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1. Introduction and Preliminaries

In the forthcoming paper [3] the first author developed a technique for the
investigation of systems of nonlinear operator equations which is based on
vector-valued metrics and convergent to zero matrices together with funda-
mental principles of nonlinear functional analysis. It is shown in [3] that the
use of vector-valued metrics is more appropriate when treating systems of equa-
tions. In this paper we are concerned with the existence (and the uniqueness) of
solutions for the Cauchy problem associated to a semilinear system of abstract
evolution equations:
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du1

dt
(t) + A1u1(t) = F1(t, u1(t), u2(t)) ,

du2

dt
(t) + A2u2(t) = F2(t, u1(t), u2(t)) ,

u1(0) = u0
1 ,

u2(0) = u0
2 .

(1.1)

Here the linear operator Ai : D(Ai) ⊆ Xi → Xi is densely defined on the
real Banach space Xi and generates the strongly continuous semigroup of con-
tractions {Si(t), t ≥ 0}, for i = 1, 2. The Hille-Yosida Theorem (see [1], [2]
, [6] and [7]) gives the following necessary and sufficient codition for Ai to
generate a semigroup: for any x, y ∈ D(Ai) and any λ > 0, ‖x − y‖ ≤
‖x − y + λ(Aix − Aiy)‖, and I − Ai is surjective. If (Xi, 〈 ., . 〉Xi

) is a Hilbert
space the necessary and sufficient condition is that I − Ai is surjective and
〈Aix, x〉Xi

≥ 0 for all x ∈ D(Ai).

We shall look for global mild solutions on the interval [0, T ], i.e., (u1, u2) ∈
C([0, T ],X1) × C([0, T ],X1) satisfying

ui(t) = Si(t)u
0
i +

∫ t

0
Si(t − τ)Fi(τ, u1(τ), u2(τ))dτ for all t ∈ [0, T ],

i = 1, 2. (1.2)

The nonlinear operator defined by the right hand side of (1.2) will be denoted
by Ni(u), where u = (u1, u2) ∈ C([0, T ],X1) × C([0, T ],X2).

In the next section three different Fixed Point Principles will be used in
order to prove the existence of solutions for the semilinear problem, namely the
Fixed Point Theorems of Perov, Schauder and Leray-Schauder (see [4]). In all
three cases a key role will be played by the so called convergent to zero matrices.
A square matrix M with nonnegative elements is said to be convergent to zero

if

Mk → 0 as k → ∞.

It is known that the property of being convergent to zero is equivalent to each
of the following three conditions (for details see [3], [4] and [5]):

(a) I − M is nonsingular and (I − M)−1 = I + M + M2 + . . . (where I

stands for the unit matrix of the same order as M);

(b) the eigenvalues of M are located inside the unit disc of the complex
plane;

(c) I − M is nonsingular and (I − M)−1 has nonnegative elements.

We finish this introductory section by recalling three fundamental results
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which will be used in Section 2. Let X be a nonempty set. By a vector-valued

metric on X we mean a mapping d : X × X → Rn
+ such that:

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v,w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), by x ≤ y we
mean xi ≤ yi for i = 1, 2, . . . , n. We call the pair (X, d) a generalized metric

space. For such a space convergence and completness are similar to those in
usual metric spaces.

An operator N : X → X is said to be contractive (with respect to the
vector-valued metric d on X) if there exists a convergent to zero matrix M

such that

d(N(u), N(v)) ≤ Md(u, v) for all u, v ∈ X.

Theorem 1. (Perov) Let (X, d) be a complete generalized metric space
and N : X → X a contractive operator with Lipschitz matrix M . Then N has
a unique fixed point u∗ and for each u0 ∈ X we have

d(Nk(u0), u
∗) ≤ Mk(I − M)−1d(u0, N(u0)) for all k ∈ N.

Theorem 2. (Schauder) Let X be a Banach space, D ⊂ X a nonempty
closed bounded convex set and N : D → D a completely continuous operator
(i.e., N is continuous and N(D) is relatively compact). Then N has at least
one fixed point.

Theorem 3. (Leray-Schauder) Let (X, || . ||) be a Banach space, R > 0
and N : BR(0;X) → X a completely continuous operator. If ||u|| < R for every
solution u of the equation u = λN(u) and any λ ∈ (0, 1), then N has at least
one fixed point.

2. Main Results

Our first result is an existence and uniqueness theorem for the case of nonlin-
earities which satisfy a Lipschitz condition. Under the basic assumptions on Xi

and Ai from Section 1, we have:

Theorem 4. Suppose that Fi : [0, T ]×X1×X2 → Xi satisfies the Lipschitz
condition

||Fi(t, u) − Fi(t, v)||Xi
≤ ai1(t)||u1 − v1||X1

+ ai2(t)||u2 − v2||X2
(2.1)
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for all u = (u1, u2), v = (v1, v2) ∈ X1 × X2, t ∈ [0, T ] and i = 1, 2, where
aij ∈ Lp([0, T ],R+) for i, j = 1, 2. Then for any (u0

1, u
0
2) ∈ X1 ×X2 the Cauchy

problem (1.1) has a unique global mild solution.

Proof. Let Ei := C([0, T ],Xi) be endowed with the Bielecki norm

||u||Ei
:= sup

t∈[0,T ]
e−kt||u(t)||Xi

where k > 0 will be chosen later, and let E := E1 × E2 be endowed with the
vector-valued metric

d : E → R2
+, d(u, v) =

(

||u1 − v1||E1

||u2 − v2||E2

)

.

Clearly (E, d) is a complete generalized metric space. Finding a mild solution
to the Cauchy problem (1.1) comes back to finding a fixed point u for the
nonlinear operator

N(u1, u2) := (N1(u1, u2), N2(u1, u2))

defined by (1.2) (i.e., a pair u = (u1, u2) ∈ E with N(u) = u). In order to apply
Perov’s Fixed Point Theorem we need to show that N maps E into itself and
that N is contractive.

Indeed, Ni(u1, u2) is a continuous Xi-valued function as a consequence of
the continuity properties of the semigroup {Si(t), t ≥ 0} and of the integral
operator. Notice that Hölder’s inequality guarantees that

∫ t

0
aij(τ)ekτdτ ≤ ||aij ||Lp

(
∫ t

0
eqkτdτ

)1/q

,

where 1
p + 1

q = 1. Then for any u, v ∈ E, using (2.1), we obtain

||Ni(u)(t) − Ni(v)(t)||Xi

=

∥

∥

∥

∥

∫ t

0
Si(t − τ) (Fi(τ, u(τ)) − Fi(τ, v(τ))) dτ

∥

∥

∥

∥

Xi

≤

∫ t

0
||Si(t − τ)||||Fi(τ, u(τ)) − Fi(τ, v(τ))||Xi

dτ

≤

∫ t

0
||Fi(τ, u(τ)) − Fi(τ, v(τ))||Xi

dτ

≤

∫ t

0
(ai1(τ)||u1(τ) − v1(τ)||X1

+ ai2(τ)||u2(τ) − v2(τ)||X2
) dτ

≤ ||u1 − v1||E1

∫ t

0
ai1(τ)ekτdτ + ||u2 − v2||E2

∫ t

0
ai2(τ)ekτdτ
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≤
||ai1||Lp

(qk)1/q
||u1 − v1||E1

ekt +
||ai2||Lp

(qk)1/q
||u2 − v2||E2

ekt.

It follows that

||Ni(u) − Ni(v)||Ei
≤

||ai1||Lp

(qk)1/q
||u1 − v1||E1

+
||ai2||Lp

(qk)1/q
||u2 − v2||E2

for i = 1, 2. These inequalities can be written in the matrix form

d(N(u), N(v)) ≤ Md(u, v) ,

where

M =

(

||aij ||Lp

(qk)1/q

)

i,j=1,2

.

Clearly, M converges to zero for k large enough, and so Perov’s theorem can
be applied.

Assuming that the operator N is completely continuous we can weaken
condition (2.1) to a at most linear growth condition. But now Schauder’s
Fixed Point Theorem that we apply will only guarantee the existence not also
the uniqueness of the solution.

Theorem 5. If the operator N is completely continuous and Fi satisfies

||Fi(t, u)||Xi
≤ ai1(t)||u1||X1

+ ai2(t)||u2||X2
+ bi(t) (2.2)

for all u = (u1, u2) ∈ X1×X2, where aij ∈ Lp([0, T ],R+) and bi ∈ L1([0, T ],R+),
for i, j = 1, 2, then problem (1.1) has at least one global mild solution.

Proof. In order to apply Schauder’s Fixed Point Principle we need to find
a nonempty closed bounded convex set D ⊂ E such that

N(D) ⊆ D. (2.3)

Let us consider the set D := BR1
(0;E1) × BR2

(0;E2), where BRi
(0;Ei) is the

closed ball of radius Ri in Ei. We try to find R1, R2 ≥ 0 such that (2.3) holds.
Using (2.2) and the Hölder inequality we deduce that

||Ni(u)(t)||Xi
≤ ||Si(t)u

0
i ||Xi

+

∥

∥

∥

∥

∫ t

0
Si(t − τ) (Fi(τ, u(τ))) dτ

∥

∥

∥

∥

Xi

≤ ||u0
i ||Xi

+

∫ t

0
(ai1(τ)||u1(τ))||X1

+ ai2(τ)||u2(τ)||X2
+ bi(τ)) dτ

≤
||ai1||Lp

(qk)1/q
||u1||E1

ekt +
||ai2||Lp

(qk)1/q
||u2||E2

ekt + ||u0
i ||Xi

+ ||bi||L1 .

This means that for u ∈ D, i.e., ||ui||Ei
≤ Ri for i = 1, 2, we have

||Ni(u)||Ei
≤ ãi1R1 + ãi2R2 + b̃i ,
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where

ãij =
||aij ||Lp

(qk)1/q
and b̃i = ||bi||L1 + ||u0

i ||Xi
.

Thus, for any nonnegative solutions R1, R2 ≥ 0 of the algebraic system

(I − M)

(

R1

R2

)

=

(

b̃1

b̃2

)

(2.4)

where

M =

(

ã11 ã12

ã21 ã22

)

,

we will have ||Ni(u)||Ei
≤ Ri for i = 1, 2, i.e., N(D) ⊆ D. For k large enough,

matrix M is convergent to zero. Therefore, according to (c), (2.4) has a unique
nonnegative solution, as we wished.

Now in the case of Hilbert spaces, and if all mild solutions are classical
solutions (i.e., they are in C([0, T ],D(Ai))∩C1([0, T ],Xi) and satisfy (1.1)), we
have the following result based on the Leray-Schauder Fixed Point Theorem.

Theorem 6. Let (Xi, 〈., .〉Xi
), i = 1, 2 be real Hilbert spaces. If all mild

solutions of the equations ui = λNi(u), λ ∈ (0, 1), are classical solutions, the
nonlinear operator N is completely continuous and Fi satisfies

〈Fi(t, u), ui〉Xi
≤ ai1(t)||u1||

2
X1

+ ai2(t)||u2||
2
X2

+ bi(t) (2.5)

for all u ∈ X1 × X2, where aij ∈ Lp([0, T ],R+) and bi ∈ L1([0, T ],R+) for
i, j = 1, 2, then problem (1.1) has at least one solution.

Proof. For each solution to the equation ui = λNi(u), λ ∈ (0, 1), we can
write

ui(t) = λSi(t)u
0
i + λ

∫ t

0
Si(t − τ)Fi(τ, u1(τ), u2(τ))dτ

= Si(t)(λu0
i ) +

∫ t

0
Si(t − τ)(λFi(τ, u1(τ), u2(τ)))dτ

for all t ∈ [0, T ], i = 1, 2. Since by our assumption, ui is a classical solution,
we have







dui

dt
(t) + Aiui(t) = λFi(t, u1(t), u2(t)) ,

ui(0) = λu0
i ,

(2.6)

for all t ∈ [0, T ], i = 1, 2. Now taking the inner product in Xi with ui(t) we
obtain

1

2

d

dt
||ui(t)||

2
Xi

+ 〈Aiui(t), ui(t)〉Xi
= λ 〈Fi(t, u1(t), u2(t)), ui(t)〉Xi

.
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Then using 〈Aix, x〉Xi
≥ 0 for all x ∈ D(Ai) and (2.5), we obtain

1

2

d

dt
||ui(t)||

2
Xi

≤ λ 〈Fi(t, u1(t), u2(t)), ui(t)〉Xi

≤ ai1(t)||u1(t)||
2
X1

+ ai2(t)||u2(t)||
2
X2

+ bi(t).

Integrating with respect to t, we deduce that

||ui(t)||
2
Xi

≤ ||u0
i ||

2
Xi

+ 2

∫ t

0
(ai1(τ)||u1(τ))||2X1

+ ai2(τ)||u2(τ)||2X2
+ bi(τ))dτ

for all t ∈ [0, T ], i = 1, 2. From this inequality, by using the same technique
based on the Bielecki norm, as in the proof of Theorem 5, we obtain that

||ui||
2
Ei

≤ ãi1||u1||
2
E1

+ ãi2||u2||
2
E2

+ b̃i for i = 1, 2, (2.7)

where

ãij = 2
||aij ||Lp

(2qk)1/q
and b̃i = 2||bi||L1 + ||u0

i ||
2
Xi

.

Thus using the notation M = (ãij)i,j=1,2 system (2.7) can be written in the
matrix form as follows

(I − M)

(

||u1||
2
E1

||u2||
2
E2

)

≤

(

b̃1

b̃2

)

. (2.8)

For a sufficiently large k, matrix M is convergent to zero. Hence, I − M is
nonsingular and (I − M)−1 has nonnegative elements. Thus (2.8) becomes

(

||u1||
2
E1

||u2||
2
E2

)

≤ (I − M)−1

(

b̃1

b̃2

)

.

This guarantees the a priori boundedness of the solutions u = (u1, u2) of the
equations u = λN(u), for all λ ∈ (0, 1). Thus we may apply the Leray-Schauder
Fixed Point Theorem.

Notice that sufficient conditions for the complete continuity of operator N,

as well as for that mild solutions be classical solutions can be found in the
literature, see for example [1], [6] and [7].
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