Localization of critical points via mountain pass type theorems

Radu Precup
Department of Applied Mathematics
Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

1 Introduction

The so called mountain pass theorem of Ambrosetti and Rabinowitz [1] is one of the most used tools in studying nonlinear equations having a variational form (see [10], [17] and [20]). It concerns a real-valued C^{1} functional $E(u)$ defined on a real Banach space X, for which one desires to find a critical point, i.e., a point u where $E^{\prime}(u)=0$.

Theorem 1 (Ambrosetti-Rabinowitz) Let X be a Banach space and $E \in$ $C^{1}(X)$. Assume that there exist $u_{0}, u_{1} \in X$ and r with $\left|u_{0}\right|<r<\left|u_{1}\right|$ such that

$$
\max \left\{E\left(u_{0}\right), E\left(u_{1}\right)\right\}<\inf \{E(u): u \in X,|u|=r\} .
$$

Let

$$
\begin{equation*}
\Gamma=\left\{\gamma \in C([0,1] ; X): \gamma(0)=u_{0}, \gamma(1)=u_{1}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} E(\gamma(t)) . \tag{2}
\end{equation*}
$$

Then there exists a sequence of elements $u_{k} \in X$ such that

$$
E\left(u_{k}\right) \rightarrow c, \quad E^{\prime}\left(u_{k}\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

If, in addition, E satisfies the Palais-Smale condition, i.e. any sequence as above has a convergent subsequence, then there exists an element $u \in X \backslash$ $\left\{u_{0}, u_{1}\right\}$ with

$$
\begin{equation*}
E(u)=c, \quad E^{\prime}(u)=0 . \tag{3}
\end{equation*}
$$

Notice Γ is the set of all continuous paths joining u_{0} and u_{1}. Roughly speaking, the mountain pass theorem says that if we are at the point u_{0} of altitude $E\left(u_{0}\right)$ located in a cauldron surrounded by high mountains, and we wish to reach to a point u_{1} of altitude $E\left(u_{1}\right)$, over there the mountains, we can find a path going from u_{0} to u_{1}, through a mountain pass. To find a
mountain pass we have to choose a path which mounts the least. Thus we have to consider an optimal path in the set of all continuous paths connecting two given points separated by a "mountain range". A number of authors have been interested to restrict the competing paths to a bounded region in order to locate a critical point. For example, in [6] the authors gave a variant of the mountain pass theorem in a convex set M of the Hilbert space X (identified to its dual), using the Schauder invariance condition $\left(I-E^{\prime}\right)(M) \subset M$, while in [18] (see also [19] and [14]) a critical point is located in a ball \bar{B}_{R} of X under the LeraySchauder boundary condition for $I-E^{\prime}$. Here I stands for the identity map of X.

Theorem 2 (Schechter) Let X be a Hilbert space, $R>0$ and $E \in C^{1}\left(\bar{B}_{R}\right)$. Assume that for some $\nu_{0}>0$,

$$
\begin{equation*}
\left(E^{\prime}(u), u\right) \geq-\nu_{0}, \quad u \in \partial B_{R} \tag{4}
\end{equation*}
$$

and that there are $u_{0}, u_{1} \in \bar{B}_{R}$ and r with $\left|u_{0}\right|<r<\left|u_{1}\right|$ such that

$$
\begin{equation*}
\max \left\{E\left(u_{0}\right), E\left(u_{1}\right)\right\}<\inf \left\{E(u): u \in \bar{B}_{R},|u|=r\right\} . \tag{5}
\end{equation*}
$$

Let

$$
\Gamma_{R}=\left\{\gamma \in C\left([0,1] ; \bar{B}_{R}\right): \gamma(0)=u_{0}, \gamma(1)=u_{1}\right\}
$$

and

$$
c_{R}=\inf _{\gamma \in \Gamma_{R}} \max _{t \in[0,1]} E(\gamma(t)) .
$$

Then either there is a sequence of elements $u_{k} \in \bar{B}_{R}$ with

$$
\begin{equation*}
E\left(u_{k}\right) \rightarrow c_{R}, \quad E^{\prime}\left(u_{k}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

or there is a sequence of elements $u_{k} \in \partial B_{R}$ such that

$$
\begin{equation*}
E\left(u_{k}\right) \rightarrow c_{R}, \quad E^{\prime}\left(u_{k}\right)-\frac{\left(E^{\prime}\left(u_{k}\right), u_{k}\right)}{R^{2}} u_{k} \rightarrow 0, \quad\left(E^{\prime}\left(u_{k}\right), u_{k}\right) \leq 0 \tag{7}
\end{equation*}
$$

If in addition E satisfies the Schechter-Palais-Smale condition, i.e. any sequence as above has a convergent subsequence, and

$$
\begin{equation*}
E^{\prime}(u)+\mu u \neq 0, \quad u \in \partial B_{R}, \quad \mu>0 \tag{8}
\end{equation*}
$$

then there exists an element $u \in \bar{B}_{R} \backslash\left\{u_{0}, u_{1}\right\}$ with

$$
E(u)=c_{R}, \quad E^{\prime}(u)=0 .
$$

Remark 1 (8) is the Leray-Schauder boundary condition (see [11]) for the operator $I-E^{\prime}$, i.e., it is equivalent to

$$
u \neq \lambda\left(I-E^{\prime}\right)(u), \quad u \in \partial B_{R}, \lambda \in(0,1) .
$$

The Schauder and the Leray-Schauder conditions are used to solve the difficult problem of constructing paths which do not leave region M. Such a construction suggested in [8] to introduce the notion of an invariant set of descending flow of E with respect to a pseudogradient of E. Thus the difficult problem is reduced to prove that for a given set M, there exists a pseudogradient with respect to which M is an invariant set of descending flow (a difficult problem as well). Related topics can be found in [3], [5], [9], [12] and [16].

In this paper, we first survey some of our existence results for abstract Hammerstein equations established in [12] and [14], and then we present our recent results [15] concerning the localization of critical points in conical shells with application to a two point boundary value problem.

2 Nontrivial Solvability of Abstract Hammerstein Equations

Here we discuss the abstract Hammerstein equation

$$
\begin{equation*}
u=A N(u), \quad u \in Y, \tag{9}
\end{equation*}
$$

where Y is a Banach space, $N: Y \rightarrow Y^{*}$ and $A: Y^{*} \rightarrow Y$ is linear. Assume that A splits into

$$
\left\{\begin{array}{l}
A=H H^{*} \text { with } H: X \rightarrow Y \text { and } H^{*}: Y^{*} \rightarrow X \tag{10}\\
\text { where } X \text { is a Hilbert space. }
\end{array}\right.
$$

Then (9) can be converted into an equation in X, namely

$$
\begin{equation*}
v=H^{*} N H(v), \quad v \in X \tag{11}
\end{equation*}
$$

Indeed, if u solves (9) then $v=H^{*} N(u)$ is a solution of (11), and conversely if v solves (11) then $u=H(v)$ is a solution of (9). Moreover, H realizes an one-to-one correspondence between the solution sets of the two equations. If, in addition, we assume

$$
\begin{equation*}
N=J^{\prime} \text { for some } J \in C^{1}(Y ; \mathbf{R}), J(0)=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
H \text { is bounded linear and } H^{*} \text { is the adjoint of } H, \tag{13}
\end{equation*}
$$

then (11) is equivalent to the critical point problem

$$
E^{\prime}(v)=0, \quad v \in X
$$

for the energy functional

$$
E: X \rightarrow \mathbf{R}, \quad E(v)=\frac{1}{2}|v|_{X}^{2}-J H(v)
$$

Here $|\cdot|_{X}$ stands for the norm of X. Notice $E \in C^{1}(X ; \mathbf{R})$ and

$$
E^{\prime}(v)=v-H^{*} N H(v), \quad v \in X
$$

We now state an existence principle for (9) in a ball of X, whose proof is based on Theorem 2.

Theorem 3 Assume (10), (12) and (13). Assume that $N(0)=0$ and the functional $(N(),.$.$) sends bounded sets into upper bounded sets. In addition$ assume that there are $v_{1} \in X \backslash\{0\}, r \in\left(0,\left|v_{1}\right|\right)$ and $R \geq\left|v_{1}\right|$ such that the following conditions are satisfied:

$$
\begin{gather*}
\max \left\{0,\left|v_{1}\right|_{X}^{2} / 2-J H\left(v_{1}\right)\right\}<\inf \left\{|v|_{X}^{2} / 2-J H(v):|v|_{X}=r\right\}, \tag{14}\\
v \neq \lambda H^{*} N H(v) \text { for }|v|_{X}=R, \lambda \in(0,1) \tag{15}\\
E \text { satisfies the Schecter-Palais-Smale condition. } \tag{16}
\end{gather*}
$$

Then there exists a $v \in X \backslash\{0\}$ with $|v|_{X} \leq R$ such that $u=H(v)$ is a non-zero solution of (9).

Specialized for the Hammerstein integral equation in \mathbf{R}^{n}

$$
\begin{equation*}
u(x)=\int_{\Omega} \kappa(x, y) f(y, u(y)) d y \text { a.e. on } \Omega \tag{17}
\end{equation*}
$$

Theorem 3 gives:
Theorem 4 Let $\Omega \subset \mathbf{R}^{N}$ be bounded open, $2 \leq p<p_{0}<\infty, 1 / p+1 / q=1$, $1 / p_{0}+1 / q_{0}=1, \kappa: \Omega^{2} \rightarrow \mathbf{R}$ and $f: \Omega \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. Assume the following conditions are satisfied:
(i) the operator $A: L^{q_{0}}\left(\Omega ; \mathbf{R}^{n}\right) \rightarrow L^{p_{0}}\left(\Omega ; \mathbf{R}^{n}\right)$ given by

$$
A(u)(x)=\int_{\Omega} \kappa(x, y) u(y) d y
$$

is bounded and its restriction $A: L^{2}\left(\Omega ; \mathbf{R}^{n}\right) \rightarrow L^{2}\left(\Omega ; \mathbf{R}^{n}\right)$ is positive, selfadjoint, and completely continuous;
(ii) f is (p, q)-Carathéodory of potential F and $f(x, 0)=0$ a.e. on Ω;
(iii) there are $v_{1} \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right) \backslash\{0\}$ and $r \in\left(0,\left|v_{1}\right|_{2}\right)$ such that

$$
\begin{align*}
& \max \left\{0,\left|v_{1}\right|_{2}^{2} / 2-\int_{\Omega} F\left(y, v_{1}(y)\right) d y\right\} \tag{18}\\
< & \inf \left\{|v|_{2}^{2} / 2-\int_{\Omega} F(y, v(y)) d y: v \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right),|v|_{2}=r\right\}
\end{align*}
$$

(iv) there is $R \geq\left|v_{1}\right|_{2}$ such that

$$
\begin{equation*}
H(v) \neq \lambda \int_{\Omega} \kappa(., y) f(y, H(v)(y)) d y \tag{19}
\end{equation*}
$$

for every $v \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right)$ with $|v|_{2}=R$ and all $\lambda \in(0,1)$.
Then the Hammerstein equation (17) has at least one non-zero solution u in $L^{p}\left(\Omega ; \mathbf{R}^{n}\right)$ of the form $u=H(v)$ with $v \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right),|v|_{2} \leq R$.

Proof. Apply Theorem 3 to $N=N_{f}$ and J given by

$$
J(u)=\int_{\Omega} F(y, u(y)) d y \quad\left(u \in L^{p}\left(\Omega ; \mathbf{R}^{n}\right)\right)
$$

Since N_{f} is a bounded operator, the map $\left(N_{f}(),..\right)$ sends bounded sets into bounded sets. By (iii), (iv), conditions (14) and (15) hold trivially. It remains to show that the attached functional E satisfies the Schechter-Palais-Smale condition. To do this let $\left(v_{k}\right)$ be any sequence of elements in $L^{2}\left(\Omega ; \mathbf{R}^{n}\right)$ with $0<\left|v_{k}\right|_{2} \leq R$ satisfying

$$
E\left(v_{k}\right) \rightarrow \mu \in \mathbf{R}, \quad\left(E^{\prime}\left(v_{k}\right), v_{k}\right)_{2} \rightarrow \nu \leq 0
$$

and

$$
\begin{equation*}
E^{\prime}\left(v_{k}\right)-\left|v_{k}\right|_{2}^{-2}\left(E^{\prime}\left(v_{k}\right), v_{k}\right)_{2} v_{k} \rightarrow 0 . \tag{20}
\end{equation*}
$$

We may assume that $\left|v_{k}\right|_{2} \rightarrow a$, for some $a \in[0, R]$. If $a=0$ we have finished. Assume $a \in(0, R]$. Then

$$
\left|v_{k}\right|_{2}^{-2}\left(E^{\prime}\left(v_{k}\right), v_{k}\right)_{2} \rightarrow a^{-2} \nu \in(-\infty, 0] .
$$

On the other hand, $\left(v_{k}\right)$ being bounded and H being completely continuous, we may assume, passing eventually to a subsequence, that $H\left(v_{k}\right)$ converges. Then since N_{f} and H^{*} are continuous we deduce that $H^{*} N_{f} H\left(v_{k}\right)$ converges too. Now from (20) which can be written as

$$
v_{k}-H^{*} N_{f} H\left(v_{k}\right)-\left|v_{k}\right|_{2}^{-2}\left(E^{\prime}\left(v_{k}\right), v_{k}\right)_{2} v_{k} \rightarrow 0
$$

we infer that the corresponding subsequence of $\left(v_{k}\right)$ is convergent. Thus E satisfies the Schechter-Palais-Smale condition.

Remark 2 If $p>2$, a sufficient condition for (iii) is the following one:
$\left(i i i^{*}\right)$ there is a $v_{1} \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right) \backslash\{0\}$ such that

$$
\begin{gather*}
\frac{1}{2}\left|v_{1}\right|_{2}^{2}-\int_{\Omega} F\left(y, v_{1}(y)\right) d y \leq 0 \tag{21}\\
|f(x, z)| \leq a\left(1+|z|^{p-1}\right) \tag{22}
\end{gather*}
$$

for a.e. $x \in \Omega$ and all $z \in R^{n}$, where $a \in R_{+}$, and

$$
\begin{equation*}
\lim _{z \rightarrow 0}|f(x, z)| /|z|=0 \tag{23}
\end{equation*}
$$

uniformly for a.e. $x \in \Omega$.
Indeed, (23) implies that for any given $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that

$$
|f(x, z)| \leq \varepsilon|z| \text { for a.e. } x \in \Omega \text { and }|z|<\delta .
$$

For $|z| \geq \delta$, from (22) we deduce

$$
\begin{aligned}
|f(x, z)| & \leq a\left(\frac{|z|}{\delta}+|z|^{p-1}\right) \leq a\left(\left(\frac{|z|}{\delta}\right)^{p-1}+|z|^{p-1}\right) \\
& =c(\varepsilon)|z|^{p-1}
\end{aligned}
$$

Here $c(\varepsilon)=a\left(\delta^{1-p}+1\right) \geq 0$. Hence

$$
|f(x, z)| \leq \varepsilon|z|+c(\varepsilon)|z|^{p-1}
$$

for a.e. $x \in \Omega$ and all $z \in R^{n}$. Next we obtain

$$
\begin{aligned}
E(v) & =\frac{1}{2}|v|_{2}^{2}-J H(v) \\
& \geq \frac{1}{2}|v|_{2}^{2}-\int_{\Omega}|H(v)(x)|\left|f\left(x, \theta_{H(v), 0}(x) H(v)(x)\right)\right| d x \\
& \geq \frac{1}{2}|v|_{2}^{2}-\int_{\Omega}|H(v)|\left(\varepsilon|H(v)|+c(\varepsilon)|H(v)|^{p-1}\right) d x \\
& =\frac{1}{2}|v|_{2}^{2}-\varepsilon|H(v)|_{2}^{2}-c(\varepsilon)|H(v)|_{p}^{p}
\end{aligned}
$$

Since

$$
\begin{aligned}
|H(v)|_{2}^{2} & =(H(v), H(v))_{2}=\left(H^{*} H(v), v\right)_{2} \\
& \leq\left|H^{*}\right||H||v|_{2}^{2}
\end{aligned}
$$

and

$$
|H(v)|_{p} \leq c|v|_{2}
$$

because H is bounded, we deduce

$$
\begin{aligned}
E(v) & \geq \frac{1}{2}|v|_{2}^{2}-\varepsilon\left|H^{*}\right||H||v|_{2}^{2}-\bar{c}(\varepsilon)|v|_{2}^{p} \\
& =\left(\frac{1}{2}-\varepsilon\left|H^{*}\right||H|-\bar{c}(\varepsilon)|v|_{2}^{p-2}\right)|v|_{2}^{2}
\end{aligned}
$$

Now we choose any $\varepsilon>0$ such that

$$
\frac{1}{2}-\varepsilon\left|H^{*}\right||H|>0
$$

and an $r>0$ small enough so that

$$
r<\left|v_{1}\right|_{2}, \quad \frac{1}{2}-\varepsilon\left|H^{*}\right||H|-\bar{c}(\varepsilon) r^{p-2}>0
$$

(recall $p>2$). Then

$$
E(v)>0 \quad \text { for }|v|_{2}=r .
$$

This together with (21) guarantees (18).

Remark 3 Assume $H: L^{2}\left(\Omega ; \mathbf{R}^{n}\right) \rightarrow L^{p}\left(\Omega ; \mathbf{R}^{n}\right)$ is one-to-one. Then, by the theorem on the continuity of the inverse operator, there are constants $\alpha, \beta>0$ such that

$$
\alpha|v|_{2} \leq|H(v)|_{p} \leq \beta|v|_{2}, \quad v \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right)
$$

Now a sufficient condition for (iv) is to exist an $R \geq\left|v_{1}\right|_{2}$ with

$$
|A|_{q, p}\left(|g|_{q}+c \beta^{p-1} R^{p-1}\right) \leq \alpha R
$$

Here $|A|_{q, p}$ is norm of A as operator from $L^{q}\left(\Omega ; \mathbf{R}^{n}\right)$ to $L^{p}\left(\Omega ; \mathbf{R}^{n}\right)$, whilst $g \in L^{q}\left(\Omega ; \mathbf{R}_{+}\right)$and $c \in R_{+}$come from the (p, q)-Carathéodory property of f, i.e.,

$$
|f(x, z)| \leq g(x)+c|z|^{p-1}
$$

for a.e. $x \in \Omega$ and all $z \in R^{n}$.
Indeed, if $v \in L^{2}\left(\Omega ; \mathbf{R}^{n}\right)$ satisfies $|v|_{2}=R$ then

$$
\begin{aligned}
\left|A N_{f} H(v)\right|_{p} & \leq|A|_{q, p}\left|N_{f} H(v)\right|_{q} \\
& \leq|A|_{q, p}\left(|g|_{q}+c|H(v)|_{p}^{p-1}\right) \\
& \leq|A|_{q, p}\left(|g|_{q}+c \beta^{p-1} R^{p-1}\right) \\
& \leq \alpha R \\
& \leq|H(v)|_{p} .
\end{aligned}
$$

This guarantees (19) for all $\lambda \in(0,1)$.
Similar results for the existence of solutions in a ball of $L^{p}\left(\Omega ; \mathbf{R}^{n}\right)$ are presented in [12], [13] by means of a mountain pass theorem on closed convex sets owed to Guo-Sun-Qi [6].

3 Critical point theorems in conical shells

Let us consider two real Hilbert spaces, X with inner product and norm (.,.),
 X is dense in H, the injection being continuous. We shall denote by c_{0} the imbedding constant with

$$
\|u\| \leq c_{0}|u| \text { for all } u \in X
$$

We identify H to its dual H^{\prime}, thanks to the Riesz representation theorem and we obtain

$$
X \subset H \equiv H^{\prime} \subset X^{\prime}
$$

where each space is dense in the following one, the injections being continuous. By $\langle.,$.$\rangle we also denote de natural duality between X$ and X^{\prime}, that is $\left\langle x^{*}, x\right\rangle=$ $x^{*}(x)$ for $x \in X$ and $x^{*} \in X^{\prime}$. When $x^{*} \in H$, one has that $\left\langle x^{*}, x\right\rangle$ is exactly the
scalar product in H of x and x^{*}. Let L be the linear continuous operator from X to X^{\prime} (the canonical isomorphism of X onto X^{\prime}), given by

$$
(u, v)=\langle L u, v\rangle, \text { for all } u, v \in X
$$

and let J from X^{\prime} into X, be the inverse of L. Then

$$
(J u, v)=\langle u, v\rangle \text { for all } u \in X^{\prime}, v \in X .
$$

This for $u \in H$ implies

$$
|J u|^{2}=\langle u, J u\rangle \leq\|u\|\|J u\| \leq c_{0}\|u\||J u| .
$$

Hence

$$
\begin{equation*}
|J u| \leq c_{0}\|u\| \tag{24}
\end{equation*}
$$

We consider a C^{1} real functional E defined on X and we are interested in the equation $E^{\prime}(u)=0$.

By a wedge of X we shall understand a convex closed nonempty set $K \subset X$, $K \neq\{0\}$, with $\lambda u \in K$ for every $u \in K$ and $\lambda \geq 0$. Thus K has not necessarily be a cone (when $K \cap(-K)=\{0\}$) and, in particular, K might be the whole space X.

In what follows we shall assume that J is "positive" with respect to K, i.e.,

$$
J u \in K \text { for every } u \in K
$$

Let R_{0}, R_{1} be such that $0<R_{0}<c_{0} R_{1}$ and let $K_{R_{0} R_{1}}$ be the conical shell

$$
K_{R_{0} R_{1}}=\left\{u \in K:\|u\| \geq R_{0},|u| \leq R_{1}\right\} .
$$

In applications, $|$.$| is the specific energy norm, while \|$.$\| is an L^{p}$-norm which can be used instead of $|$.$| because of its monotonicity property with respect to$ the order relation.

Notice that there exists a number R with $R \leq R_{1}$ and

$$
\begin{equation*}
|J u| \geq R>0 \text { for all } u \in K_{R_{0} R_{1}} . \tag{25}
\end{equation*}
$$

Indeed, otherwise, there would be a sequence $\left(u_{k}\right)$ of elements in $K_{R_{0} R_{1}}$ with $\left|J u_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$. Now, from

$$
R_{0}^{2} \leq\left\|u_{k}\right\|^{2}=\left\langle u_{k}, u_{k}\right\rangle=\left(J u_{k}, u_{k}\right) \leq\left|J u_{k}\right|\left|u_{k}\right| \leq R_{1}\left|J u_{k}\right|
$$

letting $k \rightarrow \infty$, we derive the contradiction $R_{0}^{2} \leq 0$.
In [15], starting from the results in [18], [19], we have presented a variant of the mountain pass theorem in the conical shell $K_{R_{0} R_{1}}$ assuming that the operator $I-J E^{\prime}$ satisfies a compression boundary condition like that in the corresponding fixed point theorem of Krasnoselskii [7]. The localization result immediately yields multiplicity results for functionals with a "wavily relief".

Theorem 5 Assume that there exist $u_{0}, u_{1} \in K_{R_{0} R_{1}}$ and $\nu_{0}, r>0,\left|u_{0}\right|<r<$ $\left|u_{1}\right|$, such that the following conditions are satisfied:

$$
\begin{gather*}
u-J E^{\prime}(u) \in K \text { for all } u \in K ; \tag{26}\\
\left(J E^{\prime}(u), J u\right) \leq \nu_{0} \text { for all } u \in K_{R_{0} R_{1}} \text { with }\|u\|=R_{0} ; \tag{27}\\
\left(J E^{\prime}(u), u\right) \geq-\nu_{0} \text { for all } u \in K_{R_{0} R_{1}} \text { with }|u|=R_{1} ; \tag{28}\\
\max \left\{E\left(u_{0}\right), E\left(u_{1}\right)\right\}<\inf _{\substack{u \in K_{R_{0} R_{1}} \\
|u|=r}} E(u) . \tag{29}
\end{gather*}
$$

Let

$$
\Gamma=\left\{\gamma \in C\left([0,1] ; K_{R_{0} R_{1}}\right): \gamma(0)=u_{0}, \gamma(1)=u_{1}\right\}
$$

and

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} E(\gamma(t)) .
$$

Then there exists a sequence $\left(u_{k}\right)$ with $u_{k} \in K_{R_{0} R_{1}}$ such that

$$
\begin{equation*}
E\left(u_{k}\right) \rightarrow c \text { as } k \rightarrow \infty \tag{30}
\end{equation*}
$$

and one of the following three properties holds:

$$
\begin{gather*}
E^{\prime}\left(u_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty ; \tag{31}\\
\left\{\begin{array}{l}
\left\|u_{k}\right\|=R_{0},\left(J E^{\prime}\left(u_{k}\right), J u_{k}\right) \geq 0 \text { and } \\
J E^{\prime}\left(u_{k}\right)-\frac{\left(J E^{\prime}\left(u_{k}\right), J u_{k}\right)}{\left|J u_{k}\right|^{2}} J u_{k} \rightarrow 0(\text { in } X) \text { as } k \rightarrow \infty ;
\end{array}\right. \tag{32}\\
\left\{\begin{array}{l}
\left|u_{k}\right|=R_{1}, \quad\left(J E^{\prime}\left(u_{k}\right), u_{k}\right) \leq 0 \text { and } \\
J E^{\prime}\left(u_{k}\right)-\frac{\left(J E^{\prime}\left(u_{k}\right), u_{k}\right)}{R_{1}^{2}} u_{k} \rightarrow 0(\text { in } X) \text { as } k \rightarrow \infty .
\end{array}\right. \tag{33}
\end{gather*}
$$

If in addition, any sequence $\left(u_{k}\right)$ as above has a convergent (in X) subsequence and E satisfies the boundary conditions

$$
\begin{gather*}
J E^{\prime}(u)-\lambda J u \neq 0 \text { for } u \in K_{R_{0} R_{1}},\|u\|=R_{0}, \lambda>0 \tag{34}\\
J E^{\prime}(u)+\lambda u \neq 0 \text { for } u \in K_{R_{0} R_{1}},|u|=R_{1}, \lambda>0 \tag{35}
\end{gather*}
$$

then there exists $u \in K_{R_{0} R_{1}}$ with

$$
E^{\prime}(u)=0 \text { and } E(u)=c .
$$

Remark 4 Let $N(u):=u-J E^{\prime}(u)$. Conditions (34), (35) can be written under the form

$$
\begin{align*}
& N(u)+\lambda J u \neq u \text { for }\|u\|=R_{0}, \lambda>0 \tag{36}\\
& N(u) \neq(1+\lambda) u \text { for }|u|=R_{1}, \lambda>0 \tag{37}
\end{align*}
$$

The next critical point result (together with the Remark which follows) can be compared to the fixed point Theorem 20.2 in [2].

Theorem 6 Assume that there exist $u_{0}, u_{1} \in K_{R_{0} R_{1}}$ and $\nu_{0}, r>0,\left|u_{0}\right|<r<$ $\left|u_{1}\right|$, such that conditions (26), (29), (34) and (35) hold. In addition assume that $N:=I-J E^{\prime}$ and J are compact from X to X. Then there exists a point $u \in K_{R_{0} R_{1}}$ with $E^{\prime}(u)=0$ and $E(u)=c$.

Remark 5 In case that $X=H$, when $||=.\|\cdot\|$ and $J=I$, the conclusion of Theorem 6 is also true even though I is not compact, if we add the condition

$$
\begin{equation*}
\inf \left\{|N(u)|: u \in K,|u|=R_{0}\right\}>0 . \tag{38}
\end{equation*}
$$

The following result is the compression type mountain pass theorem accompanying the corresponding fixed point theorem of Krasnoselskii [7] (see also [4, p. 325]).

Theorem 7 Assume that there exist $u_{0}, u_{1} \in K_{R_{0} R_{1}}$ and $\nu_{0}, r>0,\left|u_{0}\right|<r<$ $\left|u_{1}\right|$, such that conditions (26) and (29) hold. In addition assume that norm $\|$.$\| is increasing with respect to K$, i.e.,

$$
\|u+v\|>\|u\| \text { for all } u, v \in K, v \neq 0
$$

the maps J and $N:=I-J E^{\prime}$ are compact from X to X, and
(a) $\|N(u)\| \geq\|u\|$ for $\|u\|=R_{0}$,
(b) $|N(u)| \leq|u|$ for $|u|=R_{1}$.

Then there exists a point $u \in K_{R_{0} R_{1}}$ with $E^{\prime}(u)=0$ and $E(u)=c$.
A similar result holds for critical points of minimum type.
Theorem 8 Assume that conditions (26), (27), (28) are satisfied and that

$$
\begin{equation*}
m:=\inf _{K_{R_{0} R_{1}}} E>-\infty \tag{39}
\end{equation*}
$$

Then there exists a sequence $\left(u_{k}\right)$ with $u_{k} \in K_{R_{0} R_{1}}$ such that

$$
\begin{equation*}
E\left(u_{k}\right) \rightarrow m \text { as } k \rightarrow \infty \tag{40}
\end{equation*}
$$

and one of conditions (31), (32), (33) holds. If in addition, any sequence (u_{k}) as above has a convergent subsequence and (34), (35) hold, then there exists $u \in K_{R_{0} R_{1}}$ with

$$
E^{\prime}(u)=0 \text { and } E(u)=m .
$$

Remark 6 If both conditions (29) and (39) are satisfied, then Theorems 5 and 8 guarantee the existence of two distinct critical points of E in $K_{R_{0} R_{1}}$.

4 Application

Consider the two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+f(u(t))=0, t \in(0,1) \tag{41}\\
u(0)=u(1)=0
\end{array}\right.
$$

Here f is a continuous function from \mathbf{R} into \mathbf{R}, with $f\left(\mathbf{R}_{+}\right) \subset \mathbf{R}_{+}$. Let $X=$ $H_{0}^{1}(0,1)$ with inner product and norm

$$
(u, v)=\int_{0}^{1} u^{\prime} v^{\prime} d t, \quad|u|=\left(\int_{0}^{1} u^{\prime 2} d t\right)^{1 / 2}
$$

and let $H=L^{2}(0,1)$ with inner product and norm

$$
\langle u, v\rangle=\int_{0}^{1} u v d t, \quad\|u\|=\left(\int_{0}^{1} u^{2} d t\right)^{1 / 2}
$$

We also denote by $|u|_{\infty}$ the max norm in $C[0,1]$ and by $|u|_{L^{2}(a, b)}$ the usual norm of $L^{2}(a, b)$.

Here $E: H_{0}^{1}(0,1) \rightarrow \mathbf{R}$ is given by

$$
E(u)=\int_{0}^{1}\left(\frac{1}{2} u^{\prime}(t)^{2}-F(u(t))\right) d t, u \in H_{0}^{1}(0,1)
$$

where $F(u)=\int_{0}^{u} f(\tau) d \tau$. One has that $E^{\prime}(u)=-u^{\prime \prime}-f(u)$ in $H^{-1}(0,1)$,

$$
(J v, w)=\langle v, w\rangle \text { for all } v \in H^{-1}(0,1), w \in H_{0}^{1}(0,1)
$$

and $J v=\int_{0}^{1} G(t, s) v(s) d s$ for $v \in L^{2}(0,1)$, where $G(t, s)$ is the corresponding Green's function given by

$$
G(t, s)=\left\{\begin{array}{l}
s(1-t), \text { for } 0 \leq s \leq t \leq 1 \\
t(1-s), \text { for } 0 \leq t \leq s \leq 1
\end{array}\right.
$$

Also $N(u):=u-J E^{\prime}(u)=J f(u)$ and

$$
J f(u)=\int_{0}^{1} G(t, s) f(u(s)) d s
$$

Notice, since the imbedding of $H_{0}^{1}(0,1)$ into $C[0,1]$ is compact, N and J are compact from $H_{0}^{1}(0,1)$ to itself. Also note that

$$
\begin{equation*}
G(t, s) \leq G(s, s) \text { for all } t, s \in[0,1] \tag{42}
\end{equation*}
$$

and for every interval $[a, b]$ with $0<a<b<1$, there is a constant $M>0$ with

$$
\begin{equation*}
M G(s, s) \leq G(t, s) \quad \text { for all } s \in[0,1], t \in[a, b] \tag{43}
\end{equation*}
$$

These properties of Green's function guarantee that for every nonnegative function $v \in L^{2}(0,1)$, one has

$$
\begin{equation*}
(J v)(t) \geq M\|J v\| \text { for all } t \in[a, b] . \tag{44}
\end{equation*}
$$

Indeed, if $v \geq 0$ on $[0,1], t \in[a, b]$ and $t^{*} \in[0,1]$, then from (42), (43), we obtain

$$
\begin{aligned}
(J v)(t) & =\int_{0}^{1} G(t, s) v(s) d s \geq M \int_{0}^{1} G(s, s) v(s) d s \\
& \geq M \int_{0}^{1} G\left(t^{*}, s\right) v(s) d s=M(J v)\left(t^{*}\right)
\end{aligned}
$$

This proves (44) if we choose t^{*} with $(J v)\left(t^{*}\right)=|J v|_{\infty}$ and we take into account that $|u|_{\infty} \geq\|u\|$ for all $u \in C[0,1]$.

Now we consider a cone K in $H_{0}^{1}(0,1)$, defined by

$$
K=\left\{u \in H_{0}^{1}(0,1): u \geq 0 \text { on }[0,1] \text { and } u(t) \geq M\|u\| \text { for } t \in[a, b]\right\}
$$

If $u \geq 0$ on $[0,1]$, then $f(u) \geq 0$ on $[0,1]$ since $f\left(\mathbf{R}_{+}\right) \subset \mathbf{R}_{+}$and so, according to (44), $J f(u) \in K$. Consequently, $u-J E^{\prime}(u) \in K$ for every $u \in K$.

Before we state our hypotheses, we recall that constant c_{0} is such that $\|u\| \leq$ $c_{0}|u|$ for all $u \in H_{0}^{1}(0,1)$ and we denote by c_{∞} the imbedding constant of the inclusion $H_{0}^{1}(0,1) \subset C[0,1]$, i.e. $|u|_{\infty} \leq c_{\infty}|u|$ for all $u \in H_{0}^{1}(0,1)$. Also, for the subinterval $[a, b]$ of $[0,1]$, we let $\chi_{[a, b]}$ be the characteristic function of $[a, b]$, i.e., $\chi_{[a, b]}(t)=1$ if $t \in[a, b], \chi_{[a, b]}(t)=0$ otherwise.

Our assumptions are as follows:
(H1) There exist R_{0}, R_{1} with $0<R_{0}<c_{0} R_{1}$ such that

$$
\begin{gather*}
\min _{\tau \in\left[M R_{0}, c_{\infty} R_{1}\right]} f(\tau) \tag{45}\\
R_{0} \tag{46}
\end{gather*} \frac{1}{\left|J \chi_{[a, b]}\right|_{L^{2}(a, b)}} .
$$

(H2) There are $u_{0}, u_{1} \in K_{R_{0} R_{1}}$ and r such that $\left|u_{0}\right|<r<\left|u_{1}\right|$ and

$$
\max \left\{E\left(u_{0}\right), E\left(u_{1}\right)\right\}<\inf _{\substack{u \in K_{R_{0}} R_{1} \\|u|=r}} E(u)
$$

Remark 7 If f is nondecreasing on $\left[0, c_{\infty} R_{1}\right]$, then (45) and (46) become

$$
\begin{equation*}
\frac{f\left(M R_{0}\right)}{M R_{0}} \geq \frac{1}{M\left|J \chi_{[a, b]}\right|_{L^{2}(a, b)}} \tag{47}
\end{equation*}
$$

and respectively

$$
\begin{equation*}
\frac{f\left(c_{\infty} R_{1}\right)}{c_{\infty} R_{1}} \leq \frac{1}{c_{0} c_{\infty}} . \tag{48}
\end{equation*}
$$

Therefore, in this case, in order to guarantee (45) and (46), we only need to know how the nonlinearity f behaves at two points $M R_{0}$ and $c_{\infty} R_{1}$.

Theorem 7 and Theorem 8 immediately yield the following two solutions existence result.

Theorem 9 Assume that (H1) and (H2) hold. Then (41) has at least two positive solutions in $K_{R_{0} R_{1}}$.

Example. Let

$$
f(u)= \begin{cases}\frac{1}{2} \sqrt{u} & \text { if } 0 \leq u \leq 1 \tag{49}\\ \frac{1}{2} u^{2} & \text { if } 1<u \leq b \\ \frac{1}{2}\left(\sqrt{u-b}+b^{2}\right) & \text { if } u>b\end{cases}
$$

Here $b>2$ and will be specified later. Obviously f is increasing on \mathbf{R}_{+}and

$$
F(u)= \begin{cases}\frac{1}{3} u^{3 / 2} & \text { if } 0 \leq u \leq 1 \\ \frac{1}{6}\left(u^{3}+1\right) & \text { if } 1<u \leq b\end{cases}
$$

First note that if we choose $r=2$, then $\inf _{\substack{u \in K \\|u|=r}} E(u) \geq \frac{1}{2}$. Indeed, if $u \in K$ and $|u|=2$, then since $|u|_{\infty} \leq|u|$, we have that $0 \leq u(t) \leq 2$ and so $F(u(t)) \leq \frac{3}{2}$ for all $t \in[0,1]$. Hence

$$
E(u)=\frac{1}{2}|u|^{2}-\int_{0}^{1} F(u(t)) d t \geq 2-\frac{3}{2}=\frac{1}{2} .
$$

Let $u_{0}=\phi$, where ϕ is the positive eigenfunction corresponding to the first eigenvalue λ_{1}, i.e.

$$
\begin{aligned}
\phi^{\prime \prime}+\lambda_{1} \phi & =0, t \in(0,1) \\
\phi(0) & =\phi(1)=0
\end{aligned}
$$

$\phi \geq 0$ and $|\phi|=1$. Then $\left|u_{0}\right|=1<r$ and

$$
E\left(u_{0}\right)=\frac{1}{2}|\phi|^{2}-\int_{0}^{1} F(\phi(t)) d t=\frac{1}{2}-\int_{0}^{1} F(\phi(t)) d t<\frac{1}{2} .
$$

Next we take $u_{1}:=b \phi$ and we assume that $b>\frac{1}{|\phi|_{\infty}}$. We have $\left|u_{1}\right|=b>r$ and

$$
\begin{equation*}
E\left(u_{1}\right)<\frac{1}{2} b^{2}-\frac{1}{6} \int_{(b \phi(t)>1)}(b \phi(t))^{3} d t \tag{50}
\end{equation*}
$$

Since the limit of the right side of (50) as $b \rightarrow \infty$ is equal to $-\infty$, we may choose b large enough that $E\left(u_{1}\right)<\frac{1}{2}$. Hence condition (H2) is satisfied. Finally, since

$$
\lim _{\tau \rightarrow 0} \frac{f(\tau)}{\tau}=\frac{1}{2} \lim _{\tau \rightarrow 0} \frac{\sqrt{\tau}}{\tau}=\infty \text { and } \lim _{\tau \rightarrow \infty} \frac{f(\tau)}{\tau}=\frac{1}{2} \lim _{\tau \rightarrow \infty} \frac{\sqrt{\tau-b}+b^{2}}{\tau}=0
$$

we may find R_{0}, R_{1} such that $u_{0}, u_{1} \in K_{R_{0} R_{1}}$ and (47), (48) hold.
Therefore, according to Theorem 9, problem (41) with f given by (49) and b sufficiently large has two positive solutions.

References

[1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[2] K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
[3] M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999), 96-120.
[4] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[5] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Poincaré Anal. Nonlinéaire 6 (1989), 321-330.
[6] D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations 1 (1988), 351-358.
[7] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[8] Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001), 257-299.
[9] L. Ma, Mountain pass on a closed convex set, J. Math. Anal. Appl. 205 (1997), 531-536.
[10] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
[11] D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[12] R. Precup, On the Palais-Smale condition for Hammerstein integral equations in Hilbert spaces, Nonlinear Anal. 47 (2001), 1233-1244.
[13] R. Precup, Nontrivial solvability of Hammerstein integral equations in Hilbert spaces. In: Séminaire de la Théorie de la Meilleure Approximation, Convexité et Optimisation (E. Popoviciu ed.), Srima, Cluj-Napoca, 2000, 255-265.
[14] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.
[15] R. Precup, A compression type mountain pass theorem in conical shells, J. Math. Anal. Appl., to appear.
[16] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142-149.
[17] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, vol. 65, 1986.
[18] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681-703.
[19] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999.
[20] M. Struwe, Variational Methods, Springer, Berlin, 1990.

