηp−2|u− v|L2(Ω) + (p− 2)ηp−2|u− v|L2(Ω))

= |σ|(p− 1)ηp−2|u− v|L2(Ω).

Hence for any bounded M ⊂ L2(Ω) one has

βL2(Ω)(g(t,M,L2(Ω))) ≤ [|σ|(p− 1)|M |p−2 + a0]βL2(Ω)(M)

where, as above, g(t, u, v) = s(u) + h(t, u, v), and |M | = supu,v∈M |u − v|L2(Ω). It
is easily seen that the unique solution ϕ ∈ L∞(0, T ; R+) of (4.5) with

ω(t, τ) = [|σ|(p− 1)ηp−2 + a0]τ

where η = Rmax{1,
√
T/2}, is ϕ = 0 provided that |σ| and a0 are small enough.

Thus Theorem 4.3 applies. �

Corollary 5.4. For every f ∈ L∞(0, T ;L2(Ω)), if |σ| is sufficiently small the
problem

−utt − εut + σ|u|p−2
L2(Ω)u−∆xu = f(t, x) a.e. on [0, T ]× Ω

u(t, .) ∈ H1
0 (Ω) for a.e. t ∈ [0, T ]

u(0, x) = −u(T, x), ut(0, x) = −ut(T, x) a.e. on Ω.

has at least one solution u ∈ H2(0, T ;L2(Ω)) with |u′|2 ≤ |f |∞
√

T
ε . Here |f |∞ =

ess supt∈[0,T ] |f(t)|L2(Ω).
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