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Abstract

In this paper we present a two-norms version of Krasnoselskii’s fixed point theorem in cone
abstract result is then applied to prove the existence of positiveLp solutions of Hammerstein integr
equations with better integrability properties on the kernels.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Krasnoselskii’s fixed point theorem in cones is one of the most useful principl
proving existence, localization and multiplicity results for various nonlinear problems
[1–3,5–7]). For example, in [5], Krasnoselskii’s theorem is used to establish existen
sults for positiveLp solutions of Hammerstein integral equations. The aim of this pap
to express the compression condition and the expansion condition in Krasnoselski
orem with respect to different norms. This allows us to refine the conditions from [5
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Hammerstein integral equations with better integrability properties on the kernels a
consequence, to obtain extensions of the results in [5].

Following Granas and Dugundji [4, p. 120], we recall some notions and results w
will be used throughout the next sections.

Let (E, |.|) be a normed linear space andC ⊂ E a convex set. By apair (X,A) in C,

we mean an arbitrary subsetX of C and a nonemptyA ⊂ X closed inX. We denote by
KA(X,C) the set of all compact mapsF : X → C with F(x) �= x for all x ∈ A. A map
F ∈ KA(X,C) is calledessentialprovided everyG ∈ KA(X,C) such thatF |A = G|A has
a fixed point. A map that is not essential is calledinessential. Two mapsF,G ∈ KA(X,C)

are calledhomotopic, written F ∼ G in KA(X,C), provided that there is a compact m
H : X ×[0,1] → C such thatH(.,0) = F, H(.,1) = G andH(x,λ) �= x for all x ∈ A and
λ ∈ [0,1].

Theorem 1.1 (Topological transversality). Let(X,A) be a pair in a convexC ⊂ E, and let
F,G be maps inKA(X,C) such thatF ∼ G in KA(X,C). ThenF is essential if and only
if G is essential.

As an example of essential and inessential maps, we have

Theorem 1.2. Let U be an open subset of a convex setC ⊂ E, U �= C, let (Ū , ∂U) be the
pair consisting of the closure ofU in C and the boundary ofU in C, and letx0 ∈ C. Then
the constant mapF(x) = x0 (x ∈ Ū) is essential inK∂U (Ū ,C) if x0 ∈ U and inessentia
in K∂U (Ū ,C) if x0 ∈ C \ Ū .

We conclude the introduction by stating Krasnoselskii’s theorem, in the form giv
Granas and Dugundji [4, p. 325].

Theorem 1.3 (Krasnoselskii). Let(E, |.|) be a normed linear space,C ⊂ E a proper wedge
andN : C → C a completely continuous map. Assume that for some numbersρ andR with
0< ρ < R, one of the following conditions is satisfied:

(a) |N(x)| � |x| for |x| = ρ and |N(x)| � |x| for |x| = R,
(b) |N(x)| � |x| for |x| = ρ and |N(x)| � |x| for |x| = R.

ThenN has a fixed pointx with ρ � |x| � R.

In this paper, a continuous mapN : X → Y , whereX,Y are topological spaces, is sa
to becompactif N(X) is contained in a compact subset ofY. If X is a metric space, the
N is said to becompletely continuousif the image of each bounded set inX is contained

in a compact subset ofY .
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2. Krasnoselskii’s theorem in two norms

Throughout this section(E, |.|) will be a normed linear space and‖.‖ will be another
norm onE. AlsoC ⊂ E will be a nonempty convex (not necessarily closed) set with 0/∈ C

andλC ⊂ C for all λ > 0. We shall assume that there exist constantsc1, c2 > 0 such that

c1|x| � ‖x‖ � c2|x| for all x ∈ C. (2.1)

Hence the norms|.| and‖.‖ are topologically equivalent onC (but not necessarily onE).
For two numbersρ,R with 0< c2ρ < R we shall denote

Bρ = {x ∈ C: |x| � ρ}, Sρ = {x ∈ C: |x| = ρ},
DR = {x ∈ C: ‖x‖ � R}, ΣR = {x ∈ C: ‖x‖ = R},
Cρ,R = {x ∈ C: ρ � |x|, ‖x‖ � R}.

Obviously, sincec2ρ < R, one hasBρ ⊂ DR . Also Cρ,R = (DR \ Bρ) ∪ Sρ and(Bρ,Sρ),
(DR,ΣR) are pairs inC.

Theorem 2.1. Assume0 < c2ρ < R, the mapN : DR → C is compact andN(x) �= x for
all x ∈ Sρ ∪ ΣR . In addition, assume that the following conditions are satisfied:

(i) N |Bρ is essential inKSρ (Bρ,C),
(ii) N is inessential inKΣR

(DR,C).

ThenN has at least two fixed pointsx1, x2 ∈ C with |x1| < ρ < |x2| and‖x2‖ < R.

Proof. We have from (i) thatN has a fixed pointx1 ∈ Bρ . SinceN(x) �= x in Sρ , one has
|x1| < ρ. Thus it remains to show thatN has fixed points inCρ,R . Assume the contrary
i.e.,N(x) �= x in Cρ,R . Now N being inessential inKΣR

(DR,C), there exists a mapG ∈
KΣR

(DR,C) with G|ΣR
= N |ΣR

andG(x) �= x for all x ∈ DR .
We shall define a mapH : Bρ → C with the following properties:H ∈ KSρ (Bρ,C),

H |Sρ = N |Sρ andH(x) �= x for all x ∈ Bρ . This shows thatN is inessential inKSρ (Bρ,C)

contrary to (i) and finishes the proof. Recall 0/∈ C. Let H : Bρ → C be given by

H(x) =



a2G
( 1

a2 x
)
, 0< |x| � aρ,

|x|2
ρ2 N

(
ρ2

|x|2 x
)
, aρ � |x| � ρ.

Herea = a(x) := ρ‖x‖
R|x| . From (2.1) we haveρc1

R
� a(x) � ρc2

R
for everyx ∈ Bρ . We note

that if 0< |x| � aρ, then∥∥∥∥ 1

a2
x

∥∥∥∥ = 1

a2
‖x‖ = 1

a2

aR|x|
ρ

= R|x|
aρ

� R.

Hence 1
a2 x ∈ DR. Also, for aρ � |x| � ρ, we have∣∣∣ ρ2 ∣∣∣ ρ2 ρ2
∣ |x|2x∣ = |x| �

ρ
= ρ
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and ∥∥∥∥ ρ2

|x|2x

∥∥∥∥ = ρ2

|x|2‖x‖ = ρ2aR|x|
|x|2ρ = ρaR

|x| � ρaR

aρ
= R.

Thus ρ2

|x|2 x ∈ Cρ,R . ThereforeH is well defined and has no fixed points. Also if|x| = aρ,
then

a2 = |x|2
ρ2

and

∥∥∥∥ 1

a2
x

∥∥∥∥ = R.

This together withG|ΣR
= N |ΣR

guarantees thatH is continuous. Now the compactne
of N andG implies thatH is a compact map. ThereforeH ∈ KSρ (Bρ,C). �
Theorem 2.2. Assume0< c2ρ < R, the mapN : DR → C is compact and that the follow
ing conditions are satisfied:

(a) |N(x)| < |x| for all x ∈ Sρ ,
(b) there existse ∈ C with x �= N(x) + δe for anyδ > 0 andx ∈ ΣR ,
(c) there existsδ0 > R

‖e‖ with x �= λN(x) + δ0e for all λ ∈ (0,1) andx ∈ ΣR .

ThenN has at least two fixed pointsx1, x2 ∈ C with |x1| < ρ � |x2| and‖x2‖ � R.

Proof. AssumeN(x) �= x for all x ∈ ΣR (otherwise we are finished). We shall prove t
conditions (i) and (ii) in Theorem 2.1 hold. Letx0 ∈ C with |x0| = ρ be fixed. We claim
that (a) implies the existence of aη ∈ (0,1) such that

x �= (1− λ)ηx0 + λN(x) for all x ∈ Sρ, λ ∈ (0,1). (2.2)

Otherwise, for eachn ∈ N, n � 1, there areλn ∈ (0,1) andxn ∈ Sρ with

xn = (1− λn)
1

n
x0 + λnN(xn). (2.3)

SinceN is compact, we may assume (passing eventually to a subsequence) thatN(xn) is
convergent. Also we may supposeλn → λ̄ for someλ̄ ∈ [0,1]. Then (2.3) impliesxn → x̄.
Clearly x̄ ∈ Sρ andx̄ = λ̄N(x̄). We haveλ̄ < 1 by the assumptionN(x) �= x on Sρ . Then
(a) implies|x̄| = λ̄|N(x̄)| � λ̄|x̄| and so 1� λ̄, a contradiction. Hence (2.2) is true for som
η ∈ (0,1). This shows that the constant mapηx0 andN are homotopic inKSρ (Bρ,C).
Since 0< |ηx0| < ρ, from Theorem 1.2 we have thatηx0 is essential inKSρ (Bρ,C). Now
Theorem 1.1 guarantees thatN is essential inKSρ (Bρ,C). Thus (i) holds.

Consider the homotopyH : DR × [0,1] → C defined byH(x,λ) = N(x) + λδ0e. No-
tice H is a compact map,H(.,0) = N, H(.,1) = N + δ0e and, from (b),H(x,λ) �= x

for all x ∈ ΣR,λ ∈ (0,1]. HenceN ∼ N + δ0e in KΣR
(DR,C). Also, from (c) we imme-

diately see thatN + δ0e ∼ δ0e in KΣR
(DR,C). Consequently,N ∼ δ0e in KΣR

(DR,C).
Since‖δ0e‖ > R, we have from Theorem 1.2, thatδ0e is inessential inKΣR

(DR,C). Thus
N is inessential inKΣR

(DR,C) too. Therefore (ii) holds. �
Now we are ready to state the new version of Krasnoselskii’s theorem, in terms o
norms.
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Theorem 2.3. Assume0< c2ρ < R,‖.‖ is increasing with respect toC, that is‖x + y‖ >

‖x‖ for all x, y ∈ C, and the mapN : DR → C is compact. In addition, assume that t
following conditions are satisfied:

(h1) |N(x)| < |x| for all x ∈ C with |x| = ρ,
(h2) ‖N(x)‖ � ‖x‖ for all x ∈ C with ‖x‖ = R.

ThenN has at least two fixed pointsx1, x2 ∈ C with |x1| < ρ � |x2| and‖x2‖ � R.

Proof. We shall prove that conditions (b) and (c) in Theorem 2.2 are satisfied with
e ∈ C andδ0 > R

‖e‖ . Indeed, if (b) does not hold for a givene ∈ C, then there arex ∈ ΣR

andδ > 0 with x = N(x) + δe. Then we obtain

R = ‖x‖ = ∥∥N(x) + δe
∥∥ >

∥∥N(x)
∥∥ � ‖x‖,

a contradiction.
If (c) does not hold for a fixede ∈ C and a givenδ0 > R

‖e‖ , then there arex ∈ ΣR and
λ ∈ (0,1) such thatx = λN(x) + δ0e. Then we obtain

R = ‖x‖ = ∥∥λN(x) + δ0e
∥∥ > ‖δ0e‖ = δ0‖e‖,

a contradiction.
Thus all the assumptions of Theorem 2.2 hold.�
Obviously, the following dual proposition is also true.

Theorem 2.4. Assume0 < 1
c1

ρ < R, |.| is increasing with respect toC, and the map
N : {x ∈ C: |x| � R} → C is compact. In addition, assume that the following conditi
are satisfied:

(h1) ‖N(x)‖ < ‖x‖ for all x ∈ C with ‖x‖ = ρ,
(h2) |N(x)| � |x| for all x ∈ C with |x| = R.

ThenN has at least two fixed pointsx1, x2 ∈ C with ‖x1‖ < ρ � ‖x2‖ and |x2| � R.

3. Application

Consider the nonlinear integral equation

u(t) =
1∫

0

k(t, s)f
(
s, u(s)

)
ds for a.e.t ∈ [0,1]. (3.1)

We seek positive solutionsu ∈ Lp[0,1] where 1� p < ∞. Here by a positive solution w
meanu(t) > 0 for a.e.t ∈ [0,1].
We shall assume that the following conditions are satisfied:



388 D. O’Regan, R. Precup / J. Math. Anal. Appl. 309 (2005) 383–391

nd

,

(A) f : [0,1]×R → R is a Carathéodory function (i.e., the mapt 
→ f (t, y) is measurable
for all y ∈ R and the mapy 
→ f (t, y) is continuous for a.e.t ∈ [0,1]) and there exists
p2 ∈ [1,∞); a0, a1 ∈ Lp2([0,1];R+) with a0(t) > 0 on a set of positive measure, a
a2 > 0 such that∣∣f (t, y)

∣∣ � a1(t) + a2|y|
p
p2 for all y ∈ R, a.e.t ∈ [0,1],

f (t, y) � a0(t) for all y ∈ R+, a.e.t ∈ [0,1], (3.2)

and

f (t, y) is nondecreasing iny on (0,∞) for a.e.t ∈ [0,1].
(B) k : [0,1]× [0,1] → R is measurable, there exists 0< M � 1, k1 ∈ Lp[0,1], q ∈ [1,p]

with q � p
p2

andk2 ∈ L
p2q

p2q−p [0,1] such that 0< k1(t), k2(t) for a.e.t ∈ [0,1] and

Mk1(t)k2(s) � k(t, s) � k1(t)k2(s)

for a.e.t ∈ [0,1], a.e.s ∈ [0,1].

Notice since p
p2

� q � p, one hasp̄1 := p2q
p2q−p

� p1, where 1
p1

+ 1
p2

= 1. Then

L
p2q

p2q−p [0,1] ⊂ Lp1[0,1] and consequentlyk2 ∈ Lp1[0,1], which is assumed in [5]. Thus
to be a “better integrability property” (with respect to thep

p2
-growth of f ) of kernel k

means thatk2 ∈ Lp̄1[0,1] for somep̄1 � p1.
We shall use|u|γ to denote the norm onLγ [0,1] with

|u|γ :=
( 1∫

0

∣∣u(t)
∣∣γ dt

) 1
γ

if 1 � γ < ∞

and

|u|∞ := ess sup
t∈[0,1]

∣∣u(t)
∣∣ if γ = ∞.

Let p̄2 be such that1
p̄1

+ 1
p̄2

= 1 and denote

ψ(t) := |a1|p̄2 + a2t
p
p2 (t � 0),

bγ (t) := M
k1(t)

|k1|γ a.e.t ∈ [0,1] (1� γ � p).

Theorem 3.1. Assume(A) and (B). In addition assume that there existsρ, R with 0 <

ρ < R andr ∈ [1, q] such that:

|k1|q |k2|p̄1ψ(ρ) < ρ, (3.3)

M|k1|r
1∫

0

k2(s)f
(
s, br (s)R

)
ds � R. (3.4)
Then(3.1)has at least two positive solutionsu1, u2 with |u1|q < ρ � |u2|q and|u2|r � R.
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Proof. Let E := Lp[0,1] andN = KF , where

F :Lp[0,1] → Lp2[0,1], F (u)(t) = f
(
t, u(t)

)
,

K :Lp2[0,1] → Lp[0,1], K(v)(t) =
1∫

0

k(t, s)v(s) ds.

Also, let

C = {
u ∈ Lp[0,1]: u �= 0, u(t) � bγ (t)|u|γ a.e.t ∈ [0,1] for all γ ∈ [1,p]}.

Notice that for eachv ∈ Lp2([0,1];R+), v �= 0, we haveu := K(v) ∈ C. Indeed,

u(t) =
1∫

0

k(t, s)v(s) ds � Mk1(t)

1∫
0

k2(s)v(s) ds (3.5)

and forγ ∈ [1,p],

|u|γ =
( 1∫

0

( 1∫
0

k(t, s)v(s) ds

)γ

dt

) 1
γ

� |k1|γ
1∫

0

k2(s)v(s) ds. (3.6)

Now (3.5) and (3.6) imply

u(t) � bγ (t)|u|γ for a.e.t ∈ [0,1]. (3.7)

As a result,N(C) ⊂ C. Also note that the setC ∪ {0} is closed inLp[0,1].
We shall apply Theorem 2.3 with|.| := |.|q and‖.‖ := |.|r . Clearly |u|r � |u|q for all

u ∈ Lp[0,1] sincer � q, and |.|r is increasing with respect toC. Also for u ∈ C, from
u(t) � bq(t)|u|q we deduce that|u|r � |bq |r |u|q . Hence (2.1) holds withc1 = |bq |r and
c2 = 1. Moreover, for everyγ ∈ [1,p] andu ∈ C, we have|bp|γ |u|p � |u|γ � |u|p , which
shows that theLγ -norms with 1� γ � p are topologically equivalent onC.

According to [5] the mapF from Lp[0,1] to Lp2[0,1] is well defined, continuous an
bounded, whileK from Lp2[0,1] to Lp[0,1] is completely continuous. This implies th
the mapN is completely continuous fromLp[0,1] to Lp[0,1]. ConsequentlyN(DR) is
contained in a compact subsetC0 of the closed setC ∪ {0}. From (3.2) we have∣∣N(u)

∣∣
p

= ∣∣KF(u)
∣∣
p

�
∣∣K(a0)

∣∣
p

> 0 for all u ∈ DR.

It follows that we may assumeC0 ⊂ C. ThereforeN is a compact map fromDR to C.
Let u ∈ Sρ . Using Hölder’s inequality, the growth property off and (3.3), we obtain

∣∣N(u)
∣∣
q

=
( 1∫

0

( 1∫
0

k(t, s)f
(
s, u(s)

)
ds

)q

dt

) 1
q

� |k1|q
1∫

0

k2(s)f
(
s, u(s)

)
ds

� |k1|q |k2|p̄1

∣∣F(u)
∣∣
p̄2

� |k1|q |k2|p̄1

(|a1|p̄2 + a2|u|p/p2
q

)
= |k1|q |k2|p̄1ψ(ρ) < ρ = |u|q .
Hence condition (h1) in Theorem 2.3 is satisfied.
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Now, if u ∈ ΣR , that is|u|r = R, then using (3.7) and (3.4), we obtain

∣∣N(u)
∣∣
r
=

( 1∫
0

( 1∫
0

k(t, s)f
(
s, u(s)

)
ds

)r

dt

) 1
r

� M|k1|r
1∫

0

k2(s)f
(
s, u(s)

)
ds � M|k1|r

1∫
0

k2(s)f
(
s, br (s)|u|r

)
ds

� R = |u|r .
Thus (h2) also holds and the conclusion follows from Theorem 2.3.�
Remark. If in Theorem 3.1, instead of (3.2) we only require that

f (t, y) � 0 for all y ∈ R+ and a.e.t ∈ [0,1],
then we obtain that (3.1) has at least one positive solutionu2 with ρ � |u2|q and|u2|r � R.
If in addition, the null function does not solve (3.1), then there is a second positive so
u1 to Eq. (3.1) with|u1|q < ρ.

Indeed, for every small enoughε > 0, all the assumptions of Theorem 3.1 are satis

with f ε(t, y) = f (t, y)+ε, aε
0(t) = ε, aε

1(t) = a1(t)+ε andψε(t) = |aε
1|p̄2 +a2t

p
p2 in the

place off (t, y), a0(t), a1(t) andψ(t), respectively. Theorem 3.1 guarantees the existe
of two positive solutionsuε

1 anduε
2 to the equation

u = KF(u) + K(ε)

with |uε
1|q < ρ � |uε

2|q and|uε
2|r � R. Now a standard limit argument leads to the des

conclusion.

Example. Let k be as in Theorem 3.1 and assume thatf (t, y) = |y|n with n = p
p2

> 1
(superlinear growth). Hereψ(t) = tn and (3.3), (3.4) become

|k1|q |k2|p̄1ρ
n−1 < 1 (3.8)

and respectively

Mn+1Rn−1 1

|k1|n−1
r

1∫
0

k2(s)k
n
1(s) ds � 1. (3.9)

Whenr = q = p, one hasp̄1 = p1 and (3.8), (3.9) reduce to the inequalities

|k1|p|k2|p1ρ
n−1 < 1, Mn+1Rn−1 1

|k1|n−1
p

1∫
0

k2(s)k
n
1(s) ds � 1,
which are assumed in [5, Example 2.2].
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