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Abstract. The purpose of this paper is twofold. Firstly, we present an equivalence property involv-
ing isotonic linear functionals. Secondly, by using the contraction principle, we give a method for
obtaining the limit of iterates of some classes of linear positive operators,

1. Introduction

In Approximation Theory a tool with rich mathematical content and great poten-
tial for applications is given by linear methods of approximation generated by se-
quences of linear operators, the essential ingredient being that of positivity.

The main objective of this survey paper is to present results which spring from
standard inequalities enriching the mentioned research field.

In this respect, the paper is organized in two main sections.

Taking into account that the class of convex functions is characterized by the
well-known inequality of Jensen, the following question arises in a natural way:
what are the connections between the Jensen’s inequality on C'([a, b]), the existence
of a sequence of approximating and convexity-preserving positive linear polyno-
mial operators which reproduce the affine functions and Bohman-Korovkin’s the-
orem? The aim of Section 2 is to show that the three above mentioned basic re-
sults together with a certain generalization of Jensen’s inequality due to B. Jessen
are equivalent. This equivalence property emphasizes the role of convexity and
convexity-preserving operators in the approximation of functions by positive lin-
ear operators. Once again, the powerful criterion due to T. Popoviciu, H. Bohman
and P.P. Korovkin is pointed out. It helps us to decide if a sequence of positive
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linear operators tends to the identity operator with respect to the uniform norm of
the Banach space C([a, b]).

Further on, the chief aim of Section 3 is to study the convergence of the iterates
associated to any operator belonging to certain classes of summation-type linear
operators. These sequences preserve some test functions comprised by Popoviciu-
Bohman-Korovkin theorem. For our purpose, we use a general technique based on
the contraction principle and on the inequalities intrinsically entailed by this classic
result. Some examples are also delivered.

2. Inequalities of Jensen type and approximation processes

The aim of this section is to bring into light an equivalence property involving
isotonic linear functionals. The result emphasizes the role of convexity and of
convexity-preserving operators in the approximation of functions by linear posi-
tive operators.

Let C([a, b]) be the Banach space of all real-valued and continuous functions
defined on [a, b], equipped with the norm || - || of the uniform convergence. We
denote by e,, the monomials given by ep(z) = 2", ¢ € [a,b] and n € Ng =
{0} UN.

Bohman-Korovkin’s theorem states: if (L, ),>1 is a sequence of positive linear
operators mapping C'([a,b]) into itself such that ”1141)130 |Lne; — ei|| = 0 fori =
0,1, 2, then one has nh_rgo |Lnf — fll =0 for every f € C([a,b]).

An abstract version of this result was proved in [An2].

In fact, this criterion should be called Popoviciu-Bohman-Korovkin. The re-
search of the Romanian mathematician Tiberiu Popoviciu (1906-1975) was pub-
lished in 1951 in Romanian language [Po2] and thus his contribution remained
unknown for many mathematicians. In his proof, Popoviciu considered that the
operators Ly, n € N, reproduce the constant functions.

Jensen’s inequality in C([a, b]) says: if the function f € C([a, b]) is convex on
[a,b], then for each m € N, z € [a,b] and p, > 0, k = 1,2,...,m, such that

77
ZP"“ = 1,one has
k=1

I (ZLU.L'%) < Zpk.f(ﬂ%).
k=1 k=1

We recall: if £ is a linear class of real-valued functions, then an isotonic linear
functional A : £ — R is a functional satisfying the conditions

(c1) Alaf+Bg) = aA(f) + BA(g) forall f,g € Land a, 5 € R,

(e3) iff e Land f >0, then A(f) > 0.

The above conditions guarantee that A is monotone: for each f,g € L such
that f < g, one has A(f) < A(g).

The mapping A is said to be normalized if A(1) = 1.



A generalization of Jensen’s inequality involving isotonic linear functionals is
due to B. Jessen [Je]. A short proof of this generalization and other related results
can be found in P. Beesack and J. Pecari¢ [BePe].

A particular form of Jessen’s inequality states: if A : C([a,b]) — R is an
isotonic normalized linear functional, then for every convex function f € C([a, b))
the following inequality

f(A(e1)) < A(f) 21

holds.

It is worth mentioning that this inequality and other similar inequalities appear
in the works of M.L. Slater [S1], J. Pecari¢ [Pe], J. Pe€ari¢ and D. Andrica [PeAn].

In what follows by Jessen’s inequality we shall understand the inequality (2.1).

The following result related to these fundamental inequalities and the approx-
imation by positive linear operators was proved by D. Andrica and C. Badea
[AnBa].

Theorem 2.1. The following statements are equivalent:

(i) Jensen'’s inequality for convex functions in C([a, b)),

(ii) there is a sequence of approximating and convex-preserving positive linear
polynomial operators which reproduce the affine functions;

(iii) Popoviciu-Bohman-Korovkin's theorem in the space C([a, b]);

(iv) Jessen's inequality for positive linear functionals on C([a, b]).

The technique of the proof of the above equivalences consists in the following
five steps: (1) = (iv) = (iid) = (i) = (iv) = (i).

Proof (i) = (iv).

We consider the convex function f € C([a,b]). It is well-known that f/ (y)
exists for every y € (a,b) and, for every x € [a, b], we have

flz) = fy) + fi(y)(z —y), (2.2)

see e.g. A.W. Roberts and D.E. Varberg [RoVa; p. 12].

In (2.2) we consider y = A(e1) € (a,b) and we apply the functional A with
respect to . Since A is monotone, it results A(f) > f(A(e1)). Consequently (iv)
holds.

Proof (iv) = (iii).

Let (Ly)n>1 be a sequence of positive linear operators on C/([a,b]) with
nlinso |Lne; — e;]| = 0,4 = 0,1,2. Because nlinozo [ Lneo — eol| = O we can as-
sume that L, (ep; x) > 0 and L, (eg, z) < K, K constant, for every z € [a, b] and
all positive integers n.

For a fixed z € [a,b] we consider the functionals A, : C([a,b]) — R,
An(f) = Ln(f; )/ Ln(eg; x). It is obvious that A, (eq) = 1.

If f € C%([a, b]) let us denote by

= min f"(t), M = max f"(¢).
A= I, f(t) Joax f7()




Now we can apply (iv) for the above-defined functionals A;, and for the convex

M
functions f = f — {’2, fo= e f. We get

[LIL(BU; x)Ln(é% I) - Li(eﬂ ’E)]

Ly (ex; 9:))
Ln (6(] ; I)

[Ln(eOE RZ)L,-,,(BQ; T) - L‘i(ela CI)H

1. _m
2 Ly(eo; z)
L (f -T) ?z(€0§3f)'f(

1
9’ Ly(ep; )

for every = € [a,b] andn = 1,2, ... Therefore

IL (f I) - —’n(f 0; T )f(Ln,(E]_; I)/Ln(eg; l))‘ 2.3)
I1£”l - .
= BT (on; 2 )[Ln(eo, x)Lp(ea;z) — L2 (ey; ).

Using the following inequality

Lno(f;z) — fz)| < [f(z) — Lu(eo; 2) (En(e—lzi))‘

+|La(f:2) = Ln(eo; 2) (M)‘

L, (ep; x)

and relation (2.3) we conclude that

Ln(eﬁ‘r)

|La(f;2) — f(z)] < Ln(eo; )

fw) - f ( ){ Tl Ln(eoia) — 1] @4)

(b
2L, (eq; x)

Since f is continuous on [a, b], it is also uniformly continuous on [a, b] and we
obtain

+ [Ln(eo; z) Ln(ea; ) — Li(e1; ).

f(@) = f(Ln(er; z)/Ln(eo; )| — 0

uniformly as n — oo. On the other hand, using the fact that {ey, e1, e2} is a set of
test functions, we have

[Ln(e0; ) Ln(ez; ) — L2(e1; )]/ Ln(eo; ) — O
uniformly as n — oo. From these remarks and relation (2.4) we deduce
T}LH‘}O “Ln.f - j” =0,

for every f € C?([a,b]).



On the other hand, for every f € C([a, b]) we have
[ Ln(f52)| < || £l Lnleo; 2) < KI|f]],

consequently || L, f|| < K| f|| and one obtains ||L,|| < K,n=0,1,...

Because C([a, b]) is a dense subspace in C([a, b]) the proof is complete via
Banach-Steinhaus theorem.

We point out that the construction of the functions f; and f» has been used by
A. Lupas [Lu] in order to obtain the improvements of some inequalities due to D.
Andrica and I. Raga [AnRa]. The same idea has appeared in D. Andrica, I. Raga
and Gh. Toader [AnRaTo].

By using the same technique one could find a more general class than the class
of approximating positive linear interpolation operators. This can be done by using
Jensen-Steffensen’ inequality (see D.S. Mitrinovi¢ [Mi; p. /09]) instead of Jensen’s
inequality.

Proof that (iii) = (ii).

Let B, be the n-th classical Bernstein operator on [a, b], i.e.,

Bu(f;z) = (b—_la)— i (Z”) (x —a)k(b—a)"Ff (a + kbn“) . (25)

k=0

€1 —E9

Because Bep, = ep, k= 0,1 and Bres = es + ‘ we get by Popoviciu-

Bohman-Korovkin’s theorem that Bernstein operators are‘approximating operators.
At the same time B,, is a convexity-preserving polynomial operator (see T. Popovi-
ciu [Pol]), which reproduces the affine functions.

Proof (i) = (iv).

Let (L, ),>1 be a sequence of approximating and convexity-preserving positive
linear polynomial operators which preserve the affine functions. The existence of a
such sequence is guaranteed by (ii). Let f be a convex function of C*([a, b]). Using
the Taylor’s formula we get

f&) = f)y+ (2 — 1),

for every z,t € [a, b].

Applying the functional A with respect to z (for t = A(ey)), it results (2.1)
for every convex function f € C%([a,b]). For these functions we similarly have
L,(f;2) > f(x). However, this inequality holds for an arbitrary convex function
f € C([a,b]). Indeed, if f is convex on [a,b], then L,,f € C?([a,b]) is also a
convex function and this implies L,,(L,, f;2) > f(z). Letting m tends to infinity
we get L, (f; ) > f(a) for every convex function f € C([a, b]).

Finally, we complete the proof of Jessen’s inequality (2.1) by using an idea of
D. Andrica [Anl].

Let f € C([a,b]) be a convex function. Using the last inequality and the fact
that the operators L,, form an approximation process, we deduce: for every ¢ > 0
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there is a positive integer N = N (&) such that for all n > IV one has
0< E.(Fiz) — flz) <€, zE]q 0.

Thus
A(L”f) é A(f) + g, n = 13 21 st (26)

Because L, f € C?%([a,b]) is also a convex function we find, see (2.1), that
L.(A(e1)) € A(Lnf), n=12,... 2.7
Hence, from (2.6) and (2.7) we have
L.(A(e1)) < A(f)+e, n=12,...
Because the operators L,, are approximating, we get
f(A(er)) < A(f) +¢

for every £ > 0. Consequently, Jessen’s inequality is proved and the implication
(17) = (iv) is true.

Proof (iv) = (i). Examining Jessen’s inequality, this assertion is evident.

The proof of Theorem 2.1 is complete. [

Remark 2.2. Taking into account the above proof we deduce that (ii) can be
replaced by the following weaker assertion:

(ii)’ there is a sequence of approximating and convex-preserving positive lin-
ear operators (L,,) which reproduce the affine functions and verify the condition
Lnf € C%([a,b]) for every convex function f.

3. Contractive mappings and iterates of certain classes of linear
positive operators

The Banach fixed-point theorem, also called contractive mapping theorem, fur-
nishes an elegant method for obtaining the limit of over-iteration of a given linear
positive operator. Over-iteration means that for a fixed operator its m-th powers
are investigated when m goes to infinity. The technique described by O. Agratini
and I.A. Rus was already the topic of different papers, see e.g. [Ru], [AgRul],
[AgRu2], [Ag] containing the study of several classes of linear positive operators
on some spaces of functions defined on subsets of R and R x R. As usual, we set
the powers of the operator A by A = Iy, Al = A A™H = Ao A™ m € N,
where Ix indicates the identity operator on the space X.

At first, as in [AgRul], we introduce the following general discrete type se-
quence of operators acting on the space C'([a, b])

C([a,B]) — C([a,B]), (Lnf)(z) = Zm Fl i) 3.1)



where A, is a given net on [a,b], Ap(a = 2p0 < Tp1 < -+ < Tpp = b), and
every function v, (0 < k < n) belongs to C([a, b]) such that

wn,k 2 0 (0 S k S n)a Z 'l.bn,f'c = €p, r(;bn,[](u') = d’n,n(b) =1, (32)
. k=0

Let us denote

Uy = i })]('t,f)n‘g(:r) + Pnn(x)). (3.3)

TEla
According to Bohman-Korovkin theorem, the necessary and sufficient condi-
tions which offer to (L,,),»1 the attribute of approximation process are the follow-

ing
n

lim Z xt  hn i = €; uniformly on [a,b], i€ {1,2}.
n—oo !
k=1
In what follows we study the convergence for over-iteration of the L,, operator
in two distinct variants, see [AgRul], [Ag] respectively.
(1) The operators L, n € N, have degree of exactness one, this meaning

n
Z 1'11,&-’(/)71,.!; = €1. (34)
k=0
(ii) The operators L, n € N, preserve the quadratic test function, this meaning
n
3
3 22 ks = eo. (3.5)
k=0

We mention that both results take into account only the iterates of a fixed oper-

ator.
Theorem 3.1. Let the operators L, n € N, be defined by (3.1)-(3.2) such that

(3.4) holds.
If u,, defined by (3.3) satisfies u,, > 0, then one has

1m (@20 = @)+ 00y reop.  es

uniformly on |, b].
Proof. We define the sets

Xap:={f€C(a,b]) | fla) =, f(b) =08}, (o,B)€eRxR.

Clearly, every X, 3 is a closed subset of C([a,b]) and the system X, g,
(o, B) € R x R, makes up a partition of this space. Since the non-negative func-

n
tions ¥y, k, 0 < k < n, verify ¢, o(a) = ¥, n(b) = 1 and Z Unk(z) = 1, we get
k=0



(Lnf)(a) = f(a) and (L, f)(b) = f(b). In other words, for all (o, ) € R x R
and n € N, X, 5 is an invariant subset of L.

Further on, we prove that L,,| Kyd - Xapg — Xap Is a contractive operator
with contractivity constant 1 — u,, € [O, 1). Indeed, if f and g belong to X, 5 then,
for every = € [a,b], we can write

n—1

(Lo f) () Zm (f = 9)(@nk)

<ZU”N.’\ ”f_gH

= (1 - 1/)”,0(' ) - d)n r? ”f g”
<A =u)lf —4ll,

and consequently, ||L,f — Lng|| < (1 — uy)||f — g||. The assumption w, > 0

guarantees our statement.
. ab — Ba —
On the other hand, the function p, g = b f eg + i e1 belongs to
: —a —a

Xa,. Since Ly, reproduces the affine functions, pj, ; is a fixed point of Ly,.
For any f € C([a,b]) one has f € Xy, s and, by using the contraction
principle, we get m[I_lll)Q L = Pfr(a). F) The desired result (3.6) is obtained. (J
In a similar manner we can prove the following result. In this new case the
fixed point element is the function

b2 — Ba? 3 —a

* R
Pag = Tga_ o8 0T gz 3

€9 & Xa”@.

Theorem 3.2. Let the operators Ly, n € N, be defined by (3.1)-(3.2) such that
b # —a and (3.5) holds.
If uy, defined by (3.3) satisfies u, > 0, then one has

Jim (LPf)(&) = g (F@) = JO) + (f0) — f@)?),  (37)
I € C(la, b)), uniformly on |a, b.

Remark 3.3. In Theorem 3.1 the conditions ¥, o(a) = 1, (b) = 1 are au-
tomatically satisfied. L,e; = e; fori = 0 and 7 = 1 imply interpolation at the
endpoints of the function. This fact was bring to the first author by H. Gonska, D.
Kacsé and P. Piful [GoKaPi, Lemma 3.1] accompanied by a nice proof.

Remark 3.4. If a < b < 0or 0 < a < b, then the identities v, o(a) =
Unn(b) = 1 claimed in (3.2) are implied by the identities L,e; = e;, 7 € {0,2}.
Let analyse the case 0 < a < b. Choosing in the previous identities x = a, we

deduceZlJ)ng (a” —:cz ) = 0. Since 1, x(a) > 0 and a? —JQk < 0 for

all k = l n, clearly 9, x(a) = 0 for each k = 1,n. Since Lyep = eg, we get
¥n,0(a) = 1. In a similar manner we prove 1, ,(b) = 1.
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Moreover, if a < 0 < b, then 0 € {z,,1,...,%n n—1}. Indeed, assuming con-
trary, this means 2,5 # 0 for all & = 1,n — 1, and choosing = = 0 in (3.5) we
obtain 1y, (0) = 0 for all = 0, n. This fact is in contradiction with the identity
Ln‘eo = €qQ.

Examples 3.5.

1° Bernstein operators defined by (2.5) satisfy the hypothesis of Theorem 3.1,
consequently (3.6) takes place. We reobtain the result established long time ago by
R.P. Kelinsky and T.J. Rivlin [KeRi].

2° In (3.1) choosing a = 0,b =1, x,, 1 = k/n,

n

(@) = () rh@1 = rafol,

where 71 (z) = 2% and

() L pf B a, 0 Y rn>o
(x) = — ; T
PR 2(n—1) n—1 4(n—1)2 TR

our operators become the King operators, see [Ki].

This is an unexpected example of non polynomials operators which preserve
the monomials ey and e,. Applying Theorem 3.2, King operators L;,, n € N, enjoy
the following property

lim (L7'f)(z) = f(0) + (F(1) = £(0))a?,  f € C([0,1]),

m—00

uniformly on [0, 1].

It is worth to point out the following more general result as regards the limit
behavior of the k,,-th iterates of positive linear approximation operators L, n € N,
obtained by S. Karlin and Z. Ziegler [KaZi, Theorem I].

Theorem 3.6. Let (Ly)n>1 be a sequence of positive linear operators on
C(la, b)) satisfying Lype; = ej, j € {0,1}, for alln € N.

(a) A necessary and sufficient condition for

kng ST
Jim ||y f — Pf]| =0,

r—a

where P is the projection operator (Pf)(z) = f(a)+ (f(b)— f(a)), is that

b—a

lim ||LErey — (a + b)e; — abeg|| = 0.

n—od
(b) A necessary and sufficient condition for

lim || L f— f|l =0
n—oo

is that
lim ||L%"e, — ea|| = 0.
n—0o0

9



Returning to Bernstein operators, the above theorem yields the following con-
clusions [KaZi, p. 323]:

lim ||B¥f — f|| = 0iff lim —= =0,
n—oo n—oo 7
. k i r . . . kn
lim |By*f — Pf|| = 0iff lim — = oo.
n—oo n—oa 1,
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