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Abstract. Starting with the existence and uniqueness result of J.L. Lions

for the non-homogenous heat equation with the source term in H−1 (Ω) , we
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Schauder and Leray-Schauder principles.
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1 Introduction. The non-homogenous heat equation in
H−1 (Ω)

We start with an existence and uniqueness result of J.L. Lions (see [4]
and [3]) for the non-homogenous heat equation with the source term in
H−1 (Ω) .We include a proof adapted from Temam [9] for completeness.

Theorem 1.1 ([4]) If f ∈ L2
(
0, T ;H−1 (Ω)

)
and g0 ∈ L2 (Ω) , then

there exists a unique function u such that
(1.1)
u ∈ L2

(
0, T ;H10 (Ω)

)
∩ C

(
[0, T ] ;L2 (Ω)

)
, u′ ∈ L2

(
0, T ;H−1 (Ω)

)
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(1.2)






(u′ (t) , v) + (u (t) , v)H10
= (f (t) , v)

a.e. on [0, T ] , for all v ∈ H10 (Ω)
u (0) = g0.

Proof. We look for a solution in the form

(1.3) u (t) =
∞∑

k=1

uk (t)φk.

We shall denote by λk and φk the eigenvalues and eigenfunctions of
laplacean. Hence

{
Δφk + λkφk = 0
φk ∈ H10 (Ω) , |φk|L2(Ω) = 1.

If we formally replace into (1.2) we obtain

uk (t) = e
−λktgk0 +

∫ t

0
e−λk(t−s)fk (s) ds

where fk (t) = (f (t) , φk) .

Let us now consider a partial sum of series (1.3), i.e.,

sm (t) =
m∑

k=1

uk (t)φk.

Clearly sm ∈ C
(
[0, T ] ;H10 (Ω)

)
, s′m ∈ L

2
(
0, T ;H10 (Ω)

)
and

(1.4)






(s′m (t) , φj) + (sm (t) , φj)H10 (Ω)
= (f (t) , φj) ,

j = 1, 2, ...,m
sm (0) = g0m

where g0m is the orthogonal projection in L2 (Ω) of g0 on the
space spanned by φ1, φ2, ..., φm, i.e., g0m =

∑m
k=1 g

k
0φk, with gk0 =

(g0, φk)L2(Ω) . Thus sm is the solution of the projection of problem (1.2)
on the finite-dimensional space spanned by φ1, φ2, ..., φm.
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From (1.4) we deduce

(
s′m (t) , sm (t)

)
+ |sm (t)|

2
H10
= (f (t) , sm (t)) ,

that is
1

2

d

dt
|sm|

2
L2 + |sm|

2
H10
= (f, sm) .

Integration gives

1

2
|sm (t)|

2
L2 −

1

2
|g0m|

2
L2 +

∫ t

0
|sm (τ)|

2
H10
dτ(1.5)

=

∫ t

0
(f (τ) , sm (τ)) dτ ≤

∫ t

0
|f (τ)|H−1 |sm (τ)|H10 dτ.

Using Hölder’s inequality and |g0m|L2 ≤ |g0|L2 , we obtain

|sm|
2
L2(0,T ;H10 (Ω))

−
1

2
|g0|

2
L2 ≤ |f |L2(0,T ;H−1(Ω)) |sm|L2(0,T ;H10 (Ω))

.

This implies that the sequence (sm) is bounded in L
2
(
0, T ;H10 (Ω)

)
.

Now from (1.5), we obtain

|sm (t)|
2
L2 ≤ c, t ∈ [0, T ]

which shows that (sm) is bounded in L
∞
(
0, T ;L2 (Ω)

)
, the dual space

of L1
(
0, T ;L2 (Ω)

)
.

Recall that the closed unit ball of any reflexive Banach space (Hilbert
space, in particular) is compact with respect to the weak topology. Also,
the closed unit ball of the dual of a Banach space is compact in the
weak-star topology (see Brezis [2, Théorèmes III.16 şi III.15]). Thus,
there exists a subsequence of (sm) , also denoted by (sm) and functions
u ∈ L2

(
0, T ;H10 (Ω)

)
and ū ∈ L∞

(
0, T ;L2 (Ω)

)
with

sm → u in L2
(
0, T ;H10 (Ω)

)
weakly

sm → ū in L∞
(
0, T ;L2 (Ω)

)
weakly-star.
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Furthermore, it is well-known that if a sequence is weakly convergent
then there is a sequence of convex combinations of its elements which
strongly converges to the same limit. Let (scm) be this sequence of convex
combinations of elements from (sm) which strongly converges to u in
L2
(
0, T ;H10 (Ω)

)
. Passing eventually to a new subsequence, we may

assume that scm (t) → u (t) in H10 (Ω) (consequently in L
2 (Ω)) for a.e.

t ∈ [0, T ] and scm → ū in L∞
(
0, T ;L2 (Ω)

)
weakly-star. Then

(scm, v)→ (ū, v) for all v ∈ L
1
(
0, T ;L2 (Ω)

)

that is
(scm − ū, v)L2(Ω) → 0 in L

1 (0, T )

whence (scm (t)− ū (t) , v (t))L2(Ω) → 0 a.e. on [0, T ] , for at least a sub-
sequence. In addition

(scm (t)− ū (t) , v (t))L2(Ω) → (u (t)− ū (t) , v (t))L2(Ω) .

It follows that (u (t)− ū (t) , v (t))L2(Ω) = 0 a.e. on [0, T ] , for every

v ∈ L1
(
0, T ;L2 (Ω)

)
. Hence

(u− ū, v)L2(0,T ;L2(Ω)) = 0 for all v ∈ L
2
(
0, T ;L2 (Ω)

)

whence u = ū and

sm → u in L2
(
0, T ;H10 (Ω)

)
weakly(1.6)

sm → u in L∞
(
0, T ;L2 (Ω)

)
weakly-star.

This means that

(h, sm) → (h, u) for every h ∈ L2
(
0, T ;H−1 (Ω)

)
(1.7)

(sm, v) → (u, v) for every v ∈ L1
(
0, T ;L2 (Ω)

)
.
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From (1.4) we deduce

(sm (t) , φj)− (g0m, φj) +
∫ t

0
(sm (τ) , φj)H10

dτ(1.8)

=

∫ t

0
(f (τ) , φj) dτ.

If we pass to the limit with m→∞ and we use (1.7) we obtain

(u (t) , φj)− (g0, φj) +
∫ t

0
(u (τ) , φj)H10

dτ

=

∫ t

0
(f (τ) , φj) dτ.

This implies

(
u′ (t) , φj

)
+ (u (t) , φj)H10

= (f (t) .φj) for a.e. t ∈ [0, T ] , j = 1, 2, ... .

Then (
u′ (t) , v

)
+ (u (t) , v)H10

= (f (t) , v)

for a.e. t ∈ [0, T ] , all v ∈ H10 (Ω) . If we set v = ϕ ∈ C∞0 (Ω) , we
deduce that u′ (t) = Δu (t) + f (t) in D′ (Ω) . Since f and Δu belong to
L2
(
0, T ;H−1 (Ω)

)
, it follows that u′ also belongs to that space.

To prove that u ∈ C
(
[0, T ] ;L2 (Ω)

)
it suffices to note that

d

dt
|u|2L2 = 2

(
u′, u

)
.

Then, since u ∈ L2
(
0, T ;H10 (Ω)

)
and u′ ∈ L2

(
0, T ;H−1 (Ω)

)
, we see

that d
dt |u|

2
L2 ∈ L1 (0, T ) , whence we derive the continuity of |u|2L2 .

Similarly, for each t0 ∈ [0, T ] , the function |u (t)− u (t0)|L2 is con-
tinuous. In particular, |u (t)− u (t0)|L2 → 0 as t → t0. Therefore
u ∈ C

(
[0, T ] ;L2 (Ω)

)
.

Now if we pass to the limit in sm (0) = g0m we obtain u (0) = g0.

Thus u satisfies (1.2).
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For uniqueness, assume that u and v are two solutions, that is func-
tions satisfying (1.1) and (1.2). Then for w = u− v one has

1

2

d

dt
|w|2L2 + |w (t)|

2
H10
= 0 a.e. on [0, T ] ,

whence we derive d |w|2L2 /dt ≤ 0. This shows that |w|
2
L2 is decreasing on

[0, T ] . In addition w (0) = 0. Hence w = 0, that is u = v.

Notice that the uniqueness of solution implies that (1.6) holds for
the entire sequence (sm) not only for one of its subsequences.

By a (weak or generalized) solution of the Cauchy–Dirichlet problem

(1.9)






∂u
∂t −Δu = f in Q := Ω× (0,∞)
u (x, 0) = g0 (x) in Ω
u = 0 on Σ := ∂Ω× (0,∞)

where f ∈ L2
(
0, T ;H−1 (Ω)

)
and g0 ∈ L2 (Ω) , we mean a function u

which satisfies (1.1) and (1.2).

2 Nonlinear heat equation

According to Theorem 1.1, one can associate to the Cauchy–Dirichlet
problem

(2.1)






∂u
∂t −Δu = f in Q
u (x, 0) = 0 in Ω
u = 0 on Σ

the solution operator

S : L2
(
0, T ;H−1 (Ω)

)
→ L2

(
0, T ;H10 (Ω)

)
∩ C

(
[0, T ] ;L2 (Ω)

)
,

given by Sf = u, where u is the solution of problem (2.1). The next
estimation theorem gives, on the one hand, the continuously dependence
on f and g0 of the solution u of problem (1.1)-(1.2) and, on the other
hand, guarantees the nonexpansivity of the solution operator S from
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L2
(
0, T ;H−1 (Ω)

)
to L2

(
0, T ;H10 (Ω)

)
.

Theorem 2.1 Let f ∈ L2
(
0, T ;H−1 (Ω)

)
and g0 ∈ L2 (Ω) . If u is the

solution of problem (1.1)-(1.2), then for every t ∈ [0, T ] one has

(2.2) |u|L2(0,t;H10 (Ω))
≤
1

2

(

|f |+
√
|f |2 + 2 |g0|

2

)

where |f | = |f |L2(0,t;H−1(Ω)) and |g0| = |g0|L2(Ω) .
In particular, for g0 = 0,

|u|L2(0,t;H10 (Ω))
≤ |f |L2(0,t;H−1(Ω)) , t ∈ [0, T ] .

Proof. If we set v = u (t) in (1.2) we obtain

1

2

d

dt
|u (t)|2L2 + |u (t)|

2
H10
= (f (t) , u (t)) .

By integration

(2.3)
1

2
|u (t)|2L2 −

1

2
|g0|

2 + |u|2
L2(0,t;H10 (Ω))

≤ |f | |u|L2(0,t;H10 (Ω))
.

Then

|u|2
L2(0,t;H10)

− |f | |u|L2(0,t;H10)
−
1

2
|g0|

2 ≤ 0

whence the conclusion is immediate.
Let us now consider the nonlinear problem

(2.4)






∂u
∂t −Δu = Φ(u) in Q
u (x, 0) = g0 (x) in Ω
u = 0 on Σ.

The following existence and uniqueness result is established by means
of Banach fixed point theorem.

Theorem 2.2 Let g0 ∈ L2 (Ω) and

Φ : C
(
[0, T ] ;L2 (Ω)

)
→L2

(
0, T ;H−1 (Ω)

)
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be a map for which there exists a constant a ∈ R+ such that the following
inequality holds for all u, v ∈ C

(
[0, T ] ;L2 (Ω)

)

|Φ(u) (t)− Φ(v) (t)|H−1(Ω) ≤ a |u (t)− v (t)|L2(Ω) a.e. on [0, T ] .

Then there exists a unique solution u to problem (2.4), i.e.,

u ∈ L2
(
0, T ;H10 (Ω)

)
∩ C

(
[0, T ] ;L2 (Ω)

)
, u′ ∈ L2

(
0, T ;H−1 (Ω)

)

and 




(u′ (t) , v) + (u (t) , v)H10
= (Φ (u) (t) , v)

a.e. on [0, T ] , for all v ∈ H10 (Ω)
u (0) = g0.

Proof. Let u0 be the solution of problem (2.4) corresponding to Φ = 0.
We have to solve the fixed point problem

u = u0 + (S ◦ Φ) (u) , u ∈ C
(
[0, T ] ;L2 (Ω)

)
.

The conclusion will follow from Banach fixed point theorem once we
have showed that the operator

A : C
(
[0, T ] ;L2 (Ω)

)
→ C

(
[0, T ] ;L2 (Ω)

)
, A (u) = u0 + (S ◦ Φ) (u)

is a contraction with respect to a suitable norm on C
(
[0, T ] ;L2 (Ω)

)
.

Let u, v ∈ C
(
[0, T ] ;L2 (Ω)

)
. We have A (u) (0)−A (v) (0) = 0 and

1

2

d

dt
|A (u) (t)−A (v) (t)|2L2 + |A (u) (t)−A (v) (t)|

2
H10

= (Φ (u) (t)− Φ(v) (t) , A (u) (t)−A (v) (t)) .

It follows that

|A (u) (t)−A (v) (t)|2L2

≤ 2

∫ t

0
|Φ(u) (s)− Φ(v) (s)|H−1 |A (u) (s)−A (v) (s)|H10 ds

≤ 2a

∫ t

0
|u (s)− v (s)|L2 |A (u) (s)−A (v) (s)|H10 ds.
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Let θ > a2 be a fixed number. Consider the norm on C
(
[0, T ] ;L2 (Ω)

)

‖u‖ = max
t∈[0,T ]

(
|u (t)|L2(Ω) e

−θ t
)
.

Then

|A (u) (t)−A (v) (t)|2L2

≤ 2a ‖u− v‖
∫ t

0
|A (u) (s)−A (v) (s)|H10 e

θ sds

≤
2a
√
2θ
eθ t ‖u− v‖

(∫ t

0
|A (u) (s)−A (v) (s)|2H10 ds

) 1
2

.

Since A (u)−A (v) = S (Φ (u)− Φ(v)) and S is nonexpansive from
L2
(
0, t;H−1 (Ω)

)
to L2

(
0, t;H10 (Ω)

)
, we deduce that

|A (u) (t)−A (v) (t)|2L2

≤
2a
√
2θ
eθ t ‖u− v‖

(∫ t

0
|Φ(u)− Φ(v)|2H−1 ds

) 1
2

≤
2a2
√
2θ
eθ t ‖u− v‖

(∫ t

0
|u (s)− v (s)|2L2 ds

) 1
2

≤
a2

θ
e2θ t ‖u− v‖2 .

Divide by e2θ t and take the maximum over [0, T ] to obtain

‖A (u)−A (v)‖ ≤
a
√
θ
‖u− v‖ .

Since a/
√
θ < 1 the operator A is a contraction with respect to the norm

‖.‖ .
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Examples

1. Let Ψ : L2 (Ω) → H−1 (Ω) be a map for which there exists a
constant a ∈ R+ with

(2.5) |Ψ(u)−Ψ(v)|H−1(Ω) ≤ a |u− v|L2(Ω) , u, v ∈ L2 (Ω) .

Then the map Φ : C
(
[0, T ] ;L2 (Ω)

)
→ L2

(
0, T ;H−1 (Ω)

)
given by

Φ (u) (t) = Ψ (u (t))
(
u ∈ L2

(
0, T ;L2 (Ω)

)
, t ∈ [0, T ]

)

satisfies all the assumptions of Theorem 2.2.

2. Let ψ : Ω×R→ R be a function such that ψ (., τ) is measurable
for each τ ∈ R, ψ (., 0) ∈ H−1 (Ω) and there is a constant a0 ∈ R+ with

|ψ (x, τ1)− ψ (x, τ2)| ≤ a0 |τ1 − τ2|

for a.e. x ∈ Ω and all τ1, τ2 ∈ R.
Then the operator Ψ : L2 (Ω)→ H−1 (Ω) defined by

Ψ (u) = ψ (., u (.))

satisfies all the assumptions of the previous example.

Indeed, we may write

Ψ (u) = ψ (., 0) + σ (., u (.))

where σ (x, τ) = ψ (x, τ) − ψ (x, 0) . Notice that |σ (x, τ)| ≤ a0 |τ | (for
a.e. x ∈ Ω and all τ ∈ R), so the superposition operator σ (., u (.))
(see [7]) maps L2 (Ω) into L2 (Ω) and |σ (., u (.))− σ (., v (.))|L2(Ω) ≤
a0 |u− v|L2(Ω) . The imbedding L

2 (Ω) ⊂ H−1 (Ω) being continuous there
exists a constant a ∈ R+ such that (2.5) holds.
The next lemmas are used in order to apply Schauder fixed point

theorem, more exactly for proving the complete continuity of the solution
operator S.

Lemma 2.1 (Ascoli–Arzèla) Let (B, |.|B) be a Banach space. A subset
F of C (0, T ;B) is relatively compact if and only if F (t) = {f (t) : f ∈
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F} is relatively compact in B for each t ∈ [0, T ] and F is equicontinuous,
i.e., for every ε > 0 there is a δ > 0 such that |f (t1)− f (t2)|B ≤ ε for
all f ∈ F and t1, t2 ∈ [0, T ] with |t1 − t2| ≤ δ.

See O’Regan and Precup [5, p. 72] for a proof.

Lemma 2.2 (Lions) Let X,B and Y be Banach spaces such that the
following imbeddings hold:

X ⊂ B compactly and B ⊂ Y continuously.

Then, for every η > 0 there is an N ≥ 0 with

(2.6) |u|B ≤ η |u|X +N |u|Y for all u ∈ X.

Proof. For each n ∈ N, let Un = {u ∈ B : |u|B < η + n |u|Y }. The
sets Un are open in B, Un ⊂ Un+1 and B =

⋃
n∈N Un. The unit ball

S of X being relatively compact in B, there exists an N such that
S ⊂ UN . Hence |v|B < η |v|X + N |v|Y for every v ∈ X with |v|X = 1.
The inequality for any u ∈ X can be immediately derived if we let
v = u/ |u|X .

Lemma 2.3 Let X,B and Y be as in Lemma 2.2. If a set F is bounded
in Lp (0, T ;X) and relatively compact in Lp (0, T ;Y ) , where 1 ≤ p ≤ ∞,
then F is relatively compact in Lp (0, T ;B) .

Proof. For a given ε > 0, there exists a sequence {fj} of elements of
F such that for every f ∈ F, there is a fj with |f − fj |Lp(0,T ;Y ) ≤ ε.

Inequality (2.6) implies

|f − fj |Lp(0,T ;B) ≤ η |f − fj |Lp(0,T ;X) +N |f − fj |Lp(0,T ;Y )
≤ η c+Nε

where c is the diameter of F in Lp (0, T ;X) . For any ε′ > 0, if we choose
η = ε′/ (2c) and ε = ε′/ (2N) , we obtain |f − fj |Lp(0,T ;B) ≤ ε. This

guarantees that F is relatively compact in Lp (0, T ;B) .
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Theorem 2.3 The solution operator S is completely continuous from
L2
(
0, T ;H−1 (Ω)

)
to L2 (0, T ;Lp (Ω)) for (2∗)′ ≤ p < 2∗ if n ≥ 3 and

for any p ≥ 1 if n = 1 or n = 2.

Proof. Under the assumptions on p we have H10 (Ω) ⊂ Lp (Ω) ⊂
H−1 (Ω) , where the first imbedding is compact and the second one is
continuous (see Adams [1] and Precup [6]). According to Lemma 2.3 it
suffices to prove that for any bounded subset M of L2

(
0, T ;H−1 (Ω)

)
,

the set S (M) is bounded in L2
(
0, T ;H10 (Ω)

)
(which is true by Theorem

2.1) and relatively compact in
L2
(
0, T ;H−1 (Ω)

)
. We shall prove more, namely that S (M) is rela-

tively compact in C
(
[0, T ] ;H−1 (Ω)

)
. From inequalities (2.2) and (2.3)

we deduce that S (M) is bounded in C
(
[0, T ] ;L2 (Ω)

)
. Then, for each

t ∈ [0, T ] , the set S (M) (t) is bounded in L2 (Ω) and so relatively com-
pact in H−1 (Ω) . It remains to prove that S (M) is equicontinuous in
C
(
[0, T ] ;H−1 (Ω)

)
.

Notice that
S (M)′ = {u′ : u ∈ S (M)}

is bounded in L2
(
0, T ;H−1 (Ω)

)
. Indeed, if u = S (f) , f ∈ M,

then u′ (t) = Δu (t) + f (t) , whence |u′ (t)|H−1 ≤ |Δu (t)|H−1 +
|f (t)|H−1 . Since Δ is an isometry between H

1
0 (Ω) and H

−1 (Ω) , we
have |Δu (t)|H−1 = |u (t)|H10 . Consequently

∣
∣u′
∣
∣
L2(0,T ;H−1(Ω))

≤ |u|L2(0,T ;H10 (Ω))
+ |f |L2(0,T ;H−1(Ω))

≤ 2 |f |L2(0,T ;H−1(Ω)) .

Thus S (M)′ is bounded in L2
(
0, T ;H−1 (Ω)

)
.

Furthermore, from

u (t1)− u (t2) =
∫ t1

t2

u′ (s) ds
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we deduce that

|u (t1)− u (t2)|H−1 ≤

∣
∣
∣
∣

∫ t1

t2

∣
∣u′ (s)

∣
∣
H−1

ds

∣
∣
∣
∣

≤
√
|t1 − t2|

∣
∣u′
∣
∣
L2(0,T ;H−1(Ω))

whence it follows the equicontinuity of S (M) in C
(
[0, T ] ;H−1 (Ω)

)
.

The next existence result comes from Schauder fixed point theorem.
The Lipschitz condition on the nonlinear term Φ in Theorem 2.2 is weak-
ened to a growth condition at most linear.

Theorem 2.4 Let g0 ∈ L2 (Ω) and

Φ : L2
(
0, T ;L2 (Ω)

)
→L2

(
0, T ;H−1 (Ω)

)

be a continuous map for which there is a constant a ∈ R+ such that the
following inequality holds for all u ∈ C

(
[0, T ] ;L2 (Ω)

)

|Φ(u) (t)− Φ(0) (t)|H−1(Ω) ≤ a |u (t)|L2(Ω) , a.e. on [0, T ] .

Then there exists at least one solution to problem (2.4).

Proof. We look for a fixed point of the operator

A : L2
(
0, T ;L2 (Ω)

)
→ L2

(
0, T ;L2 (Ω)

)
, A (u) = u0 + (S ◦ Φ) (u)

Theorem 2.3 and the boundedness of the operator Φ, guarantee the
complete continuity of A. It remains to find a nonempty, bounded, closed
and convex subset D of L2

(
0, T ;L2 (Ω)

)
with A (D) ⊂ D.

Let u ∈ C
(
[0, T ] ;L2 (Ω)

)
. As in the proof of Theorem 2.2, for θ > a2

one obtains
‖A (u)−A (0)‖ ≤

a
√
θ
‖u‖ .

It follows that
‖A (u)‖ ≤ ‖A (0)‖+

a
√
θ
‖u‖ .
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Choosing a θ > a2 and a positive number R ≥ ‖A (0)‖ /
(
1− a/

√
θ
)
we

deduce that A (D0) ⊂ D0 for D0 = {u ∈ C
(
[0, T ] ;L2 (Ω)

)
: ‖u‖ ≤ R}.

Let D be the closure of D0 in L
2
(
0, T ;L2 (Ω)

)
. Clearly D is nonempty,

bounded, closed and convex in L2
(
0, T ;L2 (Ω)

)
. In addition, using the

continuity of A from L2
(
0, T ;L2 (Ω)

)
to itself, we immediately see that

A (D) ⊂ D. Thus, the Schauder fixed point theorem applies.
Examples

1. Let Ψ : L2 (Ω) → H−1 (Ω) be a continuous map for which there
is a constant a ∈ R+ with

(2.7) |Ψ(u)−Ψ(0)|H−1(Ω) ≤ a |u|L2(Ω) , u ∈ L2 (Ω) .

Then the map Φ : L2
(
0, T ;L2 (Ω)

)
→ L2

(
0, T ;H−1 (Ω)

)
given by

Φ (u) (t) = Ψ (u (t))
(
u ∈ L2

(
0, T ;L2 (Ω)

)
, t ∈ [0, T ]

)

satisfies all the assumptions of Theorem 2.4.

2. Let ψ : Ω×R→ R be a function such that ψ (., τ) is measurable
for every τ ∈ R, ψ (x, .) is continuous for a.e. x ∈ Ω, ψ (., 0) ∈ H−1 (Ω)
and there is a0 ∈ R+ with

|ψ (x, τ)− ψ (x, 0)| ≤ a0 |τ |

for a.e. x ∈ Ω and all τ ∈ R.
Then the operator Ψ : L2 (Ω)→ H−1 (Ω) defined by

Ψ (u) = ψ (., u (.))

satisfies all the conditions of the previous example.

We finish with a result concerning a superlinear problem. It is es-
tablished by means of Leray–Schauder fixed point theorem (see Precup
[7]).

Theorem 2.5 Let n ≥ 3, g0 ∈ L2 (Ω) , f ∈ H−1 (Ω) and ψ : Ω×R→ R
be a function such that ψ (., u) is measurable for every u ∈ R, ψ (x, .) is
continuous for a.e. x ∈ Ω, ψ (., 0) = 0 and there are constants a, α ∈ R+



Radu Precup 17

with 1 ≤ α < 2∗ − 1 and

(2.8) |ψ (x, u)| ≤ a |u|a

for a.e. x ∈ Ω and all u ∈ R. In addition assume that

(2.9) uψ (x, u) ≤ 0

for a.e. x ∈ Ω and all u ∈ R. Then there exists at least one solution to
problem (2.4), where Φ(u) (t) = ψ (., u (t)) + f.

Proof. Let p = α (2∗)′ . From 1 ≤ α < 2∗−1 = 2∗/ (2∗)′ one has (2∗)′ ≤
p < 2∗. Then Theorem 2.3 guarantees that the solution operator S is
completely continuous from L2

(
0, T ;H−1 (Ω)

)
into L2 (0, T ;Lp (Ω)) .We

look for a fixed point of the operator

A : L2 (0, T ;Lp (Ω))→ L2 (0, T ;Lp (Ω)) , A (u) = u0 + (S ◦ Φ) (u) .

Notice A (u) = u0 + S (f) + S (Φ0 (u)) , where Φ0 (u) (t) = Nψ (u (t))
and Nψ is the superposition operator associated to ψ. Hypothesis
(2.8) guarantees that Nψ is well-defined, continuous and bounded from

Lp (Ω) to L(2
∗)′ (Ω) and |Nψ (v)|L(2∗)′ ≤ a |v|αLp . As a result, the opera-

tor Φ0 is well-defined, continuous and bounded from L2 (0, T ;Lp (Ω))

to L2
(
0, T ;L(2

∗)′ (Ω)
)
and, consequently, from L2 (0, T ;Lp (Ω)) to

L2
(
0, T ;H−1 (Ω)

)
. Therefore A is completely continuous.

Furthermore, we show that there exists a constant R > 0 such that
|u|L2(0,T ;Lp(Ω)) < R for any solution u of u = λA (u) and any λ ∈ (0, 1) .
Indeed, if u = λA (u) , then

{
(u′ (t) , v) + (u (t) , v)H10

= λ (ψ (., u (t)) + f, v) , v ∈ H10 (Ω)
u (0) = λg0.

For v = u (t) , using (2.9) we deduce

d

dt
|u (t)|2L2(Ω) + |u (t)|

2
H10 (Ω)

= λ (ψ (., u (t)) + f, u (t))

≤ λ (f, u (t)) ≤ |f |
L(2

∗)′ (Ω) |u (t)|L2∗ (Ω) ≤ c |u (t)|H10 (Ω) .
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Integration gives

∫ T

0
|u (t)|2H10 (Ω) dt ≤ c

′
(∫ T

0
|u (t)|2H10 (Ω) dt

) 1
2

+ c′′

where constants c, c′ do not depend on u and λ. Hence |u|L2(0,T ;H10 (Ω))
≤ C, whence, since H10 (Ω) ⊂ L

p (Ω) , we immediately obtain an estima-
tion of the type |u|L2(0,T ;Lp(Ω)) < R.

The Leray–Schauder fixed point theorem finishes the proof.

Example

The function ψ (x, u) = − |u|α−1 u (u ∈ R) , where 1 ≤ α < 2∗ − 1,
satisfies all the assumptions of Theorem 2.5.

For related results we refer the reader to Taylor [8].
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