ARONSZAJN TYPE THEOREMS FOR INTEGRAL EQUATIONS ON UNBOUNDED DOMAINS VIA MAXIMAL SOLUTIONS

DONAL O'REGAN* AND RADU PRECUP**

Dedicated to Professor Ioan A. Rus on the occasion of his 70th birthday

Department of Mathematics National University of Ireland Galway, Ireland E-mail: donal.oregan@nuigalway.ie

Department of Applied Mathematics Babeş-Bolyai University Cluj-Napoca 400084, Romania E-mail: r.precup@math.ubbcluj.ro

Abstract. This paper discusses the topological structure of the solution set of a general Volterra integral equation. Under natural conditions we show that the solution set is an R_{δ} set.

Key Words and Phrases: Volterra integral equation, solution set, R_{δ} set. 2000 Mathematics Subject Classification: 45G15

1. INTRODUCTION

In this paper we discuss the solution set of the Volterra integral equation

$$y(t) = h(t) + \int_0^t k(t,s) f(s,y(s)) \, ds \quad \text{for} \quad t \in [0,\infty)$$
(1.1)

where $f: [0,\infty) \times \mathbf{R}^M \to \mathbf{R}^M$ and the matrix valued function $k: \{(s,t): 0 \le s \le t < n\} \to L_{M \times M}[0,n]$ for each $n \in N = \{1, 2, ...\}$; here $M \in N$. Basically we show that if f is bounded by a L^1_{loc} -Carathéodory function and if a sequence of differential equations have maximal solutions then the solution

³⁰⁵

set of (1.1) is an R_{δ} set. Two approaches will be presented in this paper and our results extend those in [1-4].

2. Solution set

The following result can be found in [6].

Theorem 2.1. Let X be a closed set in a Fréchet space (E, d), and $F : X \to E$ a continuous compact operator. Assume there exists a sequence $\{U_n\}_n$ of closed convex sets in E such that

$$\forall n \in N = \{1, 2, \dots\}, \ 0 \in U_n;$$
(2.1)

$$\lim_{n \to \infty} diam(U_n) = 0, \tag{2.2}$$

and there exists a sequence $\{F_n\}_n$ of operators $F_n: X \to E$, such that

$$\forall n \in N, \ \forall x \in X, \ F(x) - F_n(x) \in U_n;$$
(2.3)

 $I - F_n$ is a homeomorphism of the set $(I - F_n)^{-1}(U_n)$ onto U_n . (2.4)

Then $\{x \in X : x = F(x)\}$ is an R_{δ} set.

Remark 2.1. Recall a nonempty set A is contractible provided there exists $x_0 \in A$ and a homotopy $H : A \times [0,1] \to A$ such that H(x,1) = x and $H(x,0) = x_0$ for every $x \in A$. A set A is called an R_{δ} set provided there exists a decreasing sequence $\{A_n\}_1^{\infty}$ of nonempty compact, contractible sets such that $A = \cap \{A_n : n = 1, 2, ...\}$.

In this section $E = C([0, \infty), \mathbf{R}^M)$ will be the space of continuous functions defined on the interval $[0, \infty)$ with values in \mathbf{R}^M . Now E is a Fréchet space with the topology given by the complete family of seminorms $\{p_m\}_{m\geq 1}$, or, equivalently, by the distance d defined by

$$d(x,y) = \sum_{m=1}^{\infty} \frac{1}{2^m} \frac{p_m(x-y)}{1+p_m(x-y)},$$

for $x, y \in E$; here $p_m(x) = \sup\{|x(t)| : t \in [0, m]\} \equiv |x|_m$ for $x \in E$.

Let X be a nonempty closed subset of E. We consider an operator $F : E \to E$. Define the sequence of operators $\{F_n\}_n$, $F_n : E \to E$, as follows:

$$F_n(x)(t) = F(x)(r_n(t)), \text{ for } x \in E \text{ and } t \ge 0,$$
 (2.5)

where

$$r_n(t) = \begin{cases} 0, \text{ if } t \in [0, 1/n]; \\ t - \frac{1}{n}, \text{ if } t > 1/n. \end{cases}$$
(2.6)

In [4] (see also [2, Chapter 6]) we established the following result using Theorem 2.1.

Theorem 2.2. Assume that $E = C([0, \infty), \mathbf{R}^M)$ and that $F : X \to E$ is a continuous and compact operator. Also assume that the following conditions hold:

(i) $\exists u_0 \in \mathbf{R}^M$ such that $F(x)(0) = u_0$, for all $x \in X$;

(ii) $\forall \epsilon > 0, \forall x, y \in X$, if $x(t) = y(t), \forall t \in [0, \epsilon]$, then F(x)(t) = F(y)(t), $\forall t \in [0, \epsilon]$ (i.e. F is an abstract Volterra operator);

(iii) if $y \in E$ satisfies y = F(y), then $y \in X$;

(iv) $\exists \eta > 0$ such that $\forall n$, if $y \in E$ satisfies $y = F_n(y) + z$, where $p_m(z) \leq \eta, \forall m$, then $y \in X$.

Then Fix(F) is an R_{δ} set.

Now we discuss the topological structure of the solution set of the Volterra integral equation

$$y(t) = h(t) + \int_0^t k(t,s) f(s,y(s)) \, ds \quad \text{for} \ t \in [0,\infty).$$
(2.7)

Throughout $f : [0, \infty) \times \mathbf{R}^M \to \mathbf{R}^M$ and the matrix valued function $k : \{(s,t): 0 \le s \le t < n\} \to L_{M \times M}[0,n]$ for each $n \in N = \{1, 2, ...\}$.

We now use Theorem 2.2 to obtain a new existence result for (2.7). First recall a function $g : [0,n] \times \mathbf{R} \to \mathbf{R}$ ($n \in N$ fixed) is a L^1 -Carathéodory function if

(a). the map $t \mapsto g(t, y)$ is measurable for all $y \in \mathbf{R}$,

(b). the map $y \mapsto g(t, y)$ is continuous for a.e. $t \in [0, n]$,

and

(c). for any r > 0, $\exists \mu_r \in L^1[0, n]$ such that $|y| \leq r$ implies $|g(t, y)| \leq \mu_r(t)$ for a.e. $t \in [0, n]$.

A function $g:[0,\infty)\times \mathbf{R}\to \mathbf{R}$ is a L^1_{loc} -Carathéodory function if (a), (b) and (c) above hold when g is restricted to $[0,n]\times \mathbf{R}$ for any $n \in N$.

Theorem 2.3. Let $k : \{(s,t) : 0 \le s \le t < n\} \to L_{M \times M}[0,n]$ for each $n \in N = \{1, 2, ...\}$ and $f : [0, \infty) \times \mathbf{R}^M \to \mathbf{R}^M$ and suppose the following conditions are satisfied:

$$h \in C([0,\infty), \mathbf{R}^M) \tag{2.8}$$

$$y \mapsto f(t, y)$$
 is continuous for a.e. $t \in [0, \infty)$ (2.9)

$$t \mapsto f(t, y)$$
 is measurable for every $y \in \mathbf{R}^M$ (2.10)

for each
$$n \in N$$
, for each $t \in [0, n]$ we have
that $k(t, s)$ is measurable on $[0, t]$ and $k(t)$
= ess sup $|k(t, s)|, 0 \le s \le t$, is bounded on $[0, n]$ (2.11)

$$\begin{cases} \text{for each } n \in N, \text{ the map } t \mapsto k_t \text{ is continuous} \\ \text{from } [0,n] \text{ to } L^{\infty}([0,n], L_{M \times M}[0,n]); \\ \text{here } k_t(s) = k(t,s) \end{cases}$$
(2.12)

there exists a
$$L^1_{loc}[0,\infty) - Carathéodory function$$

 $g: [0,\infty) \times [0,\infty) \to [0,\infty)$ such that
 $|f(t,x)| \le g(t,|x|)$ for a.e. $t \in [0,\infty)$
and all $x \in \mathbf{R}^M$

$$(2.13)$$

$$g(t,x)$$
 is nondecreasing in x for a.e. $t \in [0,\infty)$ (2.14)

and

there exists
$$\eta > 0$$
, such that for each $n \in N$, the problem

$$\begin{cases}
v'(t) = \left(\sup_{t \in [0,n]} k(t)\right) g(t,v(t)) & a.e. \quad t \in [0,n] \\
v(0) = |h|_n + \eta \\
has a maximal solution \quad r_n(t) \quad on \quad [0,n] \quad (here \quad r_n \in C[0,n])
\end{cases}$$
(2.15)

Then the solution set of (2.7) is an R_{δ} set.

Remark 2.2. Recall a subset A of $C([0,\infty), \mathbf{R}^M)$ is bounded if and only if there exists there exists a positive continuous function $\phi : [0,\infty) \to \mathbf{R}$ with $|x(t)| \leq \phi(t)$ for all $t \in [0,\infty), x \in A$.

PROOF: Let $E = C([0, \infty), \mathbf{R}^M)$,

$$X = \{ y \in C([0,\infty) : |y(t)| \le r_m(t), \ t \in [0,m], \ \forall m \in N \}$$

and let $F: E \to E$ be defined by

$$F(y)(t) = h(t) + \int_0^t k(t,s) f(s,y(s)) ds \text{ for } t \in [0,\infty).$$

Notice X is a closed subset of E. Conditions (2.8) - (2.12) ensure that F is well defined, F is a Volterra operator,

$$F(y)(0) = h(0), \, \forall y \in C([0,\infty), \mathbf{R}^M),$$

and the restriction $F : C([0,m], \mathbf{R}^M) \to C([0,m], \mathbf{R}^M)$ is continuous (see [2]). In fact, $F : X \to C([0,\infty), \mathbf{R}^M)$ is continuous, because if $\{y_j\}_{j \in N}$ is a sequence in X and $y_0 \in C([0,\infty), \mathbf{R}^M)$ is such that $y_j \to y_0$ in $C([0,\infty), \mathbf{R}^M)$ as $j \to \infty$, then $y_j \to y_0$ in $C([0,m], \mathbf{R}^M)$ as $j \to \infty$, for all m. Since $F : C([0,m], \mathbf{R}^M) \to C([0,m], \mathbf{R}^M)$ is continuous, we then have that $F(y_j) \to F(y_0)$ in $C([0,m], \mathbf{R}^M)$ as $j \to \infty$, for all m. This implies that $F(y_j) \to F(y_0)$ in $C([0,\infty), \mathbf{R}^M)$ as $j \to \infty$.

We show now that $F: X \to C([0, \infty), \mathbf{R}^M)$ is compact, and that (iii) and (iv) of Theorem 2.2 hold. First we show that

$$F: X \to C([0,\infty), \mathbf{R}^M)$$
 is compact.

Let $\{y_j\}_{j\in N}$ be a sequence in X and consider the sequence $\{F(y_j)\}_{j\in N}$ in F(X). Now $X|_{[0,m]}$ is bounded in $C([0,m], \mathbf{R}^M)$ for all m (see the definition of X); here

$$X|_{[0,m]} = \{y|_{[0,m]} : y \in X\}.$$

The restriction $F: X|_{[0,m]} \to C([0,m], \mathbf{R}^M)$, is compact (see [2] or [5] where it follows easily from the Arzela-Ascoli theorem), therefore $F(X|_{[0,m]})$ is relatively compact in $C([0,m], \mathbf{R}^M)$. For m = 1, there exists a subsequence N_1 of N, and there exists a $z_1 \in C([0,1], \mathbf{R}^M)$, such that

$$F(y_j)|_{[0,1]} \to z_1$$
 in $C([0,1], \mathbf{R}^M)$ as $j \to \infty$ in N_1 .

Now consider the sequence $\{F(y_j)\}_{j \in N_1}$, restricted to [0, 2]. Since $F(X|_{[0,2]})$ is relatively compact in $C([0, 2], \mathbf{R}^M)$, there exists a subsequence N_1 of N_2 , and there exists a $z_2 \in C([0, 2], \mathbf{R}^M)$, such that

$$F(y_j)|_{[0,2]} \to z_2 \text{ in } C([0,2], \mathbf{R}^M) \text{ as } j \to \infty \text{ in } N_2$$

In addition,

$$z_2|_{[0,1]} = z_1$$
 on $[0,1]$.

By induction, assume the sequence $\{F(y_j)\}_{j \in N_k}$ and $z_k \in C([0, k], \mathbf{R}^M)$ are found such that $N_k \subseteq N_{k-1} \subseteq ... \subseteq N_1 \subseteq N$,

$$F(y_j)|_{[0,k]} \to z_k$$
 in $C([0,k], \mathbf{R}^M)$ as $j \to \infty$ in N_k ,

and

$$z_k|_{[0,1]} = z_{k-1}$$
 on $[0, k-1]$.

Since $F(X|_{[0,k+1]})$ is relatively compact in $C([0, k+1], \mathbf{R}^M)$, there exists a subsequence N_{k+1} of N_k , and there exists a $z_{k+1} \in C([0, k+1], \mathbf{R}^N)$, such that

$$F(y_j)|_{[0,k+1]} \to z_{k+1}$$
 in $C([0,k+1], \mathbf{R}^M)$ as $j \to \infty$ in N_{k+1} .

In addition,

$$z_{k+1}|_{[0,k]} = z_k$$
 on $[0,k]$.

Now define $z \in C([0,\infty), \mathbf{R}^M)$ by

$$z(t) = z_k(t), t \in [k - 1, k), k = 1, 2, \dots$$

The induction above shows that the sequence $\{F(y_j)\}_{j\in N}$ contains a subsequence which converges in $C([0,\infty), \mathbf{R}^M)$ to $z \in C([0,\infty), \mathbf{R}^M)$. Therefore F(X) is relatively compact in $C([0,\infty), \mathbf{R}^M)$, and the operator $F: X \to C([0,\infty), \mathbf{R}^M)$ is compact.

To see that (iv) of Theorem 2.2 is satisfied let $\eta > 0$ be given as in (2.15). Now let $n \in N$ and let $y \in C([0, \infty), \mathbf{R}^M)$ be such that $y(t) = F_n(y)(t) + z(t)$, $t \in [0, \infty)$, where z is such that $p_m(z) \leq \eta$, $\forall m$, and

$$F_n(y)(t) = \begin{cases} h(0), & \text{if } t \in [0, 1/n) \\ h\left(t - \frac{1}{n}\right) + \int_0^{t-1/n} k\left(t - \frac{1}{n}, s\right) g(s, y(s)) ds, & \text{if } t \in [1/n, \infty). \end{cases}$$

Let $m \in \mathbf{N}$ be arbitrary. Then we have for $x \in [0, m]$ that

$$|y(x)| \le |h|_m + \left(\sup_{s \in [0,m]} k(s)\right) \int_0^x g(s, |y(s)|) \, ds + \eta \equiv v(x).$$

Now (2.14) implies

$$v'(x) = \left(\sup_{s \in [0,m]} k(s)\right) g(x, |y(x)|) \le \left(\sup_{s \in [0,m]} k(s)\right) g(x, v(x))$$

for almost everywhere $x \in [0, m]$, so

$$\begin{cases} v'(x) \le \left(\sup_{s \in [0,m]} k(s)\right) g(x,v(x)) & \text{for a.e. } x \in [0,m]\\ v(0) = |h|_m + \eta. \end{cases}$$

Now [7, Theorem 1.10.2] guarantees that $v(x) \leq r_m(x)$ for $x \in [0, m]$, so $|y(x)| \leq v(x) \leq r_m(x)$ for $x \in [0, m]$. We can do this argument for all $m \in N$. Consequently (iv) of Theorem 2.2 holds.

To see that (iii) of Theorem 2.2 is satisfied let $y \in C([0, \infty), \mathbf{R}^M)$ be such that y(t) = F(y)(t) for $t \in [0, \infty)$. Let $m \in \mathbf{N}$ be arbitrary. Then we have for $x \in [0, m]$ that

$$|y(x)| \le |h|_m + \left(\sup_{s \in [0,m]} k(s)\right) \int_0^x g(s, |y(s)|) \, ds \equiv w(x).$$

Now (2.14) implies

$$w'(x) = \left(\sup_{s \in [0,m]} k(s)\right) g(x, |y(x)|) \le \left(\sup_{s \in [0,m]} k(s)\right) g(x, w(x))$$

for almost everywhere $x \in [0, m]$ and $w(0) = |h|_m \le |h|_m + \eta$ where η is as in (2.15), so

$$\begin{cases} w'(x) \le \left(\sup_{s \in [0,m]} k(s)\right) g(x, w(x)) & \text{for a.e. } x \in [0,m] \\ w(0) \le |h|_m + \eta. \end{cases}$$

Now [7, Theorem 1.10.2] guarantees that $w(x) \leq r_m(x)$ for $x \in [0, m]$, so $|y(x)| \leq w(x) \leq r_m(x)$ for $x \in [0, m]$. We can do this argument for all $m \in N$. Consequently (iii) of Theorem 2.2 holds.

Now all the conditions in Theorem 2.2 are satisfied so the solution set of (2.7) is an R_{δ} set. \Box

Remark 2.3. A special case of (2.7) is first order differential equations. In fact in this case assumption (2.14) can be removed in Theorem 2.3 (see the ideas in [1]).

An alternate approach to solution sets can be found in [3]. It is based on Theorem 2.2 (so on Theorem 2.1) when X = E. For completeness we discuss this approach now. In [3] we established the following result.

Theorem 2.4. Let $F : C([0,\infty), \mathbf{R}^M) \to C([0,\infty), \mathbf{R}^M)$ be a continuous, compact map. Also assume that the following conditions hold:

(i) $\exists u_0 \in \mathbf{R}^M$ with $F(x)(0) = u_0$, for all $x \in C([0,\infty), \mathbf{R}^M)$;

(ii) $\forall \epsilon > 0, \forall x, y \in C([0,\infty), \mathbf{R}^M)$, if $x(t) = y(t), \forall t \in [0,\epsilon]$, then $F(x)(t) = F(y)(t), \forall t \in [0,\epsilon]$ (i.e. F is an abstract Volterra operator).

Then Fix(F) is an R_{δ} set.

We remark that in application (see (2.7))

$$F: C([0,\infty), \mathbf{R}^M) \to C([0,\infty), \mathbf{R}^M)$$

is usually continuous, and completely continuous but it is rarely compact. As a result we would like to relax the compactness assumption on F in Theorem 2.4. In applications we usually encounter the nonlinear operator equation

$$y(t) = L F y(t) \quad \text{for} \quad t \in [0, \infty); \tag{2.16}$$

here L is an affine map. We will assume the following conditions are satisfied:

$$LF: C([0,\infty), \mathbf{R}^M) \to C([0,\infty), \mathbf{R}^M)$$
(2.17)

$$\exists u_0 \in \mathbf{R}^M \text{ with } LF(x)(0) = u_0, \text{ for all } x \in C([0,\infty), \mathbf{R}^M)$$
(2.18)

$$\begin{cases} \forall \epsilon > 0, \ \forall x, y \in C([0, \infty), \mathbf{R}^M), & \text{if } x(t) = y(t) \ \forall t \in [0, \epsilon] \\ \text{then } L F(x)(t) = L F(y)(t) \ \forall t \in [0, \epsilon] \end{cases}$$
(2.19)

and

$$\exists \text{ a continuous function } \phi : [0, \infty) \to [0, \infty)$$

such that $|y(t)| \le \phi(t)$ for $t \in [0, \infty)$, for any (2.20)
possible solution $y \in C([0, \infty), \mathbf{R}^M)$ to (2.16).

Let $\epsilon > 0$ be given and let $\tau_{\epsilon} : \mathbf{R}^M \to [0, 1]$ be the Urysohn function for

$$(\overline{B}(0,1), \mathbf{R}^M \setminus B(0,1+\epsilon))$$

such that

$$au_{\epsilon}(x) = 1$$
 if $|x| \le 1$ and $au_{\epsilon}(x) = 0$ if $|x| \ge 1 + \epsilon$.

Let the operator F_{ϵ} be defined by

$$F_{\epsilon}(y)(t) = \tau_{\epsilon} \left(\frac{y(t)}{\phi(t)+1}\right) F(y)(t); \text{ here } y \in C([0,\infty), \mathbf{R}^{M}).$$

Consider the operator equation

$$y(t) = L F_{\epsilon} y(t) \quad \text{for} \quad t \in [0, \infty).$$
(2.21)

The next result follows easily from Theorem 2.4 (see [3]).

Theorem 2.5. Suppose (2.17)-(2.20) hold. Let $\epsilon > 0$ be given and assume the following conditions are satisfied:

$$\begin{cases} |w(t)| \le \phi(t) \quad for \quad t \in [0, \infty), \quad for \ any \ possible \\ solution \quad w \in C([0, \infty), \mathbf{R}^M) \quad to \ (2.21) \end{cases}$$
(2.22)

and

$$LF_{\epsilon}: C([0,\infty), \mathbf{R}^M) \to C([0,\infty), \mathbf{R}^M)$$
 is continuous and compact. (2.23)

Then the solution set of (2.16) is an R_{δ} set.

Now its easy to apply Theorem 2.5 to establish results for (2.7) (see the ideas in [8]).

References

- R.P. Agarwal, L. Gorniewicz, D. O'Regan, Aronszajn type results for Volterra equations and inclusions, Topological Methods in Nonlinear Analysis, 23(2004), 149-159.
- [2] R.P. Agarwal, M. Meehan, D. O'Regan, Nonlinear integral equations and inclusions, Nova Science Publishers, Huntington, New York, 2001.
- [3] R.P. Agarwal, D. O'Regan, On the topological structure of fixed point sets for abstract Volterra operators on Fréchet spaces, Jour. Nonlinear and Convex Analysis, 3(2000), 271-286.
- [4] D.M. Bedivan, D. O'Regan, Fixed point sets for abstract Volterra operators on Fréchet spaces, Applicable Analysis, 76(2000), 131-152.
- [5] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
- [6] Z. Kubáček, On the structure of fixed point sets of some compact maps in the Fréchet space, Mathematica Bohemica, 118(1993), 343-358.
- [7] V. Lakshmikantham, S. Leela, *Differential and Integral Inequalities*, Vol. I, Academic Press, New York, 1969.
- [8] D. O'Regan, Topological structure of solution sets in Fréchet spaces: the projective limit approach, Jour. Math. Anal. Appl., to appear.

Received: February 2, 2006; Accepted: February 23, 2006.