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estimate the rate of pointwise convergence of this class for functions of
bounded variation defined on an interval J. Two cases are analyzed:
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are delivered.

Mathematical Subject Classification (2000). 41A35, 41A25

Keywords and phrases. Approximation process, bounded varia-
tion, rate of convergence, Bézier type operators.

1 Introduction

Recently, in [1] we introduced A, n € N, a general class of linear operators
acting on a function real space S, S C R/, J a real interval. Using a
Lipschitz-type maximal function, the Peetre functional K3 and the Hardy-
Littlewood maximal function, has been estimated approximation order in
L,-spaces for smooth functions.

The first aim of this paper is to present the Bézier variant A, o, n € N,
a > 1, of the above operators. Section 2 contains both this construction
and some direct properties of these integral operators. Our main goal
is to estimate the rate of pointwise convergence for functions f at those

This paper is in final form and no version of it will be submitted for publication

elsewhere.
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points z at which the one-sided limits f(z+) and f(z—) exist, « € Int(J).
Actually, in the last two decades it has been intensively considered functions
of bounded variation. All discontinuities of a such function are only of first
kind, consequently the proposed study is well raised.

We recall: the total variation of a function f € S on [a,b] C J is defined

n—1
as the upper bound of the numbers v(f;A,) = Z |f(zg+1) — f(zk)|, for
k=0

any n € N and all meshes Ap(a = 29 < 21 < <y = b). Setting

b

\/( f) = supv(f;A,) € [0,00], whenever this quantity is finite we shall
Ay

a

say that f is of bounded variation on [a,b]. Throughout the paper, BV
stands for the class of all functions of bounded variation on every compact
subinterval of R.

In Section 3 we gather all notations which will be used for enunciation
our main result. We also prove several preliminary results. Mainly these
are estimates of the quantities in which we split the expression

[(Anaf)(z) — ¢ “flz+) — (L —q7%) f(z—)], (1.1)
where ¢ > 1 plays an important role in the structure of the initial operators
As.

Section 4 is devoted to give an upper pointwise bound of the mentioned
deviation under some additional conditions imposed to f. We consider here
both the case J unbounded and J bounded. Considerations concerning the
convergence of our sequence of operators are delivered. Also particular
cases are analyzed. We reobtain the Bézier variant of some Kantorovich
type operators.

At the end of this section we mention that the rate of convergence
of some operators of functions with bounded variation is usually given in
terms of the arithmetic means of the sequence of total variation. A pioneer
work in this direction is due to R. Bojanic and M. Vuilleumier [6], they
deepening a technique later often used in many papers.

In time, for ¢ = 2 and a = —1 the deviation (1.1) was intensively studied
by a large number of mathematicians. Best of our knowledge, we mention
some of their papers in connection with functions of bounded variation.
F. Cheng [9] established the rate of convergence for Bernstein operators.
His results have been extended by S. S. Guo and M. K. Khan [10] the ap-
proximation of functions of bounded variation on R has been achieved and
several classical operators (Bernstein, Szdsz, Baskakov, Gamma, Weier-
strass) have been discussed as examples. At the same time M. K. Khan
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[15] investigated Bernstein power series operators and later, in a joint paper
with R. Bojanic [7], functions with derivative of bounded variation on R
have been considered. For the same values, ¢ = 2, a = —1, we quote [17],
[14], [13], in which the authors gave estimates of (1.1) for modified Szdsz
and Baskakov operators in Durrmeyer sense, respectively. Actually, Vijay
Gupta has studied this problem in several papers for different classes of
discrete and integral operators. The pointwise convergence of Meyer-Konig
and Zeller operators for bounded functions was investigated by X.-M. Zeng

and J.-N. Zhao [21].

2 The class (A,4)

Let J be a given interval of the real line. Let [,,, n € N, be sets of indices
such that I, C 1,41 holds true. We have in mind the variants: I, finite thus
as a model can be chosen {0,1,2,...,s,}, or I, is infinite thus our model
can be considered Ng := NU{0}. For each integer n > 1 we consider a net on
J namely (kn=®)er,., where 8 > 0 is a fixed real number. We start from a
sequence (Ly, ), of linear positive operators of discrete type having the form
(Lof)(@) = ) ang(@)f(k/nP), x € J, where any, € C(J), angk > 0, for
kel,

every (n, k) € Nx I, and f belongs to a vectorial subspace of R such that
the operators are well defined. Setting e; the j-th monomial, e;(t) = #/,
j € Ny, for every n € N we require the following conditions to be fulfilled

Lyeg =ey, Lper = Ei; Lpes =eq + Dn, (2 1)
ank(z) < ¢dn(z), k € I, = € Int(J), ’

where ¢, € C(J), ¢n € Ri are certain functions. These requirements
imply that each operator L, has the degree of exactness 1.

Next, let X be a non constant real random variable on a probability
space (£, F, P). Denoting by v its probability density function, we assume
that 1 € La(R) and supp(y) C [—p, ] N J, p > 0. A bounded compactly
supported 9 € Ly(R) is automatically in L; (R). Also, one has ¢ > 0 and

Il = f B(t)dt = 1. (2.2)
R

We set E(X) :=¢, Var(X) := ¢?, the expectation and the variance of
X respectively. Starting from X we generate the random variables X,

defined by

1
Xoki= (X +k=e), (nk)ENx I, (2.3)
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Consequently, Px, ,, the distribution function of X, 1, satisfies dPx, , =
nP(nP - —k + €) and one has E(X, ) = k/nP, representing exactly the
mesh of the L,, operator.

Letting S := {f € RE: E(|f o X, x|) < oo for every (n,k) € N x I,},
we introduce the operators A, : § — C(J), n € N, as follows

A j‘ 25: ankla o nﬂ, ZE: ankt/"f )(Ikdf) (QAQ

kel, keln

this meaning (A, f)(z) = =nf Z (T /f 'Bt —k+e)dt, z € J.
keln

Following Altomare and Campiti monograph [3; §5.2] this is a positive
approximation process generated by a random scheme on J. Since X is
non-constant, by examining (2.3) we deduce that for any (ky, k2) € I, x I,
the variables X, r,, Xy k, are not independent. All these variables repre-
sent scaled versions of the same variable X, they being obtained from it
by contractions (n™?, n € N) and by translations ((k — e)n=8, k € I,).
Moreover, by using (2.1) a simple computation shows us that the operators
A, keep the degree of exactness 1 and Anes = ez + @, + o2 /nm .

The next step is to define the Bézier variant of A, operators. Let a be
a real number, a > 1. We consider the operators A, o, n € N, given as

follows

(Ana)(@) =n® 3~ Q(a) f et — k + e)dt

kel,

y t + A
- ¥ Q¥ / b(t) f ) (2.5)

keln supp(1)
where

QL (z) = 824() — 82441(8),  Sualz) = Y anj(z), (2.6)

izk

JEIn

for every x € J and k € I,.
Based on (2.2) and knowing that Z ank = 1, we deduce S, =1 for
kel
k <inf(I,). If k > sup(I,), we agree to take S, = 0.
In the last years the operators of Bézier-type have also been studied. By
using probabilistic tools, X. M. Zeng and W. Chen [19] estimated (1.1) for
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Durrmeyer-Bézier operators (instead of ¢* appeared as valid (a+1)"1). X.-
M. Zeng and V. Gupta [20], [11] approached the Bézier variants of Baskakov
and Baskakov-Kantorovich operators, respectively. As regards the Bézier
variant of Szdsz-Durrmeyer operators a fruitful investigation has been car-
ried out by U. Abel and V. Gupta [12]. Also a general class of Durrmeyer-
Bézier type operators was recently presented in [2]. A similar technique as
in [2] will be applied in this study. However, the results aim at different
classes of operators and arise from distinct hypotheses.

Remark 2.1 The operator A, o is a linear positive one and it can be writ-
ten as a singular integral of the type

(Apaf)(z) = /I(n,a(.ﬁl?,t)f(t)dt, T € J,

R

with the kernel Ky, o(x,t) :=nf Z Q?(fg(m)tb(nﬁt —k+e), (z,t) e J xR,
kel,
Clearly, Ay1 becomes just A, defined by (2.4).

Remark 2.2 Forallk € I,, x € J and o > 1, the quantities Qfﬁg, Sk
K o verify the following direct properties useful in the sequel.

Sﬂ.,k(x) - Sﬂ.,k—f—l(m) = an,k(w): 0< Sn.,k(m) < 11 (27)

> Q@ =1 [ Kualm =1, 28)

ke[‘.’( R
QL) () < aan (). (2.9)

Relations (2.7) and (2.8) are implied by (2.6) combined with (2.2). Re-
lation (2.8) means that A, ., o > 1, reproduces the constants, in other
words Ap nep = eg. Further on, if a,b € [0,1] and o > 1 then Cq,b between
a,b exists such that [b* — a®| = a|b — a[c;gl < alb — a|. Based on this
inequality, (2.9) is implied by (2.6) and (2.7).

In what follows, as regards the family (a, ), we make an additional
assumption considering that a real number g, ¢ > 1, exists such that

| > ansl@)— | <ilna), 3 Ini(), (2.10)
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where @(n, -) is continuous on Int(J) for each n € N and a(n,z) = o(1)

(n — o0). Here o(-) represents, as usual, the Landau symbol. In order to

justify that this is not an unusual request we deliver the following examples.
Let J = [0,00), I, = Ng and 3 = 1. We consider the Banach lattice

is convergent as T — oo}

Ez::{feC[ o))l L

endowed with the norm || - ||+, [|f|l+ := sup (1+22)7 L f(=)

Example 2.3 Choosing a,(z) = e "*(nz)F/k!, L, become Mirakjan-
Favard-Szdsz operators, n € N. The domain S can be considered Ey. For
these operators X. M. Zeng [18; Lemma 2] has proved that (2.10) is fulfilled

with ¢ = 2 and a(n,z) = /1 + 3z//nz.

k-1 o
Example 2.4 Choosing anj(z) = (1 +z)™" (n+k ) (l i a:) 3 oy
become Baskakov operators, n € N, with S = Ey. Again (2.10) holds true

with ¢ = 2 and @(n,z) = (3z + C)/y/nz(l +z) in concordance with [20;
Lemma 5]. In the above C indicates a constant.

As a matter of fact, following (2.1), for these examples we specify that
wn(x) = z/n and @n(z) = (z + z*)/n, respectively.

Note that a similar relation as (2.10) was proved for other discrete
operators, like as Meyer-Kénig and Zeller, see [21; Lemma, 6.

Remark 2.5 We try to construct a true "bridge” between our assump-
tion (2.10) and the approzimation processes presenting both a particular
approzimation process for which (2.10) is not valid and some classes of
approzimation processes which verify (2.10) for an arbitrary number g > 1.

2.5.1. We consider Lupag operator [16] defined by

_ “ (k-1 k k k
(sﬂ.f)(m)=i;[ L EE L a] £ ().

€ [0,1], f € C([0,1]), where, for mutually distinct numbers a, b, c, we
denote by [a b ¢; f(t,z)]; the fact that the divided difference is applied on

the variable ¢.
Actually, S,f is the piecewise linear continuous function that inter-

polates f at the points k/n, k = 0,n. Among the properties of S,
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operator, we mention: it is linear positive, Spe; = e; for i = 0 and
i = 1, Suea = ez + z(1 — 2,)/n? where z,(z) = nz — [nz], [] in-
dicating the integral part function. In harmony with (2.10), we have
ank(z) :=n"t(k = 1)/n,k/n, (k+1)/n; |t — z|]; and further on

Z ank(z) = % Z {lk+1—=nz|+ |k -1 —nz| — 2|k — nz|} = z,(z).

k>nzx k>nz

Clearly, for any ¢ > 1 the relation |z,(z) — ¢ 7| = o(1) (n — o0) is
false. Consequently, the operators Sy, n € N, satisfy (2.1) but (2.10) is not
fulfilled.

2.5.2. Following [8] we recall the notion of bell-shaped function. A non
negative function b belonging to L;(R) is named bell-shaped if a real num-
ber a exists such that b takes a global maximum in 2 = a, b is non-decreasing
on (—00,a) and non-increasing on [a,00). Here a will be called the center
of the bell-shaped function. The function b may have jump discontinuities.
In what follows we consider that suppb is contained in the interval [T 1,

T
T > 0, and the center of b is a = 0. Letting I* := / b(t)dt > 0, the uni-
~T

variate Cardaliaguet-Euvrard neural network operators are given by the

formula

L RS .

*p O
k=—n?2

where 0 < o < 1 and f is continuous and bounded on R.

Based on [4, Theorem 2.1], we obtain that (F,) is a positive approxi-
mation process on L;(R) N Cg(R) with respect to Li(R), in the sense of
Altomare and Campiti [3; page 264].

Letting an k() := n=*b(n'~*(z — k/n))/I* and following [4; Eq.(2.10)]
we define S}(z) := Z an k(). It was proved, see [4; Lemma 2. 1] that

k>[nz]+1

0
Six) —» (I*)2 / b(t)dt as n — co. Comparing this result with relation

=
0

-1

(2.10), it is enough to choose g = I *( / b(t)dt) . Consequently, for a
P
given ¢ > 1 we can define a bell-shaped function b such that the above
identity holds true. Actually there are an infinity of such functions b, an

easy construction being piecewise constant functions.
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3 Notation and preliminary results

Since an affine substitution maps (a,b), —0 < a < b < co onto (0,1),
(0,00) or R, in general is enough to consider these intervals as being Int(J).
For the first two situations, we are going to present the rate of pointwise
convergence of A, , operators for functions f € BV and satisfying the
growth condition |f(¢)] < M(1 + |t|V), t € R, where My is a positive
constant depending on f. We denote briefly this class by BVy.

For any real numbers a < b set J (a) := (—o0,a), J(a,b) := [a,b] and
J*(b) := (b, 00).

Throughout the paper we will use the quantities un, = = — xn 4,
Una i=z+2an P, Whe =5+ (1— z)n~P. Next we define the real functions

Gy €z,9y 91,2y 92,2 0 as follows

f(t)—f(.’ﬂ—), t<$1 —1, t<.’,€,
9a(t) = 0, t=m, sgl)=4 U, ==,
ft) — flet), t>2, g —1, t>4%

— g - 9z (%), <2
Ql,:c(t) { 93:(0), t <0, 92,.1( ) { 93:(233); Tt 2%,

The size of the saltus of f at z € Int(J) will be denoted by sj(z),
that is sp(z) = f(z+) — f(z—). For any integer s > 0 we introduce
the s-order central moment of the operator A, 4, ,ugfl 2 = An o¥y,s where
Pa,s(t) == (t — z)*. If @ = 1 then these moments will be simply denote by
fin,s. For every (n,s) € N x N and a > 1 one has

s € o e (3.1)

The proof runs as follows. By using the known inequality b* —a® < a(b—a),
0<a,b<1, a>1, and taking into account (2.6) we get

Q@) = 8% 4(z) — 8% 11 (2) < Sup(®@) — Snps1(2)) = Q) ().

Since A, . are linear positive operators, for every ;25 > 0 relation
(3.1) holds true.
Some inequalities involving the kernel K, , will be read as follows.
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Lemma 3.1 If x € Int(J) then the following relations hold true
(i) for each y < x, '

n,2 (T
/ Kna xZ, t)dt = (;_2;)27 (3 2)
J=(w)
(ii) for each z > x
/ K olz, t)dt < ?‘”" QSE (3.3)
JH(z)

Proof. Let z € Int(J).
If y <z, then 1 < (t — z)?(z — y)~2 for each t € J~(y).
If 2 > z, then 1 < (t — z)%(2 — 2) 2 for each ¢t € J*(z).
These inequalities combined with (3.1) lead us to the claimed result. O

Further on, we associate with the kernel K, , the following mapping

Anal@ b) 1= f Kpol(z,u)du, zelJ (3.4)
I ()
We are now in position to enunciate some technical results involving
the decomposition of the integral / 9z (t) Kn o(z, t)dt.
R
Lemma 3.2 If

Apo(z) = f G1,2(t) Kn oz, t)dt
I~ (un,z)
and
Dysln) = / 92,2 (t) Kp oz, t)dt,
It (vaa)

then the following statements hold true

i n—1 &
Ana(e) < Z02E (\fig) 4 Sk + 0% - k) \ (02), n22,
0 k= U,
1 (3.5)
- (:':) 2z n—1 Uk,a
|Dn,a(ﬂ3)| = %Tz (\/(Qa,) + Z((k + 1)2ﬁ - k‘zﬁ) \/ (g&c))1 n > 2.
T k=1 i

(3.6)
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Proof. Recalling (3.4), integrating by parts and using the definition of g ,
we have

An,a(m):'g"l,m(t))\n,a(z,t)tej_(u e f Ana(@, 1)di(—G1,2(2))
T ()

= ga(tn ) An (2, tma—) + /0 " Al Dd(—gs(t).  (37)

&
We can write |9z (Un,e—)| = |92 (Un,z—)—g:(2)] < \/ () Ford =2 vy, <im,
applying (3.2) we get
)

)2

anﬁ )\n,a(m t) % Qflp, Zt(

An,a(ﬂfg uﬂ,,.?:_) S [L'Q ) (

Since the mappings t — \/(gl) + g.(t) are decreasing for t < z, we
t

have |di(—g.(t))| < d,g( \/ ) Gathering these relations, identity (3.7)
t
implies
IAn. a('b I < afly, 2 ( W2 \/ {J?: / LL‘ — t)_gdr,( \/(97)))
Un,x i
= ot 2(2) (272 \/ (02) +2 / -0\ (e)dt).  (38)
0 ¢

In the last integral making the change t = z —as/yﬁ yonegets 1 <y <n
(n > 2) and it becomes

T

ﬁ n 43 z k+1
2/, y*r- \/ (92)dy = QZf \/ (g )y dy
T—ay—

T—zY ™

3 n—1 .ki] = ) ==
<HEY [ Vi ay= Z (b -+ 1% — K29) \/ (g2).
k=1 Uk, 2 k=1 U,z
We took into account that y € [k, k+1) implies [z —zy 7, z) C gy 1)
Returning to (3.8) we obtain inequality (3.5).
In a similar manner (3.6) can be proved, consequently we omit it. [
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Lemma 3.3 Let f € BVy and Int(J) = (0,00). If
Bro@ = [ (@) = 9a(0) Knala, i
J=(0)

and

By (m) == f (92(t) — g2(22)) Ky, o (2, t)dE,
T+(22)

then the following statements hold truc

|Bn,a($)’ < aﬂd{f (Izlu‘n,l?(w) “Ir al}unﬁN(‘r)) ) (39)

|Enalz)| < aMy ((2 -+ (2$)N).'E_2,uﬂ’2($) £ 25, G:“I/JLH,QN((L')> . (3.10)

Proof. Clearly, both proofs follow the same line. We put the second one in
detail. Because of t > 2z and f € BV we obtain

19(8) — 90(22)] = |£(8) — £(22)] < Mp((1 + V) + (1 + 2V2)).
Further on,
| B ()| ng((erzNa:N) f Kool t)dt + / tNKnﬂ(m,t)dt).
Jt(2x) Jt(2z)

For the first integral we apply (3.3) and for the second we use Schwarz
inequality

f tN K, oz, t)dt < 2V / (t — 2)Y Kp oz, t)dt

J+(2x) J+(2z)
i/ 2 1/2
< 2N / (t — 2)*N K, oz, t)df} { / Kn,a(;c,t)dt} ¢
Jt(2z) Jt+(2x)

N q
<2 ”'SS’.;N('T")?

because of ¢ > 2z, J*(2z) C J and (2.8). Relation (3.1) finishes the proof.
]



188 OCTAVIAN AGRATINI

Lemma 3.4 If Cyo(z) := ] 9z (t) K o(z,t)dt, then one has
B J(uﬂ.‘m ;'Un,:c)
Cna(@)] < \/ (92)- (3.11)

The same relation is true if we substitute vy x bY Wnz.

Un,x
Proof. For t € J(Un z,Vnz) one has |ge(t)] = |gz(t) — gz(z)| < \/ (gz) and
knowing that 0 < / K, o(z,t)dt < 1, inequality (3.11) is proved.
J(un,a::’”n,:u)
The last assertion of our lemma, is evident. U
Lemma 3.5 Under the hypothesis (2.10) one has
|(Ana€a,q)(z)] < Cagu(@(n,z) + dn(2)), =€ Int(]), (3.12)

where Co, 45 depends on a,q and the length of the set supp()).

Proof. We split I,, into three subsets. I,; :={k €I, : k< nPr+e—tfor
every t € supp(¥)}, Ing := {k € I, : k > nPz+e—t for every ¢ € supp())}
and g 1= Iy \ (10 U L 3) Taklng into account (2.5), (2.2) and (2.8) we

obtain
Ay a€zg = Z Q +(a” - Z Qf}?«
keln 1 keln,2
a t+k—e
k€lns supp(zb)
o (a) (@) ot B
— Y Q-1+ Y Q1+ [ Y(t)ewg (T) t).
BT k€l a supp (1)

Letting ko := min(l,2), it is evident that any &k > kg, k € I, will belong

to I, 2. Taking also into account (2.6), we get Z Qif‘g = Sy kn Using
]CEIn,z
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again the inequality [a® — 1| < ala —1f, @ > 1, a € [0,1], and observing
that |eg,4] < g%, with the help of (2.6) and (2.9) we can write

: i |
}An,rxgm,qr = 0&(]\ E Ap,j — _’ i (1‘(1 + qa) g Ay k- (313)
J[E“D q k€L, 3
J T

Let l:/, be the length of the bounded interval supp(t). The construction
of I, 3 implies Card(l,,3) < [ly], where [s] indicates the ceiling of the
number s. If j > kg, then § > nPx+e—t for every t € supp(1). At the same

/ (u— t)h(u)du| < E:j
supp()
All these facts combined with (2.10) and (2.1) allow us to get from (3.13)
to (3.12). O

time, for every t € supp(v) one has |e — t| =

4 Main results

The focus of this section is to present the rate of pointwise convergence of
Ap o operators for functions of bounded variation. At first we discuss the

case Int(J) = (0, c0).
Theorem 4.1 Let Int(J) = (0,00). Let a funciion f belong to BVy and

An,o be defined by (2.5) such that (2.10) s fulfilled. For every real number
8 >0, x>0 and integer n > 2, the following inequality

I(An.af}(ﬂ-"‘) — g fe+) — {1~ g *)f(z—)| £ MAW(H: 7 -73)

1:2
x4z /nf
+ NV (90) + Moo (@) + Cagypls ()| (@(n, %) + ()
z—x/nf

holds true, where

2z 7—1 o/ kP
An(B, fix) = \/(g2) + Mp(3+ (22)V) + D ((k + ¥ — k%) \/ (g0)
0 k=1 z—a kP

and My, My, 7, Co 4,4 are positive constants depending only on the quantities
which appear as their indices.
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Proof. Having in mind the notation introduced in Section 3, foreacht € R
we can write

F(t) = T f(@4) + (1= %) f(a=) + ga(t) + ¢~ (2)ewy (t)

+0z () (f(t) — g “fla+) — (1 — ¢ ) f(z—)).

In the above we apply the linear operator Ap,o. Since A, , reproduces
the constants and A, ,d, is null, we get

((Anef)(@) — ¢~ f(z+) — (1 — ¢ *) f(z—)]

< |(Anagz)(2)] + q_a|3f(33)”(An,asm,q)(x)[- (4.1)

Further on, examining Lemma 3.2, Lemma 3.3 and Lemma 3.4 as well,
we can write Ay, o9, = Ano+ Bro+ Chne+ Dpo + I

Using the statements of these mentioned lemmas together with Lemma
3.9, after some arrangements, from (4.1) we arrive at the claimed result. []

In order to discuss the case Int(J) = (0,1) we need the function 93,2

defined as follows
o _J oge(t), t<1,
gs.x(t)—{ - A

Lemma 4.2 Let f € BVy and Int(J) = (0,1). If

Fpo(z) = / T30 () K o2, )t

JtH(wn,z)

and
Gal) = f (92(2) — 92(1)) K a(a, £)d,
J(1)

then the following statements hold true

. 1. n—1 Wi,z
Frale)] < T2 (V/(0)+ 30+ 107 =69\ (), n32
i k=1 4

(4.2)

|Gralz)[= alMy ((3 + 2N_1$N)(1 — a;)"z,un,g(a:) + ZN—I\/afI,un‘gN(ar)) .

(43)
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Proof. At first step, integrating by parts, we have

Faal®@) = G30(t) Mnalz: 1) st ] Ana (2, 1)d(Gs 2 (1))

J+(wn,m)

1
= gz(l) - gm(wn,m+))\n,a’($1 wn,:ﬂ‘*') - / /\n,a(icy t)dt(gl'(f))

Since

1
G =g o) + / Gt e 1~ N aliti ) = f (5,0

W, JE (z)

for any real z, we get

Rz,a(&?) = gm(’wn,er) / Kn,a(I, 'u,)d,'u

J+ (wn.w}

1

+/(/Kn,a(z,u)du)dt(gw(t))-

Wn,x J+(t)
Taking into account the following inequalities

Wn,z

t
[92(wne )| = |92(wnat) = 0:(@)] < \/ (9),  de(oa(t |<dt(\/ ))

T

and the relation (3.3) as well, one obtains

Wn,x

an.a($)|§0ﬂ#n,2($){(wn) 7 V) /w _lm)gdt(\t/(gx))}

—

= Qfina(x) {

)+ 2/11};(1: —z)73 \t/(gm)dt}.

In the integral, replacing t = z+(1—z)z? and using [z, z+(1-z)zP] C
[z, wg »] for any z € [k, k+ 1], k =1,n— 1, n > 2, we have

1t n—1 Wi
L VG255 < g k172 1)V (0
. k=1

n,x T

T
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Assembling all relations, we obtain (4.2).
The proof of the second statement follows the same line as the proof of
(3.10). There is, though, a slight modification. This time, for z < 1 < ¢,

we use the following inequality ¢V < 2N- Yt —2)V +zM). O

As regards the case Int(J) = (0,1), we decompose Ay oGz = Ana +
Bpo+ Cna + Fra + Gn, n > 2, and using relations (3.5), (3.9), (8.11),
(4.2), (4.3) we obtain the followmg result.

Theorem 4.3 Let Int(J) = (0,1). Let a function f belong to BVy and
An be defined by (2.5) such that (2.10) is fulfilled. For every real number
B >0, z€(0,1) and integer n > 2, the following inequality

}(A?l,af)(m) - qiaf(z—i_} - (1 - q_a)f("rﬁ)l S a#n,Q(I)T("E)An(ﬁa f; -E)

a+(1—z)/nf
TV 90+ Mol (@) + Coyplsy @)@, 2) + dn(2))
z—x/nf

holds true, where

i n—1 T4+ (1—z) kP
An(B, £i2) = \/(ga)+ My (442" )4 Y (6412 -2)  \/ (g),
0 k=1 Tz kP

7(z) = max{z~? (1 - 2)"2} and My, My f,Co gy are positive constants
depending only on the quantities which appear as their indices.

Remark 4.4 From the point of view of Approzimation Theory, we are in-
terested in those sequences (Apo)n which form an approzimation process,
see [3; page 264]. In this respect, it is natural to assume that (Ar)n en-
joys this property. On the other hand, continuity of g, at x implies that

T4z

\/ (92) — 0 as z1,29 — 0%, By the virtue of Theorem /.1 these facts

Tr—21
allow us to state the following.

If
(i) dn(z) = (]) (n — o0) and
otz /kP

(i) Jun,Z(-r) ((k+ 1)2ﬁ - k’zﬁ) v (92) = o(1) (n — c0)
k=1 z—x/kP
S (O,oo).
A similar statement is true for the case Int(J) = (0,1).

»—.

for every f € BVy, where
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Remark 4.5 If z is a continuity point of f then Theorems 4.1 and 4.8
establish an upper bound of the ezpression |(Anof)(z) — f(z)|. This time
sf(x) = 0 and the proved inequalities have a simpler form.

Particular case. In what follows we consider that the random variable
X is uniformly distributed in the interval Iy := (0,26), @ > 0. Since
P(t) = (20)~! for ¢t € Iy and 1(t) = 0 otherwise, we find E(X) = 6. In this
special case, denoting by A;, , the operators defined at (2.5), we get

nP W
Mol =35 2 Q@) [ S, zes, @)

kel T om0

where I n 9 = [(k — On—"P, (k+0n P, ke L.

For a = 1, (A% ), represents a known class of the Kantorovich type
operators. It is self-evident that as discrete operators L., see (2.1), should
be chosen Bernstein, Szasz or Baskakov operators. For a similar sequence,
the rate of pointwise convergence for locally bounded functions f measur-
able on an interval I was studied by G. Aniol. It is fair to notice that
those operators [5; Eg. (2)] are constructed by using more general subin-
tervals as ours. However, the established results are not the same because
of a different approach. For § = 1/2 and 8 = 1, the operators defined by
(4.4) represent the Bézier variant of the classical generalized Kantorovich
operators, in a slight modified form. )

Consequently, for A} , our main results given at this section can be
applied.

Final remark. I am thankful to the anonymous referee for his pertinent
suggestions. Moreover, he indicated a probabilistic look of the operators
Ay as follows.

@ (z) —e
(Anf)(&) = Bf ( A e ) ,

where Z,,(z) is a variable independent of X verifying
P(Z{(z) = k) = P*(Zn(z) 2 k) — P*(Zn(z) > k + 1)
and P(Z,(z) = k) = ani(z). Certainly, manipulating probabilistic tools,

similar results as ours can be given in terms of the numerical characteristics
of the above random variables.
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