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1 Introduction

The so called mountain pass theorem of Ambrosetti and Rabinowitz [1] is one
of the most used tools in studying nonlinear equations having a variational form
(see [10], [17] and [20]). It concerns a real-valued C1 functional E (u) defined
on a real Banach space X, for which one desires to find a critical point, i.e., a
point u where E′ (u) = 0.

Theorem 1 (Ambrosetti–Rabinowitz) Let X be a Banach space and E ∈
C1 (X) . Assume that there exist u0, u1 ∈ X and r with |u0| < r < |u1| such
that

max {E (u0) , E (u1)} < inf {E (u) : u ∈ X, |u| = r} .

Let
Γ = {γ ∈ C ([0, 1] ;X) : γ (0) = u0, γ (1) = u1} (1)

and
c = inf

γ∈Γ
max
t∈[0,1]

E (γ (t)) . (2)

Then there exists a sequence of elements uk ∈ X such that

E (uk) → c, E′ (uk) → 0 as k → ∞.

If, in addition, E satisfies the Palais-Smale condition, i.e. any sequence as
above has a convergent subsequence, then there exists an element u ∈ X \
{u0, u1} with

E (u) = c, E′ (u) = 0. (3)

Notice Γ is the set of all continuous paths joining u0 and u1. Roughly
speaking, the mountain pass theorem says that if we are at the point u0 of
altitude E (u0) located in a cauldron surrounded by high mountains, and we
wish to reach to a point u1 of altitude E (u1) , over there the mountains, we
can find a path going from u0 to u1, through a mountain pass. To find a
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mountain pass we have to choose a path which mounts the least. Thus we have
to consider an optimal path in the set of all continuous paths connecting two
given points separated by a ”mountain range”. A number of authors have been
interested to restrict the competing paths to a bounded region in order to locate
a critical point. For example, in [6] the authors gave a variant of the mountain
pass theorem in a convex set M of the Hilbert space X (identified to its dual),
using the Schauder invariance condition (I − E′) (M) ⊂ M, while in [18] (see
also [19] and [14]) a critical point is located in a ball BR of X under the Leray-
Schauder boundary condition for I − E′. Here I stands for the identity map of
X.

Theorem 2 (Schechter) Let X be a Hilbert space, R > 0 and E ∈ C1
(
BR

)
.

Assume that for some ν0 > 0,

(E′ (u) , u) ≥ −ν0, u ∈ ∂BR (4)

and that there are u0, u1 ∈ BR and r with |u0| < r < |u1| such that

max {E (u0) , E (u1)} < inf
{
E (u) : u ∈ BR, |u| = r

}
. (5)

Let
ΓR =

{
γ ∈ C

(
[0, 1] ;BR

)
: γ (0) = u0, γ (1) = u1

}
and

cR = inf
γ∈ΓR

max
t∈[0,1]

E (γ (t)) .

Then either there is a sequence of elements uk ∈ BR with

E (uk) → cR, E′ (uk) → 0, (6)

or there is a sequence of elements uk ∈ ∂BR such that

E (uk) → cR, E′ (uk)−
(E′ (uk) , uk)

R2
uk → 0, (E′ (uk) , uk) ≤ 0. (7)

If in addition E satisfies the Schechter-Palais-Smale condition, i.e. any se-
quence as above has a convergent subsequence, and

E′ (u) + µu ̸= 0, u ∈ ∂BR, µ > 0, (8)

then there exists an element u ∈ BR \ {u0, u1} with

E (u) = cR, E′ (u) = 0.

Remark 1 (8) is the Leray–Schauder boundary condition (see [11]) for the
operator I − E′, i.e., it is equivalent to

u ̸= λ (I − E′) (u) , u ∈ ∂BR, λ ∈ (0, 1) .
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The Schauder and the Leray-Schauder conditions are used to solve the diffi-
cult problem of constructing paths which do not leave regionM. Such a construc-
tion suggested in [8] to introduce the notion of an invariant set of descending
flow of E with respect to a pseudogradient of E. Thus the difficult problem
is reduced to prove that for a given set M, there exists a pseudogradient with
respect to which M is an invariant set of descending flow (a difficult problem
as well). Related topics can be found in [3], [5], [9], [12] and [16].

In this paper, we first survey some of our existence results for abstract Ham-
merstein equations established in [12] and [14], and then we present our recent
results [15] concerning the localization of critical points in conical shells with
application to a two point boundary value problem.

2 Nontrivial Solvability of Abstract
Hammerstein Equations

Here we discuss the abstract Hammerstein equation

u = AN (u) , u ∈ Y, (9)

where Y is a Banach space, N : Y → Y ∗ and A : Y ∗ → Y is linear. Assume
that A splits into{

A = HH∗ with H : X → Y and H∗ : Y ∗ → X,

where X is a Hilbert space.
(10)

Then (9) can be converted into an equation in X, namely

v = H∗NH (v) , v ∈ X. (11)

Indeed, if u solves (9) then v = H∗N (u) is a solution of (11), and conversely
if v solves (11) then u = H (v) is a solution of (9). Moreover, H realizes an
one-to-one correspondence between the solution sets of the two equations. If, in
addition, we assume

N = J ′ for some J ∈ C1 (Y ;R) , J (0) = 0, (12)

and
H is bounded linear and H∗ is the adjoint of H, (13)

then (11) is equivalent to the critical point problem

E′ (v) = 0, v ∈ X

for the energy functional

E : X → R, E (v) =
1

2
|v|2X − JH (v) .
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Here |.|X stands for the norm of X. Notice E ∈ C1 (X;R) and

E′ (v) = v −H∗NH (v) , v ∈ X.

We now state an existence principle for (9) in a ball of X, whose proof is
based on Theorem 2.

Theorem 3 Assume (10) , (12) and (13) . Assume that N (0) = 0 and the
functional (N (.) , .) sends bounded sets into upper bounded sets. In addition
assume that there are v1 ∈ X \ {0} , r ∈ (0, |v1|) and R ≥ |v1| such that the
following conditions are satisfied:

max
{
0, |v1|2X /2− JH (v1)

}
< inf

{
|v|2X /2− JH (v) : |v|X = r

}
, (14)

v ̸= λH∗NH (v) for |v|X = R, λ ∈ (0, 1) , (15)

E satisfies the Schecter-Palais-Smale condition. (16)

Then there exists a v ∈ X \{0} with |v|X ≤ R such that u = H (v) is a non-zero
solution of (9) .

Specialized for the Hammerstein integral equation in Rn

u (x) =

∫
Ω

κ (x, y) f (y, u (y)) dy a.e. on Ω, (17)

Theorem 3 gives:

Theorem 4 Let Ω ⊂ RN be bounded open, 2 ≤ p < p0 < ∞, 1/p + 1/q = 1,
1/p0 + 1/q0 = 1, κ : Ω2 → R and f : Ω × Rn → Rn. Assume the following
conditions are satisfied:

(i) the operator A : Lq0 (Ω;Rn) → Lp0 (Ω;Rn) given by

A (u) (x) =

∫
Ω

κ (x, y)u (y) dy

is bounded and its restriction A : L2 (Ω;Rn) → L2 (Ω;Rn) is positive, self-
adjoint, and completely continuous;

(ii) f is (p, q)-Carathéodory of potential F and f (x, 0) = 0 a.e. on Ω;
(iii) there are v1 ∈ L2 (Ω;Rn) \ {0} and r ∈ (0, |v1|2) such that

max

{
0, |v1|22 /2−

∫
Ω

F (y, v1 (y)) dy

}
(18)

< inf

{
|v|22 /2−

∫
Ω

F (y, v (y)) dy : v ∈ L2 (Ω;Rn) , |v|2 = r

}
;

(iv) there is R ≥ |v1|2 such that

H (v) ̸= λ

∫
Ω

κ (., y) f (y,H (v) (y)) dy (19)

for every v ∈ L2 (Ω;Rn) with |v|2 = R and all λ ∈ (0, 1) .
Then the Hammerstein equation (17) has at least one non-zero solution u in

Lp (Ω;Rn) of the form u = H (v) with v ∈ L2 (Ω;Rn) , |v|2 ≤ R.
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Proof. Apply Theorem 3 to N = Nf and J given by

J (u) =

∫
Ω

F (y, u (y)) dy (u ∈ Lp (Ω;Rn)) .

Since Nf is a bounded operator, the map (Nf (.) , .) sends bounded sets into
bounded sets. By (iii), (iv), conditions (14) and (15) hold trivially. It remains
to show that the attached functional E satisfies the Schechter-Palais-Smale con-
dition. To do this let (vk) be any sequence of elements in L2 (Ω;Rn) with
0 < |vk|2 ≤ R satisfying

E (vk) → µ ∈ R, (E′ (vk) , vk)2 → ν ≤ 0

and
E′ (vk)− |vk|−2

2 (E′ (vk) , vk)2 vk → 0. (20)

We may assume that |vk|2 → a, for some a ∈ [0, R]. If a = 0 we have finished.
Assume a ∈ (0, R]. Then

|vk|−2
2 (E′ (vk) , vk)2 → a−2ν ∈ (−∞, 0].

On the other hand, (vk) being bounded and H being completely continuous, we
may assume, passing eventually to a subsequence, that H (vk) converges. Then
since Nf and H∗ are continuous we deduce that H∗NfH (vk) converges too.
Now from (20) which can be written as

vk −H∗NfH (vk)− |vk|−2
2 (E′ (vk) , vk)2 vk → 0

we infer that the corresponding subsequence of (vk) is convergent. Thus E
satisfies the Schechter-Palais-Smale condition.

Remark 2 If p > 2, a sufficient condition for (iii) is the following one:

(iii∗) there is a v1 ∈ L2 (Ω;Rn) \ {0} such that

1

2
|v1|22 −

∫
Ω

F (y, v1 (y)) dy ≤ 0, (21)

|f (x, z)| ≤ a
(
1 + |z|p−1

)
(22)

for a.e. x ∈ Ω and all z ∈ Rn, where a ∈ R+, and

lim
z→0

|f (x, z)| / |z| = 0 (23)

uniformly for a.e. x ∈ Ω.

Indeed, (23) implies that for any given ε > 0 there is a δ = δ (ε) > 0 such
that

|f (x, z)| ≤ ε |z| for a.e. x ∈ Ω and |z| < δ.
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For |z| ≥ δ, from (22) we deduce

|f (x, z)| ≤ a

(
|z|
δ

+ |z|p−1

)
≤ a

((
|z|
δ

)p−1

+ |z|p−1

)
= c (ε) |z|p−1

.

Here c (ε) = a
(
δ1−p + 1

)
≥ 0. Hence

|f (x, z)| ≤ ε |z|+ c (ε) |z|p−1

for a.e. x ∈ Ω and all z ∈ Rn. Next we obtain

E (v) =
1

2
|v|22 − JH (v)

≥ 1

2
|v|22 −

∫
Ω

|H (v) (x)|
∣∣f (x, θH(v),0 (x)H (v) (x)

)∣∣ dx
≥ 1

2
|v|22 −

∫
Ω

|H (v)|
(
ε |H (v)|+ c (ε) |H (v)|p−1

)
dx

=
1

2
|v|22 − ε |H (v)|22 − c (ε) |H (v)|pp .

Since

|H (v)|22 = (H (v) ,H (v))2 = (H∗H (v) , v)2

≤ |H∗| |H| |v|22

and
|H (v)|p ≤ c |v|2

because H is bounded, we deduce

E (v) ≥ 1

2
|v|22 − ε |H∗| |H| |v|22 − c (ε) |v|p2

=

(
1

2
− ε |H∗| |H| − c (ε) |v|p−2

2

)
|v|22 .

Now we choose any ε > 0 such that

1

2
− ε |H∗| |H| > 0

and an r > 0 small enough so that

r < |v1|2 ,
1

2
− ε |H∗| |H| − c (ε) rp−2 > 0

(recall p > 2). Then
E (v) > 0 for |v|2 = r.

This together with (21) guarantees (18).
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Remark 3 Assume H : L2 (Ω;Rn) → Lp (Ω;Rn) is one-to-one. Then, by the
theorem on the continuity of the inverse operator, there are constants α, β > 0
such that

α |v|2 ≤ |H (v)|p ≤ β |v|2 , v ∈ L2 (Ω;Rn) .

Now a sufficient condition for (iv) is to exist an R ≥ |v1|2 with

|A|q,p
(
|g|q + c βp−1Rp−1

)
≤ αR.

Here |A|q,p is norm of A as operator from Lq (Ω;Rn) to Lp (Ω;Rn) , whilst
g ∈ Lq (Ω;R+) and c ∈ R+ come from the (p, q)-Carathéodory property of f,
i.e.,

|f (x, z)| ≤ g (x) + c |z|p−1

for a.e. x ∈ Ω and all z ∈ Rn.
Indeed, if v ∈ L2 (Ω;Rn) satisfies |v|2 = R then

|ANfH (v)|p ≤ |A|q,p |NfH (v)|q
≤ |A|q,p

(
|g|q + c |H (v)|p−1

p

)
≤ |A|q,p

(
|g|q + c βp−1Rp−1

)
≤ αR

≤ |H (v)|p .

This guarantees (19) for all λ ∈ (0, 1) .

Similar results for the existence of solutions in a ball of Lp (Ω;Rn) are pre-
sented in [12], [13] by means of a mountain pass theorem on closed convex sets
owed to Guo–Sun–Qi [6].

3 Critical point theorems in conical shells

Let us consider two real Hilbert spaces, X with inner product and norm (., .) ,
|.| , and H with inner product and norm ⟨., .⟩ , ∥.∥ , and we assume that X ⊂ H,
X is dense in H, the injection being continuous. We shall denote by c0 the
imbedding constant with

∥u∥ ≤ c0 |u| for all u ∈ X.

We identify H to its dual H ′, thanks to the Riesz representation theorem and
we obtain

X ⊂ H ≡ H ′ ⊂ X ′

where each space is dense in the following one, the injections being continuous.
By ⟨., .⟩ we also denote de natural duality between X and X ′, that is ⟨x∗, x⟩ =
x∗ (x) for x ∈ X and x∗ ∈ X ′. When x∗ ∈ H, one has that ⟨x∗, x⟩ is exactly the
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scalar product in H of x and x∗. Let L be the linear continuous operator from
X to X ′ (the canonical isomorphism of X onto X ′), given by

(u, v) = ⟨Lu, v⟩ , for all u, v ∈ X

and let J from X ′ into X, be the inverse of L. Then

(Ju, v) = ⟨u, v⟩ for all u ∈ X ′, v ∈ X.

This for u ∈ H implies

|Ju|2 = ⟨u, Ju⟩ ≤ ∥u∥ ∥Ju∥ ≤ c0 ∥u∥ |Ju| .

Hence
|Ju| ≤ c0 ∥u∥ . (24)

We consider a C1 real functional E defined on X and we are interested in
the equation E′ (u) = 0.

By a wedge of X we shall understand a convex closed nonempty set K ⊂ X,
K ̸= {0} , with λu ∈ K for every u ∈ K and λ ≥ 0. Thus K has not necessarily
be a cone (when K ∩ (−K) = {0}) and, in particular, K might be the whole
space X.

In what follows we shall assume that J is ”positive” with respect to K, i.e.,

Ju ∈ K for every u ∈ K.

Let R0, R1 be such that 0 < R0 < c0R1 and let KR0R1 be the conical shell

KR0R1 = {u ∈ K : ∥u∥ ≥ R0, |u| ≤ R1} .

In applications, |.| is the specific energy norm, while ∥.∥ is an Lp-norm which
can be used instead of |.| because of its monotonicity property with respect to
the order relation.

Notice that there exists a number R with R ≤ R1 and

|Ju| ≥ R > 0 for all u ∈ KR0R1 . (25)

Indeed, otherwise, there would be a sequence (uk) of elements in KR0R1 with
|Juk| → 0 as k → ∞. Now, from

R2
0 ≤ ∥uk∥2 = ⟨uk, uk⟩ = (Juk, uk) ≤ |Juk| |uk| ≤ R1 |Juk|

letting k → ∞, we derive the contradiction R2
0 ≤ 0.

In [15], starting from the results in [18], [19], we have presented a variant
of the mountain pass theorem in the conical shell KR0R1 assuming that the
operator I − JE′ satisfies a compression boundary condition like that in the
corresponding fixed point theorem of Krasnoselskii [7]. The localization result
immediately yields multiplicity results for functionals with a ”wavily relief”.
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Theorem 5 Assume that there exist u0, u1 ∈ KR0R1
and ν0, r > 0, |u0| < r <

|u1| , such that the following conditions are satisfied:

u− JE′ (u) ∈ K for all u ∈ K; (26)

(JE′ (u) , Ju) ≤ ν0 for all u ∈ KR0R1 with ∥u∥ = R0; (27)

(JE′ (u) , u) ≥ −ν0 for all u ∈ KR0R1 with |u| = R1; (28)

max {E (u0) , E (u1)} < inf
u∈KR0R1

|u|=r

E (u) . (29)

Let
Γ = {γ ∈ C ([0, 1] ;KR0R1) : γ (0) = u0, γ (1) = u1}

and
c = inf

γ∈Γ
max
t∈[0,1]

E (γ (t)) .

Then there exists a sequence (uk) with uk ∈ KR0R1 such that

E (uk) → c as k → ∞ (30)

and one of the following three properties holds:

E′ (uk) → 0 as k → ∞; (31){
∥uk∥ = R0, (JE′ (uk) , Juk) ≥ 0 and

JE′ (uk)−
(JE′(uk),Juk)

|Juk|2
Juk → 0 (in X) as k → ∞;

(32)

{
|uk| = R1, (JE′ (uk) , uk) ≤ 0 and

JE′ (uk)−
(JE′(uk),uk)

R2
1

uk → 0 (in X) as k → ∞.
(33)

If in addition, any sequence (uk) as above has a convergent (in X) subsequence
and E satisfies the boundary conditions

JE′ (u)− λJu ̸= 0 for u ∈ KR0R1 , ∥u∥ = R0, λ > 0 (34)

JE′ (u) + λu ̸= 0 for u ∈ KR0R1 , |u| = R1, λ > 0, (35)

then there exists u ∈ KR0R1 with

E′ (u) = 0 and E (u) = c.

Remark 4 Let N (u) := u − JE′ (u) . Conditions (34), (35) can be written
under the form

N (u) + λJu ̸= u for ∥u∥ = R0, λ > 0 (36)

N (u) ̸= (1 + λ)u for |u| = R1, λ > 0. (37)

The next critical point result (together with the Remark which follows) can
be compared to the fixed point Theorem 20.2 in [2].
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Theorem 6 Assume that there exist u0, u1 ∈ KR0R1
and ν0, r > 0, |u0| < r <

|u1| , such that conditions (26), (29), (34) and (35) hold. In addition assume
that N := I − JE′ and J are compact from X to X. Then there exists a point
u ∈ KR0R1 with E′ (u) = 0 and E (u) = c.

Remark 5 In case that X = H, when |.| = ∥.∥ and J = I, the conclusion of
Theorem 6 is also true even though I is not compact, if we add the condition

inf {|N (u)| : u ∈ K, |u| = R0} > 0. (38)

The following result is the compression type mountain pass theorem accom-
panying the corresponding fixed point theorem of Krasnoselskii [7] (see also [4,
p. 325]).

Theorem 7 Assume that there exist u0, u1 ∈ KR0R1 and ν0, r > 0, |u0| < r <
|u1| , such that conditions (26) and (29) hold. In addition assume that norm
∥.∥ is increasing with respect to K, i.e.,

∥u+ v∥ > ∥u∥ for all u, v ∈ K, v ̸= 0,

the maps J and N := I − JE′ are compact from X to X, and
(a) ∥N (u)∥ ≥ ∥u∥ for ∥u∥ = R0,
(b) |N (u)| ≤ |u| for |u| = R1.

Then there exists a point u ∈ KR0R1 with E′ (u) = 0 and E (u) = c.

A similar result holds for critical points of minimum type.

Theorem 8 Assume that conditions (26), (27), (28) are satisfied and that

m := inf
KR0R1

E > −∞. (39)

Then there exists a sequence (uk) with uk ∈ KR0R1 such that

E (uk) → m as k → ∞ (40)

and one of conditions (31), (32), (33) holds. If in addition, any sequence (uk)
as above has a convergent subsequence and (34), (35) hold, then there exists
u ∈ KR0R1

with
E′ (u) = 0 and E (u) = m.

Remark 6 If both conditions (29) and (39) are satisfied, then Theorems 5 and
8 guarantee the existence of two distinct critical points of E in KR0R1 .
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4 Application

Consider the two-point boundary value problem{
u′′(t) + f(u (t)) = 0, t ∈ (0, 1)
u (0) = u (1) = 0.

(41)

Here f is a continuous function from R into R, with f (R+) ⊂ R+. Let X =
H1

0 (0, 1) with inner product and norm

(u, v) =

∫ 1

0

u′v′dt, |u| =
(∫ 1

0

u′2dt

)1/2

and let H = L2 (0, 1) with inner product and norm

⟨u, v⟩ =
∫ 1

0

u v dt, ∥u∥ =

(∫ 1

0

u2dt

)1/2

.

We also denote by |u|∞ the max norm in C [0, 1] and by |u|L2(a,b) the usual

norm of L2 (a, b) .
Here E : H1

0 (0, 1) → R is given by

E (u) =

∫ 1

0

(
1

2
u′ (t)

2 − F (u (t))

)
dt, u ∈ H1

0 (0, 1) ,

where F (u) =
∫ u

0
f (τ) dτ. One has that E′ (u) = −u′′ − f (u) in H−1 (0, 1) ,

(Jv,w) = ⟨v, w⟩ for all v ∈ H−1 (0, 1) , w ∈ H1
0 (0, 1)

and Jv =
∫ 1

0
G (t, s) v (s) ds for v ∈ L2 (0, 1) , where G (t, s) is the corresponding

Green’s function given by

G (t, s) =

{
s (1− t) , for 0 ≤ s ≤ t ≤ 1
t (1− s) , for 0 ≤ t ≤ s ≤ 1.

Also N (u) := u− JE′ (u) = Jf (u) and

Jf (u) =

∫ 1

0

G (t, s) f (u (s)) ds.

Notice, since the imbedding of H1
0 (0, 1) into C [0, 1] is compact, N and J are

compact from H1
0 (0, 1) to itself. Also note that

G (t, s) ≤ G (s, s) for all t, s ∈ [0, 1] (42)

and for every interval [a, b] with 0 < a < b < 1, there is a constant M > 0 with

MG (s, s) ≤ G (t, s) for all s ∈ [0, 1] , t ∈ [a, b] . (43)

11



These properties of Green’s function guarantee that for every nonnegative func-
tion v ∈ L2 (0, 1) , one has

(Jv) (t) ≥ M ∥Jv∥ for all t ∈ [a, b] . (44)

Indeed, if v ≥ 0 on [0, 1] , t ∈ [a, b] and t∗ ∈ [0, 1] , then from (42), (43), we
obtain

(Jv) (t) =

∫ 1

0

G (t, s) v (s) ds ≥ M

∫ 1

0

G (s, s) v (s) ds

≥ M

∫ 1

0

G (t∗, s) v (s) ds = M (Jv) (t∗) .

This proves (44) if we choose t∗ with (Jv) (t∗) = |Jv|∞ and we take into account
that |u|∞ ≥ ∥u∥ for all u ∈ C [0, 1] .

Now we consider a cone K in H1
0 (0, 1) , defined by

K =
{
u ∈ H1

0 (0, 1) : u ≥ 0 on [0, 1] and u (t) ≥ M ∥u∥ for t ∈ [a, b]
}
.

If u ≥ 0 on [0, 1] , then f (u) ≥ 0 on [0, 1] since f (R+) ⊂ R+ and so, according
to (44), Jf (u) ∈ K. Consequently, u− JE′ (u) ∈ K for every u ∈ K.

Before we state our hypotheses, we recall that constant c0 is such that ∥u∥ ≤
c0 |u| for all u ∈ H1

0 (0, 1) and we denote by c∞ the imbedding constant of the
inclusion H1

0 (0, 1) ⊂ C [0, 1] , i.e. |u|∞ ≤ c∞ |u| for all u ∈ H1
0 (0, 1) . Also, for

the subinterval [a, b] of [0, 1] , we let χ[a,b] be the characteristic function of [a, b] ,
i.e., χ[a,b] (t) = 1 if t ∈ [a, b] , χ[a,b] (t) = 0 otherwise.

Our assumptions are as follows:
(H1) There exist R0, R1 with 0 < R0 < c0R1 such that

min
τ∈[MR0,c∞R1]

f (τ)

R0
≥ 1∣∣Jχ[a,b]

∣∣
L2(a,b)

(45)

max
τ∈[0,c∞R1]

f (τ)

R1
≤ 1

c0
. (46)

(H2) There are u0, u1 ∈ KR0R1 and r such that |u0| < r < |u1| and

max {E (u0) , E (u1)} < inf
u∈KR0R1

|u|=r

E (u) .

Remark 7 If f is nondecreasing on [0, c∞R1] , then (45) and (46) become

f (MR0)

MR0
≥ 1

M
∣∣Jχ[a,b]

∣∣
L2(a,b)

(47)

and respectively
f (c∞R1)

c∞R1
≤ 1

c0c∞
. (48)

Therefore, in this case, in order to guarantee (45) and (46), we only need to
know how the nonlinearity f behaves at two points MR0 and c∞R1.

12



Theorem 7 and Theorem 8 immediately yield the following two solutions
existence result.

Theorem 9 Assume that (H1) and (H2) hold. Then (41) has at least two
positive solutions in KR0R1 .

Example. Let

f (u) =


1
2

√
u if 0 ≤ u ≤ 1

1
2u

2 if 1 < u ≤ b
1
2

(√
u− b+ b2

)
if u > b.

(49)

Here b > 2 and will be specified later. Obviously f is increasing on R+ and

F (u) =

{
1
3u

3/2 if 0 ≤ u ≤ 1
1
6

(
u3 + 1

)
if 1 < u ≤ b.

First note that if we choose r = 2, then inf
u∈K
|u|=r

E (u) ≥ 1
2 . Indeed, if u ∈ K and

|u| = 2, then since |u|∞ ≤ |u| , we have that 0 ≤ u (t) ≤ 2 and so F (u (t)) ≤ 3
2

for all t ∈ [0, 1] . Hence

E (u) =
1

2
|u|2 −

∫ 1

0

F (u (t)) dt ≥ 2− 3

2
=

1

2
.

Let u0 = ϕ, where ϕ is the positive eigenfunction corresponding to the first
eigenvalue λ1, i.e.

ϕ′′ + λ1ϕ = 0, t ∈ (0, 1)

ϕ (0) = ϕ (1) = 0,

ϕ ≥ 0 and |ϕ| = 1. Then |u0| = 1 < r and

E (u0) =
1

2
|ϕ|2 −

∫ 1

0

F (ϕ (t)) dt =
1

2
−
∫ 1

0

F (ϕ (t)) dt <
1

2
.

Next we take u1 := bϕ and we assume that b > 1
|ϕ|∞

. We have |u1| = b > r and

E (u1) <
1

2
b2 − 1

6

∫
(bϕ(t)>1)

(bϕ (t))
3
dt. (50)

Since the limit of the right side of (50) as b → ∞ is equal to −∞, we may choose
b large enough that E (u1) <

1
2 . Hence condition (H2) is satisfied. Finally, since

lim
τ→0

f (τ)

τ
=

1

2
lim
τ→0

√
τ

τ
= ∞ and lim

τ→∞

f (τ)

τ
=

1

2
lim
τ→∞

√
τ − b+ b2

τ
= 0,

we may find R0, R1 such that u0, u1 ∈ KR0R1 and (47), (48) hold.
Therefore, according to Theorem 9, problem (41) with f given by (49) and

b sufficiently large has two positive solutions.
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