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ABSTRACT. We are concerned with the study of semilinear evolution equations with nonlocal

initial conditions. We provide sufficient conditions on the nonlinearity which allow the use of variants

of the nonlinear alternative to prove the existence of at least one solution. Our second result presents

a novel growth condition splitted into two parts, one for the subinterval containing the points involved

by the initial conditions, and another for the rest of the interval.
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1. INTRODUCTION

In this paper we are concerned with the existence of mild solutions of a nonlocal

Cauchy problem for a semilinear evolution equation. In fact, we consider the following

Cauchy problem with nonlocal initial conditions

u′(t) + Au(t) = f(t, u(t)) 0 < t < 1(1.1)

u(0) +

m
∑

k=1

aku(tk) = 0(1.2)

where −A is the infinitesimal generator of a compact C0 semigroup {T (t)}t≥0 of

operators on a real Banach space E, f is a given function and ak are real numbers

and tk, k = 1, 2, . . . , m are given points with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm < 1. Nonlocal

Cauchy problems have attracted the attention of many researchers (see for instance

[1–4, 6, 8, 9] and the references therein). We provide sufficient conditions on the

nonlinearity f and the numbers ak in order to obtain a priori bounds on solutions

of a one-parameter family of problems related to the original. Our assumptions are

less restrictive than those imposed in earlier works. We do not assume that f maps

bounded sets into precompact sets. Also, if we let g(u) =
m
∑

k=1

aku(tk), then our
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problem is similar to those considered by [4] and [9], but we can easily see that g is

not uniformly bounded. Our second result presents a novel growth condition splitted

in two parts, one for the subinterval containing the points involved by the initial

conditions, and another for the rest of the interval.

The importance of nonlocal conditions in various disciplines is discussed in [4–7]

and the references therein.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖, BL(E) is the Banach space of

bounded linear operators on E with norm ‖ · ‖op; −A is the infinitesimal generator

of a compact C0 semigroup {T (t)}t≥0 (i.e. T (t) is a compact operator for each t > 0)

on E; J is the real interval [0, 1]. Let X := C(J ; E). For u ∈ X define its norm by

|u|∞ := sup{‖u(t)‖; t ∈ J}. Let M := sup{‖T (t)‖op; t ∈ J}. The following results

play an important role in our main results.

Theorem 2.1. (Schaefer [11]) Let Y be a normed space, Φ a continuous mapping of

Y into Y which is compact on each bounded subset of Y . Then either

(i) the equation x = λΦx has a solution for λ = 1, or

(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

Theorem 2.2. (O’Regan [10]) Let U be an open set in a closed, convex set C of a

Banach space E. Assume 0 ∈ U, G(U) is bounded and G : U → C is given by G =

G1+G2 where G1 : U → E is completely continuous, and G2 : U → E is a nonlinear

contraction (i.e. there exists a continuous nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ (z) < z for z > 0, such that ‖G2 (x) − G2 (y)‖ ≤ φ (‖x − y‖) for all

x, y ∈ U). Then either,

(A1) G has a fixed point in U, or

(A2) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λG (u) .

3. EXISTENCE OF MILD SOLUTIONS

In order to study our problem, we shall assume that the operator T (t) is compact

for each t > 0, and that there exists a bounded operator B on D(B) = E given by

the formula

B :=

[

I +
m
∑

k=1

akT (tk)

]−1

.

This is possible, for instance if
∑m

k=1 |ak| < 1/M .

Our first result is based on the following assumption
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(H1) f : J × E → E is continuous and

‖f(t, u)‖ ≤ h(t)φ(‖u‖)

for all t ∈ J, u ∈ E, where h ∈ L1(J ; [0,∞)) and φ : [0, +∞) → (0, +∞) is

continuous nondecreasing such that

lim sup
R→+∞

R
(

M2‖B‖op

m
∑

k=1

|ak|

∫ tk

0

h(s)ds + M‖h‖L1

)

φ(R)

> 1.

Definition 3.1. A mild solution of (1.1), (1.2) is a continuous solution of the integral

equation

u(t) = −
m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds +

∫ t

0

T (t − s)f(s, u(s))ds.

Theorem 3.2. Suppose that the assumption (H1) is satisfied. Then the nonlocal

Cauchy problem (1.1), (1.2) has at least one mild solution.

Proof. Consider a one-parameter family of problems

(3.1)











u′(t) + Au(t) = λf(t, u(t)), t ∈ J

u(0) +
m
∑

k=1

aku(tk) = 0

where 0 ≤ λ ≤ 1. Define Φ : X → X by the formula

(Φu)(t) := −

m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds +

∫ t

0

T (t − s)f(s, u(s))ds.

A mild solution of (3.1) is a solution of the abstract equation

(3.2) u = λΦu

and conversely.

Step 1. The solutions of (3.2) are a priori bounded. For, let u be any solution of (3.2)

and let R0 := |u|∞. It follows from the integral equation that for all t > 0

‖u(t)‖ ≤

m
∑

k=1

|ak| ‖T (t)‖op‖B‖op

∫ tk

0

‖T (tk − s)‖op ‖f(s, u(s))‖ds

+

∫ t

0

‖T (t − s)‖op ‖f(s, u(s))‖ds.

Condition (H1) implies that for all t > 0

‖u(t)‖ ≤
m
∑

k=1

|ak| ‖T (t)‖op‖B‖op

∫ tk

0

‖T (tk − s)‖
op

h(s)φ(‖u (s) ‖)ds

+

∫ t

0

‖T (t − s)‖op h(s)φ(‖u (s) ‖)ds.
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Since φ is nondecreasing we have that for all t > 0

‖u(t)‖ ≤
m
∑

k=1

|ak| ‖T (t)‖op‖B‖op

∫ tk

0

‖T (tk − s)‖op h(s)φ(R0)ds

+

∫ t

0

‖T (t − s)‖op h(s)φ(R0)ds.

Hence

‖u(t)‖ ≤

(

M2‖B‖op

m
∑

k=1

|ak|

∫ tk

0

h(s)ds + M‖h‖L1

)

φ(R0) for all t > 0.

This implies that

(3.3)
R0

(

M2‖B‖op

∑m

k=1 |ak|
∫ tk

0
h(s)ds + M‖h‖L1

)

φ(R0)
≤ 1.

Now the condition on φ implies that there exists R∗ > 0 such that for all R > R∗ we

have

(3.4)
R

(

M2‖B‖op

∑m

k=1 |ak|
∫ tk

0
h(s)ds + M‖h‖L1

)

φ(R)
> 1.

Comparing inequalities (3.3) and (3.4) we see that

R0 ≤ R∗.

Thus, we have obtained that any solution u of (3.2) satisfies

|u|∞ ≤ R∗ i.e. max
t∈J

‖u(t)‖ ≤ R∗.

Therefore, all possible solutions of (3.2) are a priori bounded independently of λ. In

fact, these solutions are in the closed convex subset

SR∗ := {u ∈ X; |u|∞ ≤ R∗}.

Also, the continuity of Φ follows from the continuity of f .

Step 2. Φ is completely continuous. In order to prove this we must show that Φ(SR∗)

is a uniformly equicontinuous family of functions and the set SR∗(t) := {(Φu)(t); u ∈

SR∗} is precompact in E, for every t ∈ J. Let σ1, σ2 ∈ J with σ1 < σ2. Then

‖(Φu)(σ1) − (Φu)(σ2)‖ ≤

‖T (σ1) − T (σ2)‖ ‖B‖op

m
∑

k=1

|ak|

∫ tk

0

‖T (tk − s)‖op ‖f(s, u(s))‖ds

+

∫ σ1

0

‖T (σ1) − T (σ2 − s)‖op ‖f(s, u(s))‖ds

+

∫ σ2

σ1

‖T (σ2 − s)‖op ‖f(s, u(s))‖ds.
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Since f ∈ C(J × E; E) it follows that there exists ρ > 0 such that

‖f(s, u(s))‖ ≤ ρ

for all s ∈ J and u ∈ SR∗ . Let

γ := ‖B‖opρ

m
∑

k=1

|ak|

∫ tk

0

‖T (tk − s)‖opds.

It follows from the above that

‖(Φu)(σ1) − (Φu)(σ2)‖ ≤ γ‖T (σ1) − T (σ2)‖op

+ρ

∫ σ1

0

‖T (σ1 − s) − T (σ2 − s)‖opds

+ρ

∫ σ2

σ1

‖T (σ2 − s)‖opds.

The right-hand side does not depend on u ∈ SR∗ and tends to zero when σ2 tends to

σ1 because of the continuity of T (t) in the uniform operator topology for t > 0, which

follows from the compactness of T (t) for t > 0. Hence Φ(SR∗) is an equicontinuous

family of functions.

Next, consider the set SR∗(t) := {(Φu)(t); u ∈ SR∗}, t ∈ J . Let t > 0 and

0 < ε < t. For u ∈ SR∗ define

(Φεu)(t) := −

m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds

+

∫ t−ε

0

T (t − s)f(s, u(s))ds

= −

m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds

+T (ε)

∫ t−ε

0

T (t − s − ε)f(s, u(s))ds.

Since T (t) is compact for every t > 0, the set SR∗,ε(t) := {(Φεu)(t); u ∈ SR∗} is

precompact in E, for every ε ∈ (0, t). Moreover, for every u ∈ SR∗ we have

‖(Φεu)(t) − (Φu)(t)‖ ≤

∫ t

t−ε

‖T (t − s)f(s, u)(s))‖ds

≤ Mρε.

This shows that the set SR∗(t) := {(Φu)(t); u ∈ SR∗} is precompact in E. It follows

from the theorem of Ascoli-Arzela that Φ(SR∗) is a precompact subset of X.

Notice that S(Φ) := {u ∈ X; u = λΦu, 0 < λ < 1} is bounded as we proved in

the first step. Therefore by Theorem 2.1, the operator Φ has a fixed point in SR∗ ,

and any fixed point of Φ is a mild solution of (1.1), (1.2). This completes the proof

of our first result.
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For our second result, we shall assume that the following conditions hold.

(H2) There exists M0 > 0 and ω ∈ C(J × [0, +∞); (0, +∞)) nondecreasing with

respect to its second variable, with the property that

1

R

∫ tm

0

ω (t, R) dt <
1

M(1 + M ‖B‖op

∑m

k=1 |ak|)

for all R > M0 and

‖f(t, u)‖ ≤ ω(t, ‖u‖)

for all t ∈ [0, tm] and u ∈ E.

(H3) There exists q ∈ L1 ([tm, 1]; R+) with M
∫ 1

tm
q(s)ds ≤ 1, and Γ ∈ C (R+; R+)

nondecreasing with Γ(z) < z for z > 0, such that

‖f(t, u1) − f(t, u2)‖ ≤ q(t)Γ (‖u1 − u2‖)

for all t ∈ [tm, 1] and u1, u2 ∈ E.

Theorem 3.3. Assume that (H2) and (H3) are satisfied. Then the nonlocal problem

(1.1), (1.2) has at least one mild solution.

Proof. Consider the one-parameter family of problems (3.1) and the equivalent inte-

gral equation (3.2). Write

Φ(u) = G1(u) + G2(u)

where

G1(u)(t) =























−
∑m

k=1 akT (t)B
∫ tk

0
T (tk − s)f(s, u(s))ds +

∫ t

0
T (t − s)f(s, u(s))ds

for t < tm

−
∑m

k=1 akT (t)B
∫ tk

0
T (tk − s)f(s, u(s))ds +

∫ tm

0
T (t − s)f(s, u(s))ds

for t ≥ tm

and

G2(u)(t) =

{

0, for t < tm
∫ t

tm
T (t − s)f(s, u(s))ds, for t ≥ tm.

We want to show that there exists δ > 0 such that any possible solution u of (3.2)

satisfies |u|
∞

≤ δ.

For t ∈ [0, tm] we have, for 0 ≤ λ ≤ 1



SEMILINEAR EVOLUTION EQUATIONS 513

‖u(t)‖ = λ

∥

∥

∥

∥

∥

−

m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds +

∫ t

0

T (t − s)f(s, u(s))ds

∥

∥

∥

∥

∥

≤

m
∑

k=1

|ak| ‖T (t)‖op ‖B‖op

∫ tk

0

‖T (tk − s)‖op ‖f(s, u(s))‖ds

+

∫ t

0

‖T (t − s)‖op ‖f(s, u(s))‖ds

≤ (M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

‖f(s, u(s))‖ds

≤ M(1 + M ‖B‖op

m
∑

k=1

|ak|)

∫ tm

0

ω(s, ‖u(s)‖)ds.

Letting β = max{‖u(t)‖ ; 0 ≤ t ≤ tm} we see from the above inequality that (recall

ω is nondecreasing in its second variable)

1

β

∫ tm

0

ω(s, β)ds ≥
1

M(1 + M ‖B‖op

∑m

k=1 |ak|)
.

Now the condition on ω implies that β ≤ M0, i.e.

max{‖u(t)‖ ; 0 ≤ t ≤ tm} ≤ M0.

Next, let t ∈ [tm, 1]. Then

‖u(t)‖ = λ

∥

∥

∥

∥

∥

−
m
∑

k=1

akT (t)B

∫ tk

0

T (tk − s)f(s, u(s))ds +

∫ t

0

T (t − s)f(s, u(s))ds

∥

∥

∥

∥

∥

≤ (M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

‖f(s, u(s))‖ds + M

∫ t

tm

‖f(s, u(s))‖ds

≤ (M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

ω(s, ‖u(s)‖)ds + M

∫ t

tm

q(s)Γ (‖u(s)‖) ds

≤ (M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

ω(s, M0)ds + M

∫ t

tm

q(s)Γ (‖u(s)‖) ds.

Let

V (t) := (M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

ω(s, M0)ds + M

∫ t

tm

q(s)Γ (‖u(s)‖) ds.

Then, for all t ∈ [tm, 1]

‖u(t)‖ ≤ V (t) and V ′(t) = Mq(t)Γ (‖u(t)‖) .

Since Γ is nondecreasing we have

V ′(t) ≤ Mq(t)Γ (‖V (t)‖) for all t ∈ [tm, 1].
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So that
V ′(t)

Γ (‖V (t)‖)
≤ Mq(t) for all t ∈ [tm, 1].

Hence
∫ t

tm

V ′(s)

Γ (‖V (s)‖)
ds ≤ M

∫ t

tm

q(s)ds ≤ M

∫ 1

tm

q(s)ds ≤ 1.

By an obvious change of variables we obtain
∫ V (t)

V (tm)

dz

Γ(z)
≤ 1.

Now we use the fact that Γ (z) < z, to see that
1

z
<

1

Γ (z)
. Consequently

∫ V (t)

V (tm)

dz

z
≤ 1.

Hence

ln
V (t)

V (tm)
≤ 1 for all t ∈ [tm, 1].

Thus

V (t) ≤ eV (tm) = e(M2 ‖B‖op

m
∑

k=1

|ak| + M)

∫ tm

0

ω(s, M0)ds := M1.

It follows that

max{‖u(t)‖ ; tm ≤ t ≤ 1} ≤ M1.

Set δ := max(M0, M1). Then, we have obtained that any possible solution of (3.2)

satisfies |u|
∞

≤ δ.

Consider the set Ω := {u ∈ X; |u|
∞

< δ + 1}. Recall that mild solutions of

Problem (1.1), (1.2) are fixed points of the operator Φ : X → X, where

Φu = G1(u) + G2(u).

We proceed as in the proof of Theorem 3.2 to show that the operator G1 : Ω → X

is compact. Next, we show that G2 : Ω → X is a nonlinear contraction. Indeed, for

any x, y ∈ Ω and t ∈ J we have from the definition of G2,

‖G2(x)(t) − G2(y)(t)‖ =

∥

∥

∥

∥

∫ t

tm

T (t − s)[f(s, x(s)) − f(s, y(s))]ds

∥

∥

∥

∥

≤ M

∫ t

tm

‖f(s, x(s)) − f(s, y(s))‖ds

≤ M

∫ t

tm

q(s)Γ (‖x(s) − y(s)‖) ds

≤ MΓ (|x − y|
∞

)

∫ t

tm

q(s)ds

≤ Γ (|x − y|
∞

)M

∫ 1

tm

q(s)ds.
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Since M
∫ 1

tm
q(s)ds ≤ 1, we deduce that

|G2(x) − G2(y)|
∞

≤ Γ (|x − y|
∞

) .

Hence the operator G2 : Ω → X is a nonlinear contraction.

Condition (A2) of Theorem 2.2 does not hold because we have seen that solutions

u of (3.2) are such that |u|
∞

≤ δ, for all λ ∈ [0, 1]. So that there is no solution of

(3.2) with u ∈ ∂Ω.

Therefore, Theorem 2.2 implies that Φ has a fixed point in Ω. This shows that

Problem (1.1), (1.2) has a solution. This completes the proof of Theorem 3.3.

Remark 3.4. Theorem 3.2 also follows from Theorem 1.1, even if (H3) is replaced

by the following more general condition (H3’):

(H3’) There exists q ∈ L1([tm, 1]; R+) and Γ ∈ C (R+; R+) nondecreasing with
∫ 1

tm

q(s)ds <

∫ +∞

M∗

0

dz

Γ(z)

where

M∗
0 = (1 + M ‖B‖op

m
∑

k=1

|ak|)

∫ tm

0

ω(s, M0)ds,

such that

‖f(t, u)‖ ≤ q(t)Γ (‖u‖)

for all t ∈ [tm, 1] and u ∈ E.
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