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Abstract
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particular our theory yields existence results to initial and boundary
value problems for functional-differential equations in abstract spaces.
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1 Introduction

One of the most efficient tools for proving the existence of solutions to the
nonlinear operator equation

u = N (u) (1.1)

in a Banach spaceX is the following Leray–Schauder type principle of Mönch
[10] (see also [6], p 204 and [14], p. 67):

Theorem 1.1 Let X be a Banach space, K a closed convex sunset of X, U
a relatively open subset of K and N : U → K continuous. Assume that for
some u0 ∈ U the following conditions are satisfied:
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(i) if D ⊂ U is countable and D ⊂ conv ({u0} ∪N (D)) , then D is compact;

(ii) u ̸= (1− λ)u0 + λN (u) on ∂U for all λ ∈]0, 1[.

Then N has at least one fixed point in U.

In this paper we are concerned with Eq. (1.1) when X = Lp (0, T ;E) ,
and N splits as

N = SF,

where both operators F and S are nonlinear and

F : K ⊂ Lp (0, T ;E) → Lq (0, T ;E) ,

S : Lq (0, T ;E) → Lp (0, T ;E) .

Here 0 < T < ∞ and E is a Banach space. In this case we say that
(1.1) is an abstract Hammerstein type equation. The results of this paper
are as follows. First, from Theorem 1.1, we deduce an existence principle
for abstract Hammerstein type equations. Next, as applications, we obtain
an existence result of Brezis–Browder type for abstract Hammerstein type
equations when F is the Nemyskii’s superposition operator associated to a
given function f : [0, T ] × E → E, and existence results for equations of
Volterra type.

The main assumptions on S and some useful lemmas are those from
Couchouron–Kamenski [4] and Couchouron–Precup [5], while the main ideas
in proving the existence results are adapted from O’Regan–Precup [15], [13]
and O’Regan [11].

In particular:
1. if S is a linear integral operator, we can deduce existence results for

functional-integral equations of the form

u (t) = h (t) +

∫ T

0
k (t, s)F (u) (s) ds. (1.2)

Here S (v) (t) = h (t)+
∫ T
0 k (t, s) v (s) ds; when F is the superposition oper-

ator associated to a function f we reobtain some of the results in [13] and
[15];

2. if S is the mild solution operator of a Cauchy problem, we obtain ex-
istence results for functional-differential (in particular, integro-differential)
evolution equations of the form{

u′ (t) ∈ Au (t) + F (u) (t) , a.e. on [0, T ] ,
u (0) = u0.
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Here A : D (A) ⊂ E → 2E is an m-dissipative operator (possibly nonlin-
ear and multi-valued), and for any v ∈ Lp (0, T ;E) , S (v) = u the unique
solution to the Cauchy problem{

u′ (t) ∈ Au (t) + v (t) , a.e. on [0, T ] ,
u (0) = u0.

(1.3)

Sufficient conditions for such a S which satisfy conditions (S1)-(S2) below
are given in [4]. Thus from our theory we reobtain the existence results in
[4]; in addition for this type of problems we provide an alternative approach
to that presented in [2], p. 252 and [9];

3. when S is the solution operator associated to a boundary value prob-
lem, we derive existence results for perturbed boundary value problems in
abstract spaces. For example if for any v ∈ L2 (0, T ;E) we let S (v) be the
unique continuous solution u of the Dirichlet problem{

u′′ (t) ∈ Au (t) + v (t) , a.e. on [0, T ] ,
u (0) = u (T ) = 0

(1.4)

(in the Hilbert space E, with A maximal monotone and 0 ∈ A (0)) [5], then
we can derive existence results for the functional-differential equation{

u′′ (t) ∈ Au (t) + F (u) (t) , a.e. on [0, T ] ,
u (0) = u (T ) = 0;

4. our results apply to nonlinear partial differential equations.
The results of this paper improve, extend and complement those estab-

lished in [1], [4], [5], [8], [12], [13], [15] and [16].

2 Preliminaries

Throughout this paper E will be a real Banach space with norm |.| . By
(., .)+ we denote the semi inner product on E,

(u, v)+ = |u| lim
t→0+

t−1 (|u+ tv| − |u|) .

Recall that (u, v + w)+ ≤ (u, v)+ + (u,w)+ and
∣∣(u, v)+∣∣ ≤ |u| |v| for all

u, v, w ∈ E.
Let 0 < T < ∞. A function u : [0, T ] → E is said to be strongly

measurable on [0, T ] if there exists a sequence of finitely-valued functions
un with

un (t) → u (t) as n→ ∞, a.e. on [0, T ] .
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By
∫ T
0 u (t) dt we mean the Bochner integral of u, assuming it exists. Recall

that a strongly measurable function u (.) is Bochner integrable if and only
if |u (.)| is Lebesgue integrable.

For any real p ∈ [1,∞), we consider the space Lp (0, T ;E) of all strongly
measurable functions u : [0, T ] → E such that |u|p is Lebesgue integrable
on [0, T ] . Lp (0, T ;E) is a Banach space under the norm

|u|p =
(∫ T

0
|u (s)|p ds

) 1
p

.

Also for p = ∞, we let L∞ (0, T ;E) be the space of all strongly measurable
function u : [0, T ] → E which are essentially bounded, i.e.,

ess sup
t∈[0,T ]

|u (t)| := inf {a ≥ 0 : |u (t)| ≤ a a.e. on [0, T ]} <∞.

L∞ (0, T ;E) is a Banach space under the norm |u|∞ =ess sup
t∈[0,T ]

|u (t)| .

When E = R, the space Lp (0, T ;R) is simply denoted by Lp (0, T ) . By
|.|∞ we also denote the max-norm on the space C (0, T ;E) of all continuous
functions u : [0, T ] → E.

Next we state a Weak Compactness Criterion in Lp (0, T ;E) which fol-
lows from the results of Diestel–Ruess–Schachermayer [7].

Theorem 2.1 Let p ∈ [1,∞[. Let M ⊂ Lp (0, T ;E) be countable and there
exists a ν ∈ Lp (0, T ) with |u (t)| ≤ ν (t) a.e. on [0, T ] for all u ∈ M. If
M (t) is relatively compact in E for a.e. t ∈ [0, T ] , then M is weakly
relatively compact in Lp (0, T ;E) .

Recall the definition of the Kuratowski measure of noncompactness and
the Hausdorff ball measure of noncompactness of E. For any bounded set
D ⊂ E let

α (D) = inf

{
ε > 0 : D ⊂

m∪
k=1

Dk, diam (Dk) ≤ ε

}
,

β (D) = inf

{
ε > 0 : D ⊂

m∪
k=1

Bε (uk) , where uk ∈ E

}
.

Here diam (D) = sup {|u− v| : u, v ∈ D} andBε (u) = {v ∈ E : |u− v| < ε} .
When it will be necessary to avoid any confusion, we shall write αE , βE in-
stead of α and β, respectively. Recall

β (D) ≤ α (D) ≤ 2β (D) for D ⊂ E bounded
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and

βE (D) ≤ βE0 (D) ≤ αE0 (D) = αE (D) for D ⊂ E0 bounded,

and any linear subspace E0 of E.
We have the following result concerning the interchange between the

measure of noncompactness and the integral.

Theorem 2.2 (Heinz) (a) If E is a separable Banach space and M ⊂
L1 (0, T ;E) countable with |u (t)| ≤ ν (t) for a.e. t ∈ [0, T ] and every
u ∈M, where ν ∈ L1 (0, T ) , then the function ψ (t) = β (M (t)) belongs to
L1 (0, T ) and

β

(∫ T

0
M (s) ds

)
≤
∫ T

0
β (M (s)) ds.

(b) If E is a Banach space (not necessarily separable) andM ⊂ L1 (0, T ;E)
countable with |u (t)| ≤ ν (t) for a.e. t ∈ [0, T ] and every u ∈ M, where
ν ∈ L1 (0, T ) , then the function φ (t) = α (M (t)) belongs to L1 (0, T ) and
satisfies

α

(∫ T

0
M (s) ds

)
≤ 2

∫ T

0
α (M (s)) ds.

Notice since |u (t)| ≤ ν (t) for every u ∈ M, one has β (M (t)) ≤ ν (t) ;
thus, if ν ∈ Lp (0, T ) then the function ψ in Theorem 2.2 (a) belongs to
Lp (0, T ) . The same is true for the function φ in Theorem 2.2 (b).

We shall use the following definition. A map ψ : [0, T ]×D → Y, where
D ⊂ X and (X, |.|X) , (Y, |.|Y ) are two Banach spaces, is said to be (q, p)-
Carathéodory (1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞) if

(C1) ψ (., x) is strongly measurable for each x ∈ D,

(C2) ψ (t, .) is continuous for a.e. t ∈ [0, T ] ,

(C3) (a) if 1 ≤ p < ∞ : there exists a ∈ Lq (0, T ;R+) and b ∈ R+

such that
|ψ (t, x)|Y ≤ a (t) + b |x|pX

a.e. on [0, T ] for all x ∈ D;
(b) if p = ∞ : for each r > 0 there exists ar ∈ Lq (0, T ;R+) such that

|ψ (t, x)|Y ≤ ar (t)

a.e. on [0, T ] for all x ∈ D with |x|X ≤ r.
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(C1)-(C2) are said to be Carathéodory conditions.
By L (E) we shall denote the space of all linear continuous operators

from E to E, endowed with the norm |.|L(E) .
For a function u : [0, T ] → E and a positive number r, the notations

(|u| ≤ r) and (|u| ≥ r) stand for the level sets {t ∈ [0, T ] : |u (t)| ≤ r} and
{t ∈ [0, T ] : |u (t)| ≥ r}, respectively.

3 The Existence Principle

Let 0 < T < ∞, E a real Banach space with norm |.| , p ∈ [1,∞] and
q ∈ [1,∞[. Let r ∈]1,∞] be the conjugate exponent of q, that is 1

q + 1
r = 1.

Consider the abstract Hammerstein type equation

u = SF (u) , u ∈ K, (3.1)

in a closed convex subset K of Lp (0, T ;E) . Here

F : K → Lq (0, T ;E) , S : Lq (0, T ;E) → K.

We look for solutions in a bounded subset U of K, with U open in K.

Theorem 3.1 Assume that the following conditions are satisfied:

(S1) there exists a function k : [0, T ]2 → R+ such that k ∈ Lp (0, T ;Lr (0, T ))
(i.e., k (t, .) ∈ Lr (0, T ) , and the function t 7−→ |k (t, .)|r belongs to
Lp (0, T )), and

|S (w1) (t)− S (w2) (t)| ≤
∫ T

0
k (t, s) |w1 (s)− w2 (s)| ds (3.2)

a.e. on [0, T ] , for all w1, w2 ∈ Lq (0, T ;E) ;

(S2) for every compact convex subset C of E, S is sequentially continuous
from Lq

w (0, T ;C) to Lp (0, T ;E) . Here Lq
w (0, T ;C) stands for the set

Lq (0, T ;C) endowed with the weak topology of Lq (0, T ;E) ;

(F1) F is a continuous and for any constant a ≥ 0 there exists νa ∈
Lq (0, T ) such that for any u ∈ K with |u|p ≤ a we have |F (u) (t)| ≤
νa (t) a.e. on [0, T ];
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(F2) for every separable closed subspace E0 of E, there exists a mapping
Ψ : Lp (0, T ;R+) → Lq (0, T ;R+) such that Ψ(0) = 0 and

βE0 (F (M) (t) ∩ E0) ≤ Ψ(βE0 (M (.))) (t) (3.3)

a.e. on [0, T ] for every countable set M ⊂ U with M (t) ⊂ E0 a.e.
on [0, T ] , for which there exists ν ∈ Lp (0, T ) with |u (t)| ≤ ν (t) a.e.
on [0, T ] for any u ∈ M. In addition φ = 0 is the unique solution in
Lp (0, T ;R+) to the inequality

φ (t) ≤
∫ T

0
k (t, s)Ψ (φ) (s) ds a.e. on [0, T ] ; (3.4)

(L–S) there exists an element u0 ∈ U such that

u ̸= (1− λ)u0 + λSF (u)

on ∂U for any λ ∈]0, 1[.

Then (3.1) has at least one solution in U.

Proof. We apply Theorem 1.1 to X = Lp (0, T ;E) , Y = Lq (0, T ;E)
and N = SF. First notice that from (3.2) we have

|S (w1)− S (w2)|p ≤ ||k (t, .)|r|p |w1 − w2|q ,

which shows that S is continuous (in fact Lipschitz continuous). Conse-
quently, also using the continuity of F assumed in (F1), we have that SF
is continuous. Next in order to prove that condition (i) holds we use the
following two lemmas from [5].

Lemma 3.1 Let S : Lq (0, T ;E) → Lp (0, T ;E) satisfies (S1)-(S2), q ∈
[1,∞[ and p ∈ [1,∞] . Let M ⊂ Lq (0, T ; E) be countable with

|u (t)| ≤ ν (t)

a.e. on [0, T ] , for all u ∈M, where ν ∈ Lq (0, T ) . Let E0 be a separable
closed subspace of E with u (t) ∈ E0 a.e. on [0, T ] , for every u ∈ M ∪
S (M) . Then the function φ (t) = βE0 (M (t)) belongs to Lq (0, T ) and
satisfies

βE0 (S (M) (t)) ≤
∫ T

0
k (t, s)φ (s) ds a.e. on [0, T ] .
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Lemma 3.2 Assume (S1) and (S2). Let M be a countable subset of Lq (0, T ;E)
such that M (t) is relatively compact for a.e. t ∈ [0, T ] and there is a func-
tion ν ∈ Lq (0, T ) with |u (t)| ≤ ν (t) a.e. on [0, T ] , for every u ∈ M.
Then the set S (M) is relatively compact in Lp (0, T ;E) . In addition S is
continuous from M equipped with the relative weak topology of Lq (0, T ;E)
to Lp (0, T ;E) equipped with the strong topology.

Assume D ⊂ U is countable and

D ⊂ conv ({u0} ∪ SF (D)) . (3.5)

Since both F (D) and SF (D) are countable sets of strongly measurable
functions, we may assume that their values as well as the values of u0 belong
to a separable closed subspace E0 of E. Clearly the same is true for the
values of all functions in conv ({u0} ∪ SF (D)) , and so for the values of all
functions in D. Since U is bounded there exists a ≥ 0 with |u|p ≤ a for any

u ∈ U. Then from (F1) we deduce that |F (u) (t)| ≤ νa (t) a.e. on [0, T ] ,
for every u ∈ U and some νa ∈ Lq (0, T ) . Now according to Lemma 3.1, the
function βE0 (F (D) (t)) belongs to Lq (0, T ) and

βE0 (SF (D) (t)) ≤
∫ T

0
k (t, s)βE0 (F (D) (s)) ds a.e. on [0, T ] . (3.6)

Also, for any u ∈ U we have

|SF (u) (t)| ≤ |S (0) (t)|+
∫ T

0
k (t, s) |F (u) (s)| ds

≤ |S (0) (t)|+ |νa|q |k (t, .)|r =: ν̃ (t) ,

with ν̃ ∈ Lp (0, T ) . Then using (3.5) we deduce that the function φ given
by φ (t) = βE0 (D (t)) belongs to Lp (0, T ;R+) . Now (3.5), (3.6) and (3.3)
imply

βE0 (D (t)) ≤ βE0 (SF (D) (t)) ≤
∫ T

0
k (t, s)βE0 (F (D) (s)) ds (3.7)

≤
∫ T

0
k (t, s)Ψ (βE0 (D (.))) (s) ds.

Then by (F2), φ = 0. Now (3.3) together with Ψ (0) = 0 guarantees
βE0 (F (D) (t)) = 0. Let (uk)k≥1 be any sequence of elements of D. By the
Weak Compactness Criterion (F (uk))k≥1 has a weakly convergent subse-
quence in Lq (0, T ;E) . Next by Lemma 3.2 the corresponding subsequence
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of (SF (uk))k≥1 converges in Lp (0, T ;E) . Hence SF (D) is relatively com-
pact in Lp (0, T ;E) . Now Mazur’s Lemma guarantees conv ({u0} ∪ SF (D))
is compact and so D is compact too. Thus Theorem 1.1 applies and the
proof is complete.

Remark 3.1 (a) If the values of S are in C (0, T ;E) then any solution of
(3.1) in K ⊂ Lp (0, T ;E) (1 ≤ p ≤ ∞) belongs to C (0, T ;E) .

(b) The existence theory in C (0, T ;E) appears as a particular case, where
p = ∞ and K ⊆ C (0, T ;E) .

Remark 3.2 Assume q ≤ p and Ψ(φ) (t) = δ (t)φ (t) for all t ∈ [0, T ] and

φ ∈ Lp (0, T ;R+) , where δ ∈ L
pq
p−q (0, T ) . Here pq

p−q = q if p = ∞ and
pq
p−q = ∞ if p = q. Then φ = 0 is the unique solution in Lp (0, T ;R+) of
(3.4) if

|δ| pq
p−q

||k (t, .)|r|p < 1. (3.8)

Indeed, from

φ (t) ≤
∫ T

0
k (t, s) δ (s)φ (s) ds (3.9)

and 1
r +

p−q
pq + 1

p = 1, by Hölder’s inequality one has

|φ|p ≤ ||k (t, .)|r|p |δ| pq
p−q

|φ|p ,

whence by (3.8) |φ|p = 0 and so φ = 0.

Remark 3.3 Under the assumptions of Remark 3.2, if in addition S is of
Volterra type, i.e., k (t, s) = 0 for t < s, then condition (3.8) for guarantee-
ing φ = 0 is superfluous.

Indeed, if S is of Volterra type, (3.9) can be written as

φ (t) ≤
∫ t

0
k (t, s) δ (s)φ (s) ds.

Hence

φ (t) ≤ |k (t, .)|r |δ| pq
p−q

(∫ t

0
φ (s)p ds

) 1
p

.

Then ∫ t

0
φ (τ)p dτ ≤ c

∫ t

0

(
|k (τ, .)|pr

∫ τ

0
φ (s)p ds

)
dτ.

Now Gronwall’s inequality guarantees
∫ t
0 φ (s)p ds = 0 for all t ∈ [0, T ] . So

φ = 0.
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Remark 3.4 Assume S is of Volterra type and

Ψ(φ) (t) =

∫ t

0
δ (s)φ (s) ds

for all t ∈ [0, T ] and φ ∈ Lp (0, T ;R+) , where δ ∈ Lp′ (0, T ;R+) with
p′ > p

p−1 . Here
p

p−1 = 1 if p = ∞ and p
p−1 = ∞ if p = 1. Then φ = 0

is the unique solution in Lp (0, T ;R+) of (3.4)

Indeed, for any θ > 0, from (3.4) we have

φ (t) ≤
∫ t

0
k (t, s)

∫ s

0
δ (τ)φ (τ) dτds

=

∫ t

0
k (t, s)

∫ s

0
δ (τ) eθτφ (τ) e−θτdτds.

Hölder’s inequality for 1
p′ +

p′(p−1)−p
pp′ + 1

p = 1 yields

φ (t) ≤
∫ t

0
k (t, s) |δ|p′

∣∣∣φe−θτ
∣∣∣
p

(∫ s

0
e

θpp′τ
p′(p−1)−pdτ

) p′(p−1)−p

pp′

ds

= |δ|p′
∣∣∣φe−θτ

∣∣∣
p

(
p′ (p− 1)− p

θpp′

) p′(p−1)−p

pp′
∫ t

0
k (t, s) eθsds.

Use again Hölder’s inequality to obtain

φ (t) ≤ |δ|p′
∣∣∣φe−θτ

∣∣∣
p

(
p′ (p− 1)− p

θpp′

) p′(p−1)−p

pp′

|k (t, .)|r
(

1

θq

) 1
q

eθt.

Then

∣∣∣φe−θτ
∣∣∣
p
≤ |δ|p′

∣∣∣φe−θτ
∣∣∣
p

(
p′ (p− 1)− p

θpp′

) p′(p−1)−p

pp′
(

1

θq

) 1
q

||k (t, .)|r|p .

Clearly we can choose θ > 0 so large that the above inequality implies∣∣φe−θτ
∣∣
p
= 0, whence φ = 0.

4 Applications

In this section we are mainly concerned with the Leray–Schauder boundary
condition (L–S) in Theorem 3.1.
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4.1 A Brezis–Browder Type Result

First we present a Brezis–Browder [3] type result for the case where F is
the Nemytskii’s superposition operator associated to a given function f :
[0, T ]× E → E, given by

F (u) (t) = f (t, u (t)) . (4.1)

The result extends a theorem established in [11].

Theorem 4.1 Assume (S1)-(S2) hold. In addition assume the following
conditions:

(f1) f satisfies the Carathéodory conditions;

(f2) for every separable closed subspace E0 of E, there exists a (q, p/q)-
Carathéodory function ψ : [0, T ] × R+ → R+ such that ψ (t, 0) = 0
and

βE0 (f (t,M) ∩ E0) ≤ ψ (t, βE0 (M))

a.e. on [0, T ] for every bounded countable set M ⊂ E0. In addition
φ = 0 is the unique solution in Lp (0, T ;R+) to the inequality

φ (t) ≤
∫ T

0
k (t, s)ψ (s, φ (s)) ds a.e. on [0, T ] ;

(B1) there exists R0 > 0 and a0 > 0 such that

(f (t, u) , u)+ ≥ a0 |u| |f (t, u)|

a.e. on [0, T ] for all u ∈ E with |u| ≥ R0;

(B2) there exists γ ≥ max
{
q − 1, (p− 1)−1

}
, η > 0 and ϕ ∈ Lr (0, T ;R+)

such that
η |f (t, u)|γ ≤ ϕ (t) + |u|

a.e. on [0, T ] for all u ∈ E with |u| ≥ R0;

(B3) there exists h ∈ Lp (0, T ;E) and B0 ∈ R+ with∫ T

0
(v (t) , S (v) (t)− h (t))+ dt ≤ B0 (4.2)

for all v ∈ Lq (0, T ;E) .
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Then there exists a solution u ∈ K to the equation u (.) = S (f (., u (.))) .

Proof. Notice first that from (f1), (B2) and γ ≥ max
{
q − 1, 1

p−1

}
it fol-

lows that f is a
(
γ + 1, p

γ+1

)
-Carathéodory function. Also any

(
γ + 1, p

γ+1

)
-

Carathéodory function is
(
q, pq

)
-Carathéodory since γ + 1 ≥ q and so

Lγ+1 (0, T ;E) ⊂ Lq (0, T ;E) . Consequently, it is easy to see that (F1)-(F2)
hold. Here

Ψ (φ) (t) = ψ (t, φ (t)) .

We shall prove the existence of a number R > 0 such that

|u|p < R (4.3)

for any solution u ∈ K of the equation

u = λSF (u) (4.4)

and any λ ∈]0, 1[. Recall that here F is given in (??). This will guarantee

(L–S) for U =
{
u ∈ K : |u|p < R

}
and u0 = 0.

Let u be any solution of (4.4) for some λ ∈]0, 1[. Then using (3.2) and
Hölder’s inequality we obtain

|u (t)| ≤ |SF (u) (t)− S (0) (t)|+ |S (0) (t)|

≤
∫ T

0
k (t, s) |F (u) (s)| ds+ |S (0) (t)|

≤ α (t) + |k (t, .)|r |F (u)|q .

Here α (t) = |S (0) (t)| . It follows that there is a constant b > 0 not depend-
ing of u such that

|u|p ≤ |α|p + ||k (t, .)|r|p |F (u)|q (4.5)

≤ |α|p + b |F (u)|γ+1 .

On the other hand,

|F (u)|γ+1 =

(∫ T

0
|F (u) (t)|γ+1 dt

) 1
γ+1

≤ c+

(∫
(|u|≥R0)

|F (u) (t)|γ+1 dt

) 1
γ+1

,
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where c > 0 is independent of u. Returning to (4.5) we deduce

|u|p ≤ a+ b

(∫
(|u|≥R0)

|F (u) (t)|γ+1 dt

) 1
γ+1

. (4.6)

Here a = |α|p + bc. Next we shall estimate the last term in the above in-
equality. From (B3) we have∫ T

0
(F (u) , u)+ dt =

∫ T

0
(F (u) , λSF (u))+ dt

= λ

∫ T

0
(F (u) , SF (u)− h)+ dt+ λ

∫ T

0
(F (u) , h)+ dt

≤ B0 +

∫ T

0
|h| |F (u)| dt.

Also from (B1) and (B2), one has∫
(|u|≥R0)

(F (u) , u)+ dt ≥ a0

∫
(|u|≥R0)

|u| |F (u)| dt

≥ a0η

∫
(|u|≥R0)

|F (u)|γ+1 dt− a0

∫
(|u|≥R0)

ϕ |F (u)| dt.

Consequently

a0η

∫
(|u|≥R0)

|F (u)|γ+1 dt

≤ a0

∫
(|u|≥R0)

ϕ |F (u)| dt

+B0 +

∫ T

0
|h| |F (u)| dt+

∫
(|u|≤R0)

|u| |F (u)| dt

≤ B1 + a0

∫
(|u|≥R0)

ϕ |F (u)| dt+
∫
(|u|≥R0)

|h| |F (u)| dt,

with some constant B1. Apply Hölder’s inequality taking into account the

inclusions Lr (0, T ;E) ⊂ L
γ+1
γ (0, T ;E) , Lp (0, T ;E) ⊂ L

γ+1
γ (0, T ;E) , to

13



obtain

a0η

∫
(|u|≥R0)

|F (u)|γ+1 dt

≤ B1 + a0 |ϕ|(γ+1)/γ

(∫
(|u|≥R0)

|F (u)|γ+1 dt

) 1
γ+1

+ |h|(γ+1)/γ

(∫
(|u|≥R0)

|F (u)|γ+1 dt

) 1
γ+1

.

It follows that there exists a constant B2 with∫
(|u|≥R0)

|F (u)|γ+1 dt ≤ B2.

Returning to (4.6) we obtain

|u|p ≤ a+ bB
1

γ+1

2 =: R1.

Finally take any R > R1 to guarantee the strict inequality (4.3).

Remark 4.1 For Eq. (1.2), condition (4.2) with B0 = 0 says that the
kernel k is of negative type. It is of interest to note that such a condition
also holds for the solution operator associated with (1.4).

Indeed, if u solves (1.4) then v = u′′ − w, where w (t) ∈ Au (t) . Then,
since A is monotone and 0 ∈ A (0) , we have that (w (t) , u (t)) ≥ 0, and so

(v (t) , u (t)) =
(
u′′ (t)− w (t) , u (t)

)
= −

∣∣u′ (t)∣∣2 + 1

2

(
|u (t)|2

)′′
− (w (t) , u (t))

≤ 1

2

(
|u (t)|2

)′′
.

Integrate over [0, T ] using
(
|u (t)|2

)′
= 2 (u (t) , u′ (t)) , to deduce

∫ T

0
(v (t) , S (v) (t)) dt =

∫ T

0
(v (t) , u (t)) dt ≤ 0,

Hence (4.2) holds with h (t) = 0 and B0 = 0.

14



4.2 An Existence Result for Volterra Type Equations

The second application concerns Eq. (3.1) with S of Volterra type. The
result extends a theorem proved in [5].

Theorem 4.2 Assume (S1), (S2), (F1), (F2) hold with 1 ≤ q = p < ∞,

k ∈ Lp
(
0, T ;Lr′ (0, T )

)
for some r′ > r, and S is of Volterra type. In

addition assume that

(F3) one has

|F (u) (t)| ≤ a (t) + b |u (t)|+
∫ t

0
c (s) |u (s)| ds

a.e. on [0, T ] for any u ∈ K. Here a ∈ Lp (0, T ;R+) , b ∈ R+ and
c ∈ Lr′ (0, T ;R+) .

Then (3.1) has solutions in K.

Proof. We shall apply Theorem 3.1 to U = {u ∈ K : ∥u∥ < R} for any
R > |S (0)|p and a suitable equivalent norm ∥.∥ on Lp (0, T ;E) .

Let u ∈ K be any solution of (4.4) for some λ ∈]0, 1[. Then for any θ > 0
we have

|u (t)| ≤ λ |S (0) (t)|+ λ

∫ t

0
k (t, s) |F (u) (s)| ds (4.7)

≤ λ |S (0) (t)|+ λ

∫ t

0
k (t, s)

(
a (s) + b |u (s)|+

∫ s

0
c (τ) |u (τ)| dτ

)
ds

≤ λ |S (0) (t)|

+λ

∫ t

0
k (t, s)

(
eθs
(
a+ b |u| e−θs

)
+

∫ s

0
ceθτe−θτ |u| dτ

)
ds.

Define an equivalent norm on Lp (0, T ;E) by ∥u∥ =
∣∣e−θtu (t)

∣∣
p
. Then, since

1
r′ +

r′−r
rr′ + 1

p = 1, Hölder’s inequality guarantees∫ t

0
k (t, s) eθs

(
a (s) + b |u (s)| e−θs

)
ds (4.8)

≤ |k (t, .)|r′
(
|a|p + b ∥u∥

)(∫ t

0
e

θrr′
r′−r

s
ds

) r′−r
rr′

≤ |k (t, .)|r′
(
|a|p + b ∥u∥

)(r′ − r

θrr′

) r′−r
rr′

eθt.
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Also ∫ t

0
k (t, s)

∫ s

0
c (τ) eθτe−θτ |u (τ)| dτds (4.9)

≤ |c|r′ ∥u∥
(
r′ − r

θrr′

) r′−r
rr′
∫ t

0
k (t, s) eθsds

≤ |c|r′ ∥u∥
(
r′ − r

θrr′

) r′−r
rr′
(

1

θr′

) 1
r′

eθt.

From (4.7), (4.8) and (4.9) it follows that we may choose a sufficiently large
R > 0 such that ∥u∥ < R.

The next result contains an example of operator F for which (F1)-
(F3) hold, and is extremely useful when discussing existence for integro-
differential equations.

Theorem 4.3 Assume (S1)-(S2) hold with 1 ≤ q = p < ∞, k ∈ Lp(0, T ;
Lr′ (0, T )) for some r′ > r, and S is of Volterra type. Let κ ∈ Lr′ (0, T ;L (E))
and P : E → E be continuous such that

|P (u)| ≤ a0 + b0 |u|

for all u ∈ E and some a0, b0 ∈ R+, and

α (P (D)) ≤ c0α (D)

for any bounded set D ⊂ E and some c0 ∈ R+. Let F be given by

F (u) (t) =

∫ t

0
κ (s)P (u (s)) ds.

Then (3.1) has at least one solution u ∈ K.

Proof. First notice that

|F (u) (t)| ≤
∫ t

0
|κ (s)|L(E) (a0 + b0 |u (s)|) ds. (4.10)

Hence |F (u) (t)| ≤ |a0 + b0u|p |κ|r so (F1) trivially holds. Inequality (4.10)
also implies that (F3) holds .To check (F2) let E0 be a separable closed
subspace of E, and M a bounded countable subset of K with M (t) ⊂ E0

16



a.e. on [0, T ] , for which there exists ν ∈ Lp (0, T ) such that |u (t)| ≤ ν (t)
a.e. on [0, T ] for any u ∈M. Then

βE0 (F (M) (t) ∩ E0) ≤ 2β (F (M) (t) ∩ E0) ≤ 2β (F (M) (t))

≤ 2α (F (M (t))) ≤ 4

∫ t

0
α (κ (s)P (M (s))) ds

≤ 4

∫ t

0
|κ (s)|L(E) α (P (M (s))) ds

≤ 4c0

∫ t

0
|κ (s)|L(E) α (M (s)) ds

≤ 8c0

∫ t

0
|κ (s)|L(E) βE0 (M (s)) ds.

Hence (3.3) holds with

Ψ (φ) (t) = 8c0

∫ t

0
|κ (s)|L(E) φ (s) ds.

Here the function δ (t) := 8c0 |κ (t)|L(E) belongs to Lr′ (0, T ) and r′ > r =
p

p−1 . Thus according to Remark 3.4, (F2) is satisfied. Now Theorem 3.1
finishes the proof.

Remark 4.2 A similar result is true for

F (u) (t) =

∫ t

0
κ (t− s)P (u (s)) ds.

Example. Let A : D (A) ⊂ E → 2E be an m-dissipative mapping and
u0 ∈ D (A). Assume that the mild solution operator S given by S (v) = u
where u is the unique solution of (1.3) satisfies (S1) and (S2). Let κ ∈
Lr′ (0, T ;L (E)) for some r′ > 1 and let P be as in Theorem 4.3. Then the
problems {

u′ (t) ∈ Au (t) +
∫ t
0 κ (s)P (u (s)) ds, a.e. on [0, T ] ,

u (0) = u0

and {
u′ (t) ∈ Au (t) +

∫ t
0 κ (t− s)P (u (s)) ds, a.e. on [0, T ] ,

u (0) = u0

have solutions in C (0, T ;E) .

In this case k (t, s) =

{
m (a constant), s < t
0, s > t

(see [4]) and S has values

in C (0, T ;E) . The result follows from Theorem 4.3, Remark 4.2 and Remark
3.1 (a) if we choose 1 ≤ q = p <∞ such that r′ > r = p

p−1 .
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