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ON THE RATE OF CONVERGENCE OF SOME INTEGRAL
OPERATORS FOR FUNCTIONS OF BOUNDED VARIATION

0. AGRATINI

Communicated by P. Vértesi

Abstract

In the present paper we define a general class B, ., @ 2 1, of Durrmeyer—Bézier type
of linear positive operators. Our main aim is to estimate the rate of pointwise convergence
for functions f at those points z at which the one-sided limits f(x+) and f(z—) exist.
As regards these functions defined on an interval J certain conditions are required. We
discuss two distinct cases: Int (J) = (0,00) and Int (J) = (0, 1).

1. Introduction

Let (Ay),, denote a sequence of linear operators acting on a real function

space S, S C R7, J is an interval. For any f € S the rate of convergence
is determined by estimating | (Anf)(z) — f (:c)| in terms of certain bounds.
Let zo € Int (J) be a discontinuity point of the first kind for f. In the last
two decades it comes out a further development investigating the behaviour
of A, in connection with estimates concerning the deviation

(1) (Anf)(z0) — 5 (Faot) + Fao-)

As regards Ay, n € N, in time have been used both discrete-type opera-
tors such as Bernstein, Szdsz, Baskakov, Meyer—Ko6nig and Zeller operators
and their integral analogue in Kantorovich or Durrmeyer sense.

As regards the space S, it has been intensively considered functions of
bounded variation. All discontinuities of such a function are only of first
kind, consequently the study of (1) is well raised.

We recall: the total variation of a function f on [a,b] is defined as

n—1

the upper bound of the numbers v(f, A,,) : Z | fzrt1) — (mk)| , for any
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b
n € N and all meshes A, (a =29 <21 <--- <z, =0). Setting \/(f) =
a

supv(f, An) € [0, 00], whenever this quantity is finite we shall say that f is

of bounded variation on the interval [a, b|.

The estimate of (1) for functions of bounded variation is usually given
in terms of the arithmetic means of the sequence of total variation. We
point out that a pioneer work in this direction is due to R. Bojanic and
M. Vuilleumier — in [5] they deepened a technique later often used in many
papers.

Best of our knowledge, here are some authors who approached the above
trend studying various classes of operators: Fuhua Cheng [6], Ranko Bojanic
and Mohammad Kazim Khan [4], [15], Xiao-Ming Zeng and Wenzhong Chen
[18], Ashok Sahai and Govind Prasad [16], Shunsheng Guo [8]. The papers of
Grazyna Aniol [1], 2] deal in this respect both with some discrete operators
and Kantorovich-type operators. A real contribution in this field is due to
Vijay Gupta and his collaborators [9], [10], [11], [12], [13].

In this paper we are dealing with a general class of linear operators
of Durrmeyer—Bézier type, investigating their rate of convergence for func-
tions of bounded variation. The article is organized as follows. In Sec-
tion 2 we construct the announced sequence of summation-integral opera-
tors, named Bjq, a 2 1. In Section 3 the basic notations used through-
out the paper are indicated. Next we give several preliminary results.
Mainly these are estimates of the quantities in which we split the expres-
sion '(Bn,af) () — (e + 1)_1(f(:n—|—) +af(z—)) | The last section is devoted
to give an upper pointwise bound of the mentioned deviation under some
additional conditions imposed to f. We consider both the cases when J is
unbounded and when J is bounded. Some particular cases are also analyzed.

We point out that this class is a very general one including many clas-
sical sequences. On the other hand, instead of using subintervals with their
endpoints « + x//n as in the previously quoted papers, here the considered
endpoints are = + z/n® which offer more flexibility to our operators (3 > 0
is arbitrary). We also remark that the construction of the best known op-
erators which activate for Int (J) = (0,00) — as Szdsz or Baskakov type —
requires an estimation of infinite sums which in a certain sense restricts use-
fulness of the operators from the computational point of view. In our case,
for Int (J) = (0, 00) we use index sets I,, which can be finite. We admit that
an inconvenient feature of our research is the following: the evaluation given
in Section 5 is not asymptotically optimal.
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2. Construction of the operators B, o

Let J be a given interval of the real line. Let I, n € N, be sets of
indexes such that I,, C I3 holds. We start from a sequence (by), of
linear positive operators of discrete type, that is, operators of the form

(bnf)(z) = Z Unk(2) f(Zn ), Where up € R_{ and z,x €J, k€L, In

kEITl
order to generalize b, to a summation-integral operator B, we follow J. L.

Durrmeyer and use a non-negative family wy, x, k € I, of real functions be-
longing to Lebesgue space L,(.J), p =1 if J is bounded and p = co if J is
unbounded. We define B,, as follows:

@  Bah)@) =Y tnp(e) f wns®f(®)dt, z€J, fEF,

kel 7

where F contains all functions f € R’ for which the right-hand side in (2)

is well defined.
For example, choosing J = [0,1], I,, = {0,1,...,n},

n

@) = ()20, wns(®) = (1+ D)

we obtain the original Durrmeyer operators studied by M. M. Derriennic [7],
here F being Ly (J).

So that our operators, both b, and B, (n € N), have the degree of ex-
actness zero, we assume throughout the paper

(3) S tnp(e) =1, € J and /wn,k(t) dt=1, kel
kely, I

Moreover, for each n € N we assume that a function ¢, € Ri exists with
the property

(4) Un o (2) € Pn(z), k€ Iy, « € Int (J).

We have in mind the variants: I, finite thus as a model can be cho-
sen {0,1,...,8,}, sn = #(I,) — 1, or I, is infinite thus our model can be
considered Ny := {0} UN.

At this moment we can define the Bézier variant of B,, operators. Let o
be a real number, a = 1. We consider the operators By o, 7 € N, given as
follows:

6)  Bra)@ =3 Q) j wnp @) dt, zEd, fEF,

kel J




238 0. AGRATINI

where
(6) Q) = 5% (x) = 52441 (2),  Sup(@) =Y uny(x),
: iZk
Fj€In

for every x € J and k € I,,.
If k < inf (I,), Snk = 1, see (3); if k > sup (I,,) we agree to take Sy, =
Clearly, the opelator Bn « 18 a linear positive one and it can be Wutten
as a singular integral of the type

(awﬁ@g=/}gﬂ@¢ﬁama ceJ feF,

J

with the kernel K, o(z,t) := Z Qn o (@) 1 (2), (z,8) € J x J.
kely

We gather some direct properties of Qn o Onk and K, o useful in the
proofs inserted in Section 4.

LEMMA 1. For allk € I,,, z € J and o 2 1 one has

(7) Sﬂ,k(x) - Sn,k+1($) = un,k(w)v 0 g Sn,k(m) é 1,
(8) Z 1(10{?; () =1, fK,lamt = 1
kel

(9) > Q@) D @) = Y uni(2) Y Q)

kel sk JEI, k2 j

J€In kE€ln

(10) there exists T, ko such that fo:lj (z) = (o + Dup k(@) T g 0
(11) 'Sg,k(m) - S?{:,k+1($)| é aun,k(:‘?) é a¢n($)'

PrOOF. (7) and (8) are implied by (6) combined with (3). The next
statement is implied by the identity

boag + bi(ag + a1) + ba(ag + a3 +ag) + - = (bg+ by + by + ... )ap
+O1+ba+..)ar+ (ot .. )aa+ ... .

Obviously, if a,b€ [0,1] and v 2 1 then c,; between a, b exists such
that [0” — a”| = v|b— a|cz,_bl < v|b— al. Based on this relation, (7) and (4)
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imply both (10) and (11). We notice that 7, . lies between Sk (z) and

Sk l). O

We also deduce that B, ; becomes B,, defined by (2) and By o, o 2 1,
reproduces the constants, that is (Bro1)(z) =1, z € J.

In what follows we make a crucial assumption as regards the families
(tn,e) o (wn,k),- More precisely, we impose the following condition to be
fulfilled

(12) f onp@®dt= 3 ung(@), e Tnt(J),

e
{tet:t>z} .7?611’:;

for all k € I,,, k # sup (I,,) if I,, is finite, and k € I,, if I,, is infinite.
At first glance it seems to be a very tough request. The following exam-
ples remove this feeling.

EXAMPLES. 1° Taking J =(0,1], I, ={0,1,...,n}, n 2 2, uyk(z) =

(:) (1= 2)" ", wnk(t) = nua_14(t) for 1Sk En—1 and won(t) =1,

B,, defined by (2) becomes Bernstein-Durrmeyer operator in a slight modi-
fied form; (3) takes place and (12) is fulfilled, see [18, Eq. (19)]. Further on
we consider J = [0, 00) and I, = No.

2° Choosing uy, i (z) = e‘”x(nx)k/!c! and wy, k() = nup k(t), B, becomes
modified Szdsz—Mirakjan operator. Condition (12) is fulfilled, see [16,
Lemma 5).

3° Choosing

k-1
UpplE) = (n i k )xk(l + :c)*n*ch

and wy, k(t) = (n 4 k) (1 + ) My i(t), By becomes a modified Baskakov op-
erator and condition (12) is again fulfilled, see [12, Lemma 2.4]. As regards
these operators, further results have been obtained by H. Heilmann and
M. W. Miiller [14].

The first class of operators was introduced by V. Gupta in [9] and the
Bézier variant of the last two classes were introduced and studied by Vijay
Gupta and Ulrich Abel in [11] and Vijay Gupta in [10] respectively.

As a matter of fact we indicate for each of the above three examples a
possibility to select ¢, function which verifies condition (4).

1

e, OBxwmxl,
2enz(l — )

¢n (1’) =
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_ 2(42? 4+ 3z +1) _ 8y/9%z(1+z)+1+2
(bn(.’ﬂ) - \/ﬁ ? ¢n($) - 5\/m y &L = O:

see [17], [16, Lemma 2], [12, Lemma 2.3], respectively. It is fair to notice
that in [9] there are improvements and corrections of some results obtained
in [16].

We point out that recent results in this area improve the values of ¢, (z)
for Szasz and Baskakov basis functions, see [11] and [3]. These new values
are given by

dn(s) = —= —__
A V2enx vnz(z+1)

respectively. In the above expression C is a constant. For n=1, C'=1;
for n 2 2, the value of C depends on n and based on [3, Théoréme 3], it is
given by max { (2/3)%2, (3n/2)%%(n — D™/ (n+ 1/2)”*1/2}. However our
purpose is attained by any choice of ¢, function.

In the next section we gather all notations which will be used for ennun-
ciation and proving our results.

and ¢y (z) =

3. Basic notation

Let a < b be real numbers. We set J (@) == J N (—o0,a), J(a,b) =
JN[a,b], Jt(b) :=JN (b oo). For any point x € Int (J) we consider the
following decomposition of the interval .J

J=J‘(:c—tf)UJ(m—é,:n—}—c?)UJ+(:1:+6), 0>0, z+0 € Int(J).

Let 3 be a given real number, 8 > 0. In order to be brief we introduce
the quantities

Ung =2 —2n P, Vnz =2+ zn P, Wng =2+ (l-zn?, nechN.

Next we define the functions 9z, 8gN,, &, as usual:

&) - fla-), t<a, ~1, t<uz,
9x(t) == ¢ 0, b=, sgn,(t) :==¢0, t=uz,
f(t) — flz+), t> =, 1, t>a,

I, t=m

0o (t) := {0 .
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t
where t € J. Since g, is continuous at ¢ = z, the map ¢ — \/(gﬁg), (a € J,

a
t € J such that z is between a and t), is continuous at the same point z.

With the help of g, we introduce g, € R/ given as follows:

o J9e(t),  tS 2,
Gz(t) := {gm(%), 4 s B, (te J).

We set s¢(z) := (f(z+) — f(z—)) /2, the half-jump of f at the point z.
For any integer s = 0 we introduce the s-th order central moment of the
operator By, q, that is

#ffs). (L'L‘) = (Bﬂ,&"prc,s)(m)a ¢rt:,s(t) = (t = 55')3, (t,fL‘) eJxJ

If @ = 1 then we will simply denote these moments by u, ;. We associate
with the kernel K, , the following map:

(13) Mol 1) = / Kpo(z,u)du, ze€J, telnt(J).
T~ ()
For a given N € N, BVy(J) stands for the class of all functions f € R’

of bounded variation on every compact subinterval of J (denoted by BV (J))

and satisfying the growth condition | f (t)[ = My ( 1+ |t|N) , t € J, where My
is a positive constant depending on f.
Next we present some technical results involving the above elements and

the kernel K, , as well.

4. Preliminary results
LEMMA 2. For every (n,s) € Nx N and o« 2 1 one has
(14) 1Sy < ot s

PRrROOF. By using the relation B* - A* < a(B—A), 0SASBZ1,
a 2 1, and taking into account (6) we get

QW (x) = 5% (2) = 52441 (@) < & Sp (@) — Snyer1()) = aQ{4(@).
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Consequently, for every h € R one has By oh = aB,1h and choosing
h = 325 = 0 the conclusion follows O

LEMMA 3. If x € Int(J) then the following relations hold

(15) (i) foreachye J, y <z, / Kz, t) dt < Qfin 2()
J_(y) (miy)

(16) (ii) for each z € J, z > =z, / Kypale t)ydt S Q.’,Ll,n—g()
.y (z — 55')

PROOF. Let z €eInt(J). If ye J, y <z, then 1 £ (¢t —z)*(z —y) 2,
V) teJ (y). Ifz€J, z>a, then 1 L (t—2)%(z —z)7% (V) te JH(2).
These inequalities combined with (14) lead us to the desired result. O

LEMMA 4. If Apo(z) = / 9o (t) Ky oz, t) dt, then one has
I (un,z)
CE'U,TLQ(SC) n—1 T
| Ana(z)| < (\/( ) Z (k +1)% — £29) \/(gw)), n>2.
U,z

PrOOF. Recalling (13) and integrating by parts, we have

(17) Apalz) = S’w(t))\n,a(C’f:t)L

f Amal, t) del — go(0)).

J- (uu,z:)

€J (Un,z)

For u € J(t), t < upg < @, applying (15) we get

ot T
nalz,t) < < Hn, 2( 2), )\n,a(ﬂf,un,m—) < %g(_‘c)nw_
(z—1t) x
At the same time |g;,; (tnz )‘ = |g'ZL Uz =) — Gul® \/ (92) and the
U,z

x

map t — — \/(gm) is a nondecreasing one, t € J~(z). Gathering these rela-
t
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tions, identity (17) implies

(18) IAn,a(-’E)‘ < Anya(@; tnz—) \/(gm)

Un,z

+ apin 2 () f (z—8)"ds (— V(gx))

I~ (un,z)

(6%
,U’n 2 2ﬁ \/ (ga:

Un,z

II/\

T

; a,un,z(m){ -7\ (e)

)

f \/(QT)

I (tUn,a)

teJ (un ,I)

In the last integral making the change ¢t =z — z/y’, one gets L Sy <n
(n = 2) and it becomes

n - ﬁ no1 ®1
V ()y* dy=— / \ (g)y* ' dy
1 a—zy P k=173 az—ay P
ﬁ n—1 kil o 1 n—1 T
20-1 = 208 .23
<3 f \/ (g2)v*° " dy @Z(UHU k) \/ (92)
k=1 L Mka k=1 Uk,
We considered that y € [k, k+ 1] implies [z — zy P, z) C [ukz z]. Re-
turning to (18) we obtain the claimed result. O
LEMMA 5. If By alz) = / 9z (1) K o, t) dt then one has
J(un,:m'un.,:l:)
Un,z n Vkax
(19) no.' < \/ gz) < — Z \/ g:ﬂ ne
Un,x k‘.w—l u-k =

The same relations are true if we substitute vg , by wiq, k= 1,n.
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Un,x
PROOF. For t € J(up 4,y e) one has lga(t)l = lgm.(t) ~gm($)| < \/ (9z)
Un,x
and knowing that 0 < f Kpa(z,t)dt £ 1, the first inequality is
J(un,z,Vn,z)
proved. L
For each k =1,n, J(unge, vne) C J(Ukgz, Upy) takes place and conse-
Un, Vo
quently \/ (92) = \/ (gz). The second inequality is based on the well-known
Un,z Uk ,x
n
) . . . 1
property of the arithmetic mean: min A; < — Z Ap,.
k=1,n n b1
The last assertion of our lemma is evident. |

LEMMA 6. If Cpq(z) := / G2 (t) Ky (2, t) dt then one has

It (vn,e)

T2

¥ (m) 2 n—1 Vk,x
| Cnal)| < “F222 (\/(gw) +Y o (k+1)% —5%) \/ (gm)), n22
k=1 )

&Z
PRrROOF. Recalling (13) and integrating by parts, we have
Cralz) = /\n,a(m, t)'g} (t)‘teJﬂwn,I) - / An,a(z,t) dt(gm(t)) '
Jt(vn,z)

Taking into account both tlim Mald, t) =1, tlim 92(t) = gz(2z) and the
— 00 —+ 00

form of g, (t) for t € J*(vy ), we get

2z
Cn,&(w) = gw(zﬂb") = )\n,a (37; Un,$+)ga;(vn,$+) = [ )\-n.,a (ﬁ’,‘, t) dt(gu: (t)) .
Un,x
2z
Since g, (2z) = f dt(gg,- (t)) + gz (vn,z+) holds, we obtain
Un,z
2z
Cra(®) = (1= Apal@ vnet)) go(Unat) + f (1= Analz,t) dig2(2)).

Un,x
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On the other hand 1— Mpalz,2) = [ Ky oz, ) du, 1gw(vn,$+)| =

Jt(z)
Un,x t

|91.('Un et) — Qm(w \/ (g9z) and t— \/ (gz) — g»(t) is a nondecreasing

map, t € JT(z). By usmg (16) both for z = v, and z =t > x one gets

2%
alu’n 2(33 o 04#’11,2(33) 4
@) |G G Ve f 22 Vo)
el 2(3:)2 \/

(U'rt - Z)

+ apip Q(ZE){ t - 55') 7o \/(Qw)

@ dt
_'”‘i—Qf\/QT (t —x)® }

Un,x

2:1:t

—M\/ (92) + 2ctpin,2(x) f\/(.‘}c

In the above integral substituting { =z + /7% it becomes

1 m+mz*ﬂ (*ﬁ) ﬂ n—1 k""lw—i—:t:z*ﬁ
f \/ (gx)_mé_ZZB-fl dz = ;2— Z / \/ (gm)zgﬁ'l dZ
n T k=1 A T
ﬁ _ k+1’”i. = 1 =1 Vk,a
— 3 2
—2Zf\/ )2t ds = oL S (G417 - 1) V(g
k=1 % z k=1 ©

We used: z € [k, k+ 1] implies [z, +z2P] C [z, vk, K =1,n— 1. Re-
turning to (20) the proof is complete. O

LEMMA 7. Let f € BVy(J), Int (J) = (0, 00).
If Dy o(z) == / (92(t) — 92(22)) Kn,a(z, t) dt then one has

J+(2z)

21—N+$N
| Dy, a($)| aﬂ{[fz <—$§—Hn,2(x) H=y 05—1,“%,21\? (.’L‘)) .
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PROOF. Because of ¢ > 2z and f € BVy(J) we obtain

|92(0) = 9222)] = | £(2) ~ f(22)] < Mp((144%) + (1 4 2V NY)

Consequently,

an,a(m);ng{(szmN) f Ko ale,t) di+ / A NERP

J*(2z) J+(2z)

For the first integral we apply

(16). In order to increase the second one,
under the hypothesi

st > 2z, we use Schwarg inequality.

VK oo, ) dt < 2N / (t— 2V Ky oz, t) dt

J+(2z)

1/2 1/2
(t—x)QNKn,a(a;,t)dt} { f K,m(x,t)dt}

J*+(22)

J+(22)

§2N{
J+(2z)

é 2N \/ /‘L'r(z?gN(x)v

because of J*(2z)  J and (8). Lemma 2 finishes the proof. O

LEMMA 8. Let Int (J) = (0,1). Jf B, u(z) = / 9z () K oz, t) dt

JH(wp,z)
then one has

n—

| Bualo)] £ T2 (Vg + 3 (G54 1% - o0
x k=1

wk,m

\x/(gm)), nz2

PROOF. Taking the advantag

e of (13) and (16) we follow similay steps
as in Lemma 6.

EeE) = f ( f Ky o(z,u) du) dt(gm(t)), USE> Wy, >

Tt (wn,a) JH(¢)
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| Ena(z)| £ apina(z) f (t— =)~ dt(\i/(%))

JH (wn,x)

t

= Qlin,2 m){ (t — ) 2\/

€T

t
a3 ) dt b
tEJJr(-wn,l.)_I'Q f (t—=z) \m/(g”)d }’

J+{'wn,.1:)
1 ¢ ﬁ nw-{-l—'ﬁﬁ
2@ 1
x d
wfg Wil (t—:ﬁ (1—a) f W
ﬂ n—1 P‘+lwk‘:r
g s /\/(gw)zgﬁ—ldz
k=17, T
1 n—1 Wi, 2
2
= s ap 2 (07 =K V (@2)
k=1 T

In the above we replaced ¢t = z + (1 —)/2” and used [z,z + (1 — ) /2P| C
[z, wyq] for z € [k, k+1], k =T,n — 1. Assembling all relations, the proof is
complete. 0

LEMMA 9. Under the hypotheses (12) and (4), the operator defined by
(5) verifies

a—1
a-+1

\(Bn,a sgn,,) () + ‘ < 2a¢,(z), z € Int(J).

PROOF. First we consider the case when I,, is infinite. Taking in view
both relation (8), our hypothesis (12) and property (9) as well, we can write

(B B0 () 41 = / Ko, t)dt — f Ko alz, t)di+1

J+(x) J={E)
—9 f Knalz,H)dt=2 Q%) () / wn (1) dt
JH() hetn T+ (@)
=23 Q@) Y uni(@)
kely igk

i€ln
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=2) uni(®) Y Q@) =23 un;(2)SY(2).

Jely kZj Jjel,
kely

Further on, because of 1 = Z Qfﬁ;l)(:ﬂ) and (10) we get
J€In

(Bn,a sgn,)(z) + — 1 =9 Z (un,j(;c)Sff’j (z) — a——ll—lQ'(:ferl}(m))

(a3
a+1 :
JjerL,

=2 Y un (@)(S3(2) — 750,

Jj€ln

Clearly, |S'g,j (x) — Tl?,j,a:! < ,ST‘;J- () =S ;41 (x)|. By using (11) and (3)
we obtain the assertion of our lemma.

For the case when I, is finite, putting 7 :— sup () and I} = I, \ {7},

we have fo% = Sf\{,ﬁ = ug’ﬁ. Now we decompose Z into two parts: the
kely,
sum Z and the term corresponding to k = 7. The proof running similarly
kelx

as in the previous case, we obtain

(Bras8m.)(@) + 27 $2 3 (&) S5, 6) = S350 (0)] + 24 (0),

JEL}
where
2upm(x)
1) =win@)| [ wnnt) i - 2nme)
JH ()
Since Tiga) = (1 + m 1) Unm < 20y, we arrive at the same result. O
a

5. Main results

Since an affine substitution maps (a,b), —0 £ a < b < 00, onto 0,1),
(0,00) or R, it is enough to consider these intervals as being Int (J).

For the first two situations, we are going to present the rate of pointwise
convergence of B, , operators for functions of bounded variation. Qur main
results may be stated as follows.
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THEOREM 1. Let Int (J) = (0,00). Let By, o be defined by (5) such that
(4) and (12) are fulfilled. For every B >0, f € BVy(J)NF, z > 0 and the
integer n = 2, the inequality

(21) |(Braf)(@) = (@+ 1) (f(z+) + af(z-))|
ztaz/nf
z—az/nf

+2Nﬂ/ff\/a,ungN( )+2GISf |¢5n

holds, where

2z n—1 z+z/kP
An(B, Fi2) =\ (g0) + Mp2+2Vs™) + 3 ((k+DP =)\ (90)-
0 k=1 x—z/kB

PROOF. Setting ¢t q(z) == (f(z+) + af(z—)) /(a+ 1) a convex combi-
nation of the real numbers f(z+), and having in mind Section 3, for each
t € J we can write

F0) = esa(e) + 920 + 37(0) (sE0a(0)+ S ) + (S(a) = () 80

In the above we apply the linear operator B, . Since B,  reproduces
the constants and B, 0, is null, one obtains

-1

| (Braf)(@) = efal@)] £ [ (Buage)@)] +|s()] \(Bwsgnz)(:m =5
= | Ana(®) + Bpa(z) + Cra(x) + Dral2)]

a—1
a+1|’

+ ‘sf ‘ (Bn,a sgny)(z) + ——

where A, o(z), Bna(z), Cna(z), Dnalz) have been defined in Lemma 4,
Lemma 5, Lemma 6 and Lemma 7, respectlvely Using the statements of
these lemmas together with Lemma 9, after some arrangements we arrive at
the claimed result. u
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REMARKS. 1° Certainly we are interested in those sequences (BH,C,Jn
which form an approximation process, in other words lim Boof=f,f€S,
n

the convergence being understood with respect to a suitable topology on the

involved function space S. In this respect, for our integral linear operators it

is natural ftn2 = 0(1) (n — 00) to be fulfilled. Here o represents the Landau
4o

symbol. On the other hand, continuity of g, at x implies that \/ (g2) — 0
z—p

as a, 8 — 0F. These facts allow us to state the following.

If ¢n(z) = o(1) (n — c0) and n,2(2)An (B, fiz) = 0(1) (n — 00) then

f@+) +af(e-)
14+«

?

(22) Jim (B, o f)(z) =

for every f € BVjy(J)N F.
2° If z is a continuity point of [ then relation (21) becomes

z+a/nf

| Braf)(@) - £(2)] < 22N (5 50y LN ()
r—z/nf

- QNM'f \/ Qin,2n ().

3°1If 8 € (0,1/2) then (k+1)% — 126 < 1 and one has

2z n—1a+az/kP
An (B, f; z) < \/(g:ﬂ) + My(2 + 2N$N) + Z \/ (9z)-
0 k=1 :r:—n:/k’@

Also, Ay (1/2, f;z) has a simple form.

THEOREM 2. Let Int (J) = (0,1). Let Byo be defined by (5) such that
(4) and (12) are fulfilled. For every >0, f € BV(J)NF, x € (0, 1) and
the integer n 2 2, the following inequality

|(Braf)(@) = (a+1)7(f(a+) + af(z-))|

z4+(1—z)/n?

= C‘f.'un,?(x)w(x)vn(ﬁ, fa)+ \/ (92) + 20‘] Sf(m)l ¢n($)1

z—z/nP
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holds, where

_ 1 n—1 :c+(1—.1:)/kﬁ
Vo, Fi2) =\ (g=) + D (k+ 1) =)\ (9)
0 b=1 z—az /KB

and ¥(z) = max{a:—z, (1— :C)_z} ’

PROOF. We use lemmas 4, 5, 8 and 9. This time we can write (B, o9:)(x)
= An,a(:r:) + Bn,a(sc) + Ep o (x) noticing that now B, o(z) contains the knots
Wy, A short calculation justifies our assertion. |

REMARKS. The established inequality offers possibility to discuss the

particular cases:
i) z is a continuity point of f;
(i) g€ (0,1/2) and B = 1/2.
Also (22) is true for every f € BV (J)NF.
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