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Abstract

In this paper we present a compression type version of the mountain pass lemma in a conical shell with respect to two norms.
An application to second-order ordinary differential equations is included.
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1. Introduction

The so-called mountain pass theorem of Ambrosetti and Rabinowitz [1] is one of the most used tools in studying
nonlinear equations having a variational form (see [2,6,10,14,15,20,24] and [25]). It concerns a real-valued C1 func-
tional E(u) defined on a real Banach space X, for which one desires to find a critical point, i.e., a point u, where
E′(u) = 0. Such a point is obtained by considering an optimal path in the set of all continuous paths connecting two
given points separated by a “mountain range.” A number of authors have been interested to restrict the competing
paths to a bounded region in order to locate a critical point. For example, in [9] the authors gave a variant of the
mountain pass theorem in a convex set M of the Hilbert space X (identified to its dual), using the Schauder invariance
condition (I −E′)(M) ⊂ M, while in [21] (see also [22,23] and [18]) a critical point is located in a ball M of X under
the Leray–Schauder boundary condition (see [16]) for I − E′. Here I stands for the identity map of X. The Schauder
and the Leray–Schauder conditions are used to solve the difficult problem of constructing paths which do not leave
region M. Such a construction suggested in [12] to introduce the notion of an invariant set of descending flow of E

with respect to a pseudogradient of E. Thus the difficult problem is reduced to prove that for a given set M, there
exists a pseudogradient with respect to which M is an invariant set of descending flow (a difficult problem as well).
Related topics can be found in [5,8,13,17] and [19].

In this paper we shall not identify X to its dual X′. More exactly we consider two real Hilbert spaces, X with inner
product and norm (.,.), |.|, and H with inner product and norm 〈.,.〉, ‖.‖, and we assume that X ⊂ H, X is dense
in H, the injection being continuous. We shall denote by c0 the imbedding constant with

‖u‖ � c0|u| for all u ∈ X.
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We identify H to its dual H ′, thanks to the Riesz representation theorem and we obtain

X ⊂ H ≡ H ′ ⊂ X′,

where each space is dense in the following one, the injections being continuous. By 〈.,.〉 we also denote a natural
duality between X and X′, that is 〈x∗, x〉 = x∗(x) for x ∈ X and x∗ ∈ X′. When x∗ ∈ H, one has that 〈x∗, x〉 is
exactly the scalar product in H of x and x∗. Let L be the linear continuous operator from X to X′ (the canonical
isomorphism of X onto X′), given by

(u, v) = 〈Lu,v〉 for all u,v ∈ X,

and let J from X′ into X be the inverse of L. Then

(Ju, v) = 〈u,v〉 for all u ∈ X′, v ∈ X.

This for u ∈ H implies

|Ju|2 = 〈u,Ju〉 � ‖u‖‖Ju‖ � c0‖u‖|Ju|.
Hence

|Ju| � c0‖u‖. (1.1)

We consider a C1 real functional E defined on X and we are interested in the equation E′(u) = 0.

By a wedge of X we shall understand a convex closed nonempty set K ⊂ X, K 
= {0}, with λu ∈ K for every
u ∈ K and λ � 0. Thus K has not necessarily be a cone (when K ∩ (−K) = {0}) and, in particular, K might be the
whole space X.

In what follows we shall assume that J is ”positive” with respect to K, i.e.,

Ju ∈ K for every u ∈ K.

Let R0,R1 be such that 0 < R0 < c0R1 and let KR0R1 be the conical shell

KR0R1 = {
u ∈ K: ‖u‖ � R0, |u| � R1

}
.

In applications, |.| is the specific energy norm, while ‖.‖ is an Lp-norm which can be used instead of |.| because of
its monotonicity property with respect to the order relation.

Notice that there exists a number R with R � R1 and

|Ju| � R > 0 for all u ∈ KR0R1 . (1.2)

Indeed, otherwise, there would be a sequence (uk) of elements in KR0R1 with |Juk| → 0 as k → ∞. Now, from

R2
0 � ‖uk‖2 = 〈uk,uk〉 = (Juk,uk) � |Juk||uk| � R1|Juk|

letting k → ∞, we derive the contradiction R2
0 � 0.

In this paper, starting from the results in [21,22], we present a variant of the mountain pass theorem in the conical
shell KR0R1 assuming that the operator I − JE′ satisfies a compression boundary condition like that in the corre-
sponding fixed point theorem of Krasnoselskii [11]. The localization result immediately yields multiplicity results for
functionals with a ”wavily relief.” A simple application to nonlinear boundary value problems is presented to illustrate
the theory.

We finish this introductory section by a technical result about differential equations in closed convex sets (see [3]).

Lemma 1.1. Let X be a Banach space, D a closed convex set in X. Assume that W :D → X is a locally Lipschitz
map which satisfies∣∣W(u)

∣∣ � C, lim
λ→0+

1

λ
d
(
u + λW(u),D

) = 0 (1.3)

for all u ∈ D. Then, for any u ∈ D, the initial value problem in Banach space
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dσ

dt
= W(σ), σ (0) = u

has a unique solution σ(u, t) on R+, and σ(u, t) ∈ D for every t ∈ R+.

Notice that the lim condition in (1.3) holds in particular, if for any u ∈ D, there exists λu > 0 with u+λuW(u) ∈ D.

Indeed, if such a λu exists, then for every λ ∈ (0, λu], one has

u + λW(u) = (
1 − λλ−1

u

)
u + λλ−1

u

(
u + λuW(u)

) ∈ D

since D is convex.

2. Main results

Theorem 2.1. Assume that there exist u0, u1 ∈ KR0R1 and ν0, r > 0, |u0| < r < |u1|, such that the following conditions
are satisfied:

u − JE′(u) ∈ K for all u ∈ K; (2.1)(
JE′(u), Ju

)
� ν0 for all u ∈ KR0R1 with ‖u‖ = R0; (2.2)(

JE′(u),u
)
� −ν0 for all u ∈ KR0R1 with |u| = R1; (2.3)

max
{
E(u0),E(u1)

}
< inf

u∈KR0R1|u|=r

E(u). (2.4)

Let

Γ = {
γ ∈ C

([0,1];KR0R1

)
: γ (0) = u0, γ (1) = u1

}
and

c = inf
γ∈Γ

max
t∈[0,1]

E
(
γ (t)

)
.

Then there exists a sequence (uk) with uk ∈ KR0R1 such that

E(uk) → c as k → ∞ (2.5)

and one of the following three properties holds:

E′(uk) → 0 as k → ∞; (2.6)⎧⎨⎩
‖uk‖ = R0,

(
JE′(uk), Juk

)
� 0 and

JE′(uk) − (JE′(uk), Juk)

|Juk|2 Juk → 0 (in X) as k → ∞; (2.7)

⎧⎪⎨⎪⎩
|uk| = R1,

(
JE′(uk), uk

)
� 0 and

JE′(uk) − (JE′(uk), uk)

R2
1

uk → 0 (in X) as k → ∞.
(2.8)

If in addition, any sequence (uk) as above has a convergent (in X) subsequence and E satisfies the boundary condi-
tions

JE′(u) − λJu 
= 0 for u ∈ KR0R1, ‖u‖ = R0, λ > 0, (2.9)

JE′(u) + λu 
= 0 for u ∈ KR0R1, |u| = R1, λ > 0, (2.10)

then there exists u ∈ KR0R1 with

E′(u) = 0 and E(u) = c.
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Remark 2.1. Let N(u) := u − JE′(u). Conditions (2.9), (2.10) can be written under the form

N(u) + λJu 
= u for ‖u‖ = R0, λ > 0, (2.11)

N(u) 
= (1 + λ)u for |u| = R1, λ > 0. (2.12)

The proof of Theorem 2.1 needs some lemmas.

Lemma 2.1.

(10) Let w,v ∈ X \ {0} and α, θ ∈ R+ such that 0 < α < 1 − θ and −(w,v) � θ |w||v|. Then there exists an element
h ∈ X with

|h| = 1, (w,h) � −α|w| and (v,h) < 0. (2.13)

Moreover, if v ∈ K and v − w ∈ K, then there exists λ∗ > 0 with

v + μh ∈ K for all μ ∈ [
0, λ∗]. (2.14)

(20) Let w,v ∈ X \ {0} and α, θ ∈ R+ such that 0 < α < 1 − θ and (w,Jv) � θ |w||Jv|. Then there exists an element
h ∈ X with

|h| = 1, (w,h) � −α|w| and (Jv,h) � (1 − θ − α)|Jv| > 0. (2.15)

Moreover, if v ∈ K and v − w ∈ K, then there exists λ∗ > 0 with

v + μh ∈ K for all μ ∈ [
0, λ∗]. (2.16)

In case that 1 − θ < 2α, and |v| � ρ > 0, |w| � ω > 0, then λ∗ in (2.14) and (2.16) only depends on ρ and ω

(being independent of v and w).

Proof. (10) Let h0 = − w
|w| − β v

|v| , with β = 1−α
θ+α

. One has β > θ since α < 1 − θ, and 0 < |h0| � 1 + β. Also

(w,h0) = −|w| − β

|v| (w,v) � −|w| + βθ |w| = −α(1 + β)|w| � −α|h0||w|
and

(v,h0) = −
(

v,
w

|w|
)

− β|v| � θ |v| − β|v| < 0.

Obviously, for any λ > 0, h := λh0 also satisfies

(w,h) � −α|h||w| and (v,h) < 0.

Let h := h0|h0| . Then (2.13) holds.
Assume now that v ∈ K and v − w ∈ K. Then

v + μh = v − μ

|h0|
w

|w| − μ

|h0|β
v

|v| = μ

|h0||w| (v − w) +
(

1 − μ

|h0||w| − μβ

|h0||v|
)

v ∈ K

for μ > 0 small enough that

1 − μ

|h0||w| − μβ

|h0||v| � 0, (2.17)

since both v, v − w belong to K.

(20) Let h0 = − w
|w| + β Jv

|Jv| , with β = 1−α
θ+α

. Here again β > θ and 0 < |h0| � 1 + β. Also

(w,h0) = −|w| + β
(w,Jv) � −|w| + βθ |w| = −α(1 + β)|w| � −α|h0||w|
|Jv|
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and

(Jv,h0) = −
(

Jv,
w

|w|
)

+ β|Jv| � −θ |Jv| + β|Jv| = (θ + 1)(1 − θ − α)

θ + α
|Jv|.

Let h := h0|h0| . Then (w,h) � −α|w| and since |h0| � 1 + β = θ+1
θ+α

,

(Jv,h) � (1 − θ − α)|Jv|.
In case that v ∈ K and v − w ∈ K, we have that Jv ∈ K and consequently

v + μh = v − μ

|h0|
w

|w| + μ

|h0|β
Jv

|Jv|
=

(
1 − μ

|h0||w|
)

v + μ

|h0||w| (v − w) + μ

|h0|β
Jv

|Jv| ∈ K

for

1 − μ

|h0||w| � 0. (2.18)

Finally, if 1 − θ < 2α, then β < 1, so |h0| � 1 − β > 0. Consequently (2.17) and (2.18) hold for μ � 1−β
1
ω

+ 1
ρ

. �
Lemma 2.2. Let a > 0, G :KR0R1 → X a continuous map, D̂ = {u ∈ KR0R1 : |G(u)| � a}, and D0 ⊂ {u ∈ D̂:
‖u‖ = R0}, D1 ⊂ {u ∈ D̂: |u| = R1} closed sets. Assume that

u − G(u) ∈ K for all u ∈ KR0R1,

and there exists θ ∈ [0,1) such that(
Ju,G(u)

)
� θ |Ju|∣∣G(u)

∣∣ for all u ∈ D0,

−(
u,G(u)

)
� θ |u|∣∣G(u)

∣∣ for all u ∈ D1.

Then there exists α > 0 and a locally Lipschitz map H : D̂ → X such that∣∣H(u)
∣∣ � 1, u + H(u) ∈ K,

(
G(u),H(u)

)
� −α

∣∣G(u)
∣∣ for u ∈ D̂,

and (
Ju,H(u)

)
> 0 for u ∈ D0,(

u,H(u)
)
< 0 for u ∈ D1.

Proof. Let α′ be such that 0 < α′ < 1 − θ < 2α′. Using Lemma 2.1, applied to w := G(u) and v := u if u ∈ D0 ∪D1,

we may define a map h : D̂ → X with |h(u)| = 1 for all u ∈ D̂ and with the following properties:

h(u) = −∣∣G(u)
∣∣−1

G(u) for u ∈ D̂ \ (D0 ∪ D1);(
G(u),h(u)

)
� −α′∣∣G(u)

∣∣ and
(
Ju,h(u)

)
� (1 − θ − α′)R > 0 in D0;(

G(u),h(u)
)
� −α′∣∣G(u)

∣∣ and
(
u,h(u)

)
< 0 in D1;

u + μh(u) ∈ K for all μ ∈ [
0, λ∗], u ∈ D̂,

and some λ∗ = λ∗(θ,α′, a) > 0. Notice that for u ∈ D̂ \ (D0 ∪ D1), we have

u + μh(u) =
(

1 − μ

|G(u)|
)

u + μ

|G(u)|
(
u − G(u)

) ∈ K

for 0 � μ � a, since u,u − G(u) ∈ K and μ
|G(u)| ∈ [0,1].

Clearly we may assume without loss of generality that λ∗ < 1.
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We have(
G(u),h(u)

)
� −α′∣∣G(u)

∣∣ for all u ∈ D̂.

Fix any number α′′ ∈ (0, α′). Since G is continuous, for each u ∈ D̂, there is in D̂ an open neighborhood V (u) of u

such that(
G(v),h(u)

)
� −α′′∣∣G(v)

∣∣ for all v ∈ V (u).

For u ∈ D0, we may also assume that(
Jv,h(u)

)
� 1

2
(1 − θ − α′)R > 0 for all v ∈ V (u),

while for u ∈ D1, that(
v,h(u)

)
< 0 for all v ∈ V (u).

For u ∈ D̂ \ (D0 ∪ D1), take V (u) so small that V (u) ∩ (D0 ∪ D1) = ∅. We may also assume that diamV (u) � r for
every u ∈ D̂, where r > 0 is small and will be chosen later. The collection {V (u): u ∈ D̂} is an open covering of D̂.

Since D̂ is paracompact, the covering has a locally finite refinement {Vτ }. Let {ψτ } be a locally Lipschitz partition of
unity subordinated to this refinement, and for each τ, let uτ ∈ D̂ be an element for which Vτ ⊂ V (uτ ).

Let b(uτ ) := uτ + λ∗h(uτ ). Clearly, b(uτ ) ∈ K for every τ. Now let H : D̂ → X be given by

H(v) = −v +
∑
τ

ψτ (v)b(uτ ).

Clearly H is locally Lipschitz. For every v ∈ D̂, we have∣∣H(v)
∣∣ =

∣∣∣∣∑
τ

ψτ (v)
(
b(uτ ) − uτ

) +
∑
τ

ψτ (v)(uτ − v)

∣∣∣∣
� λ∗ + r � 1

if r � 1 − λ∗ (recall that we have assumed λ∗ < 1). Also(
G(v),H(v)

) = −(
G(v), v

) +
∑
τ

ψτ (v)
(
G(v), b(uτ )

)
= λ∗ ∑

τ

ψτ (v)
(
G(v),h(uτ )

) +
∑
τ

ψτ (v)
(
G(v),uτ − v

)
� −λ∗α′′∣∣G(v)

∣∣ + r
∣∣G(v)

∣∣
= −(

λ∗α′′ − r
)∣∣G(v)

∣∣.
Hence(

G(v),H(v)
)
� −α

∣∣G(v)
∣∣,

where α := λ∗α′′ − r > 0 and r < λ∗α′′. Also, if v ∈ D1, then(
v,H(v)

) = λ∗ ∑
τ

ψτ (v)
(
v,h(uτ )

) +
∑
τ

ψτ (v)(v,uτ − v). (2.19)

We have (v,h(uτ )) < 0 whenever v ∈ V (uτ ). Hence the first sum in (2.19) is < 0. In addition

(v,uτ − v) = (v,uτ ) − |v|2 � |v||uτ | − |v|2 = 0

if v ∈ V (uτ ), since both v,uτ ∈ D1. Thus the second sum in (2.19) is � 0. Therefore (v,H(v)) < 0 on D1.

Next assume that v ∈ D0. Then(
Jv,H(v)

) = λ∗ ∑
ψτ (v)

(
Jv,h(uτ )

) +
∑

ψτ (v)(Jv,uτ − v). (2.20)

τ τ
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Here

λ∗ ∑
τ

ψτ (v)
(
Jv,h(uτ )

)
� λ∗ 1

2
(1 − θ − α′)R > 0, (2.21)

while ∣∣∣∣∑
τ

ψτ (v)(Jv,uτ − v)

∣∣∣∣ �
∑
τ

ψτ (v)
∣∣(Jv,uτ − v)

∣∣ � r|Jv| � rc0R0 (2.22)

as follows from (1.1). Now if r is chosen such that λ∗ 1
2 (1 − θ − α′)R − rc0R0 > 0, then (2.20)–(2.21) guarantee that

(Jv,H(v)) > 0 on D0. Therefore r > 0 has to satisfy the following conditions:

r � 1 − λ∗, r < λ∗α′′ and λ∗ 1

2
(1 − θ − α′)R − rc0R0 > 0.

Finally v + H(v) = ∑
τ ψτ (v)b(uτ ) ∈ K for all v ∈ D̂. �

Lemma 2.3. Assume all the assumptions of Theorem 2.1 hold. In addition assume that there are constants δ > 0 and
θ ∈ [0,1) such that for u ∈ KR0R1 satisfying ‖u‖ = R0 and |E(u) − c| � δ, one has(

JE′(u), Ju
)
� θ |Ju|∣∣JE′(u)

∣∣, (2.23)

and for u ∈ KR0R1 satisfying |u| = R1 and |E(u) − c| � δ, one has

−(
JE′(u),u

)
� θ |u|∣∣JE′(u)

∣∣. (2.24)

Then there exists a sequence of elements uk ∈ KR0R1 with

E(uk) → c and E′(uk) → 0 as k → ∞. (2.25)

Proof. Assume there are no sequences satisfying (2.25). Then there would be constants δ, a > 0 such that∣∣JE′(u)
∣∣ � a

for all u in

Q = {
u ∈ KR0R1 :

∣∣E(u) − c
∣∣ � 3δ

}
.

Clearly, we may assume that 3δ < c − max{E(u0),E(u1)} and that (2.23), (2.24) hold in Q̃0 = {u ∈ Q: ‖u‖ = R0}
and Q̃1 = {u ∈ Q: |u| = R1}, respectively. Denote

Q0 = {
u ∈ KR0R1 :

∣∣E(u) − c
∣∣ � 2δ

}
,

Q1 = {
u ∈ KR0R1 :

∣∣E(u) − c
∣∣ � δ

}
,

Q2 = KR0R1 \ Q0,

η(u) = d(u,Q2)

d(u,Q1) + d(u,Q2)
.

We have

η(u) = 1 in Q1, η(u) = 0 in Q2, 0 < η(u) < 1 for u ∈ K \ (Q1 ∪ Q2).

We now apply Lemma 2.2 to G(u) = JE′(u), D0 = Q̃0 and D1 = Q̃1. It follows that there exists α > 0 and a locally
Lipschitz map H : D̂ → X (here D̂ means the set {u ∈ KR0R1 : |JE′(u)| � a}) such that∣∣H(u)

∣∣ � 1,
(
JE′(u),H(u)

)
� −α

∣∣JE′(u)
∣∣ for u ∈ D̂,(

Ju,H(u)
)
> 0 for u ∈ Q̃0,(

u,H(u)
)
< 0 for u ∈ Q̃1, (2.26)
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and

u + H(u) ∈ K for all u ∈ D̂. (2.27)

Define W :KR0R1 → X by

W(u) =
{

η(u)H(u) for u ∈ D̂,

0 for u ∈ KR0R1 \ D̂.

This map is locally Lipschitz and can be extended to a locally Lipschitz map on the whole K. Indeed, let

W0(u) = η(u)u + W(u) for u ∈ KR0R1 .

Then W0 is locally Lipschitz on KR0R1 and

W0(u) =
{

η(u)
∑

τ ψτ (u)b(uτ ) for u ∈ D̂,

η(u)u for u ∈ KR0R1 \ D̂

which shows that W0(u) ∈ K for all u ∈ KR0R1 . Let W̃0 be the locally Lipschitz extension of W0 to the whole K,

as in the proof of Dugundji’s extension theorem (see [4, p. 44]). Then W̃0(u) ∈ K for all u ∈ K. Now we define the
extension of W to K, by

W(u) = −η(u)u + W̃0(u), u ∈ K.

Let σ be the semiflow generated by W as shows Lemma 1.1. Note σ(u, .) does not exit K since for each v ∈ K,

there is λ > 0 with v + λW(v) ∈ K. Indeed, this is true for every λ > 0 if η(v) = 0, and for λ = 1
η(v)

in case
that η(v) > 0. We claim that σ(u, .) does not exit KR0R1 for t ∈ R+ if u ∈ KR0R1 . To prove this assume first that
σ(u, t) ∈ KR0R1 for all t ∈ [0, t0) and ‖σ(u, t0)‖ = R0 for some t0 ∈ R+. If σ(u, t0) ∈ Q̃0, then (2.26) guarantees that

d

dt

∥∥σ(u, t)
∥∥2 = 2

〈
d

dt
σ (u, t), σ (u, t)

〉
= (

W
(
σ(u, t)

)
, Jσ (u, t)

)
> 0

for t in a neighborhood of t0. If σ(u, t0) /∈ Q̃0 , then η(σ (u, t)) = 0 in a neighborhood of t0. Hence d‖σ(u, t)‖2/dt � 0
in a neighborhood of t0, which means that ‖σ(u, t)‖ is nondecreasing on some interval [t0, t0 + ε). Similarly, if
|σ(u, t0)| = R1, then d|σ(u, t)|2/dt � 0 in a neighborhood of t0, which means that |σ(u, t)| is nonincreasing on
some interval [t0, t0 + ε). Therefore σ(u, t) does not exit KR0R1 for t ∈ R+.

Let us denote by Eλ the level set (E � λ), i.e.,

Eλ = {
u ∈ KR0R1 : E(u) � λ

}
.

We have

dE(σ(u, t))

dt
=

〈
E′(σ(u, t)

)
,

d

dt
σ (u, t)

〉
=

(
JE′(σ(u, t)

)
,

d

dt
σ (u, t)

)
= η

(
σ(u, t)

)(
JE′(σ(u, t)

)
,H

(
σ(u, t)

))
� −η

(
σ(u, t)

)
αa. (2.28)

Let t1 > 2δ/(αa) and let u be any element of Ec+δ. If there is t0 ∈ [0, t1] with σ(u, t0) /∈ Q1, then

E
(
σ(u, t1)

)
� E

(
σ(u, t0)

)
< c − δ.

Hence σ(u, t1) ∈ Ec−δ. Otherwise, σ(u, t) ∈ Q1 for all t ∈ [0, t1], and so η(σ (u, t)) ≡ 1. Then (2.28) implies

E
(
σ(u, t1)

)
� E(u) − αat1 < c + δ − 2δ = c − δ.

Thus

σ(Ec+δ, t1) ⊂ Ec−δ. (2.29)
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Now by the definition of c, there is γ ∈ Γ with

γ (t) ∈ Ec+δ for all t ∈ [0,1]. (2.30)

We define a new path γ1 joining u0 and u1 by γ1(t) = σ(γ (t), t1), t ∈ [0,1]. Since η vanishes in the neighborhood
of u0 and u1, we have σ(u0, t) ≡ u0 and σ(u1, t) ≡ u1. Hence γ1(0) = u0 and γ1(1) = u1 and so γ1 ∈ Γ. On the other
hand, from (2.29) and (2.30), we have

E
(
γ1(t)

)
� c − δ for all t ∈ [0,1],

which contradicts the definition of c. �
Proof of Theorem 2.1. Assume that do not exist sequences satisfying (2.5) and (2.7) or (2.8). Then there are a, δ > 0
such that∣∣∣∣JE′(u) − (JE′(u), Ju)

|Ju|2 Ju

∣∣∣∣ � a (2.31)

for all u ∈ KR0R1 satisfying |E(u) − c| � δ, with ‖u‖ = R0 and (JE′(u), Ju) � 0, and∣∣∣∣JE′(u) − (JE′(u),u)

|u|2 u

∣∣∣∣ � a

for all u ∈ KR0R1 satisfying |E(u) − c| � δ, with |u| = R1 and (JE′(u),u) � 0.

Let θ > 0 be such that

0 < θ−2 − 1 � a2R2ν−2
0 ,

where R comes from (1.2). Then from (2.31), also using (2.2) and (2.3), we obtain(
JE′(u), Ju

)2(
θ−2 − 1

)
�

(
JE′(u), Ju

)2
a2R2ν−2

0

�
(
JE′(u), Ju

)2
∣∣∣∣JE′(u) − (JE′(u), Ju)

|Ju|2 Ju

∣∣∣∣2

|Ju|2ν−2
0

�
∣∣∣∣JE′(u) − (JE′(u), Ju)

|Ju|2 Ju

∣∣∣∣2

|Ju|2.

It follows that(
JE′(u), Ju

)2
θ−2 �

(
JE′(u), Ju

)2 + ∣∣JE′(u)
∣∣2|Ju|2 − (

JE′(u), Ju
)2

= ∣∣JE′(u)
∣∣2|Ju|2.

Hence(
JE′(u), Ju

)
� θ |Ju|∣∣JE′(u)

∣∣
which is also true if (JE′(u), Ju) < 0. Thus, for u ∈ KR0R1 satisfying ‖u‖ = R0 and |E(u) − c| � δ, one has(

JE′(u), Ju
)
� θ |Ju|∣∣JE′(u)

∣∣.
Similarly, for u ∈ KR0R1 satisfying |u| = R1 and |E(u) − c| � δ, one has

−(
JE′(u),u

)
� θ |u|∣∣JE′(u)

∣∣.
Now the conclusion of the first part follows from Lemma 2.3.

Finally we remark that (2.9), (2.10) make impossible the existence of a sequence as in (2.7) and (2.8), respec-
tively. �

The next critical point result (together with the remark which follows) can be compared to the fixed point Theo-
rem 20.2 in [4].
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Theorem 2.2. Assume that there exist u0, u1 ∈ KR0R1 and ν0, r > 0, |u0| < r < |u1|, such that conditions (2.1), (2.4),
(2.9) and (2.10) hold. In addition assume that N := I − JE′ and J are compact from X to X. Then there exists a
point u ∈ KR0R1 with E′(u) = 0 and E(u) = c.

Proof. First note that (2.2) and (2.3) trivially hold since the maps N,J are bounded on KR0R1 . It remains to prove
that any sequence (uk) like in Theorem 2.1 has a convergent subsequence. Let (uk) ⊂ KR0R1 be such a sequence.
Since both N,J are compact, passing if necessary to a subsequence, we may assume that N(uk) → v and Juk → w

for some v,w ∈ X. If (2.6) is satisfied, then from JE′(uk) = uk − N(uk) → 0 we deduce that uk → v as we wished.
Assume (2.7). Passing to another sequence we may suppose that (JE′(uk),Juk)

|Juk |2 → a for some real number a � 0. Then
(2.7) implies

uk − N(uk) − aJuk → 0 (2.32)

and in consequence uk → v + aw. Next assume that (2.8) holds. As above we may assume that (E′(uk),uk)

R2
1

→ a this
time for some real number a � 0. Now from (2.8) we have

(1 − a)uk − N(uk) → 0 (2.33)

and so uk → 1
1−a

v. �
Remark 2.2. In case that X = H, when |.| = ‖.‖ and J = I, the conclusion of Theorem 2.2 is also true even though
I is not compact, if we add the condition

inf
{∣∣N(u)

∣∣: u ∈ K, |u| = R0
}

> 0. (2.34)

Indeed, in this case, (2.7) also implies (2.33) with a � 0. Notice a 
= 1, since otherwise (2.33) would imply that
N(uk) → 0, where |uk| = R0, which contradicts (2.34). Then uk → 1

1−a
v.

Remark 2.3. If the imbedding X ⊂ H is compact, then J is compact from X to X.

The following result is the compression type mountain pass theorem accompanying the corresponding fixed point
theorem of Krasnoselskii [11] (see also [7, p. 325]).

Theorem 2.3. Assume that there exist u0, u1 ∈ KR0R1 and ν0, r > 0, |u0| < r < |u1|, such that conditions (2.1) and
(2.4) hold. In addition assume that norm ‖.‖ is increasing with respect to K, i.e.,

‖u + v‖ > ‖u‖ for all u,v ∈ K, v 
= 0,

the maps J and N := I − JE′ are compact from X to X, and

(a) ‖N(u)‖ � ‖u‖ for ‖u‖ = R0,

(b) |N(u)| � |u| for |u| = R1.

Then there exists a point u ∈ KR0R1 with E′(u) = 0 and E(u) = c.

Proof. First observe that (a) guarantees (2.11). Indeed, if N(u)+λJu = u for some u ∈ KR0R1 , ‖u‖ = R0 and λ > 0,

then since Ju ∈ K \ {0} and ‖.‖ is increasing with respect to K, we deduce

‖u‖ = ∥∥N(u) + λJu
∥∥ >

∥∥N(u)
∥∥,

which contradicts (a).
Next observe that (b) guarantees (2.12). Indeed, if N(u) = (1 + λ)u for some u ∈ KR0R1 , |u| = R1 and λ > 0, then∣∣N(u)

∣∣ = (1 + λ)|u| > |u|,
in contradiction with (b).

Thus the result follows from Theorem 2.2. �



1126 R. Precup / J. Math. Anal. Appl. 338 (2008) 1116–1130
Remark 2.4. The result in Theorem 2.3 remains true if X = H, J = I, |.| = ‖.‖ and K is a cone, without assuming
that |.| is increasing with respect to K . Indeed, in this case, if N(u) + λu = u for some u ∈ KR0R1 , |u| = R0 and
λ > 0, then since N(u) ∈ K, we have λ � 1. The case λ = 1 being excluded by (a), we obtain that∣∣N(u)

∣∣ = (1 − λ)|u| < |u|,
which contradicts (a). Also (a) guarantees (2.34). Now we use Remark 2.2.

Now instead of critical points of mountain pass type we seek critical points of minimum type.

Theorem 2.4. Assume that conditions (2.1), (2.2), (2.3) are satisfied and that

m := inf
KR0R1

E > −∞. (2.35)

Then there exists a sequence (uk) with uk ∈ KR0R1 such that

E(uk) → m as k → ∞ (2.36)

and one of conditions (2.6)–(2.8) holds. If in addition, any sequence (uk) as above has a convergent subsequence
and (2.9), (2.10) hold, then there exists u ∈ KR0R1 with

E′(u) = 0 and E(u) = m.

For the proof we need the following lemma.

Lemma 2.4. Assume all the assumptions of Theorem 2.4 hold. In addition assume that there are constants δ > 0 and
θ ∈ [0,1) such that for u ∈ KR0R1 satisfying E(u) − m � δ, one has(

JE′(u), Ju
)
� θ |Ju|∣∣JE′(u)

∣∣ if ‖u‖ = R0 and

−(
JE′(u),u

)
� θ |u|∣∣JE′(u)

∣∣ if |u| = R1. (2.37)

Then there exists a sequence of elements uk ∈ KR0R1 with

E(uk) → m and E′(uk) → 0 as k → ∞.

Proof. We follow the proof of Lemma 2.3 with the only difference that one has m instead of c. Thus we obtain σ(u, t)

which does not exit KR0R1 for t � 0. We fix any u ∈ Q1 = {v ∈ KR0R1 : E(v) < m + δ} and take t1 > 2δ/(αa). Then
(2.28) guarantees that σ(u, t) ∈ Q1 for all t � 0. Then

E
(
σ(u, t1)

)
� m + δ − αat1 < m − δ,

contradicting the definition of m. �
Proof of Theorem 2.4. Assume there are no sequences satisfying (2.36) and (2.7) or (2.8). Then, as in the proof of
Theorem 2.1, there are δ, θ > 0 such that for u ∈ KR0R1 satisfying E(u) � m + δ, one has (2.37). Now the conclusion
of the first part follows from Lemma 2.4. �

Obviously, the comments on the compactness of the sequences in Theorem 2.1 making the object of Theorems 2.2
and 2.3, remain true for Theorem 2.4.

Remark 2.5. If both conditions (2.4) and (2.35) are satisfied, then Theorems 2.1 and 2.4 guarantee the existence of
two distinct critical points of E in KR0R1 .
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3. Application

Consider the two-point boundary value problem{
u′′(t) + f

(
u(t)

) = 0, t ∈ (0,1),

u(0) = u(1) = 0.
(3.1)

Here f is a continuous function from R into R, with f (R+) ⊂ R+. Let X = H 1
0 (0,1) with inner product and norm

(u, v) =
1∫

0

u′v′ dt, |u| =
( 1∫

0

u′2 dt

)1/2

and let H = L2(0,1) with inner product and norm

〈u,v〉 =
1∫

0

uv dt, ‖u‖ =
( 1∫

0

u2 dt

)1/2

.

We also denote by |u|∞ the max norm in C[0,1] and by |u|L2(a,b) the usual norm of L2(a, b).

Here E :H 1
0 (0,1) → R is given by

E(u) =
1∫

0

(
1

2
u′(t)2 − F

(
u(t)

))
dt, u ∈ H 1

0 (0,1),

where F(u) = ∫ u

0 f (τ) dτ. One has that E′(u) = −u′′ − f (u) in H−1(0,1),

(J v,w) = 〈v,w〉 for all v ∈ H−1(0,1), w ∈ H 1
0 (0,1),

and Jv = ∫ 1
0 G(t, s)v(s) ds for v ∈ L2(0,1), where G(t, s) is the corresponding Green’s function given by

G(t, s) =
{

s(1 − t) for 0 � s � t � 1,

t (1 − s) for 0 � t � s � 1.

Also N(u) := u − JE′(u) = Jf (u) and

Jf (u) =
1∫

0

G(t, s)f
(
u(s)

)
ds.

Notice, since the imbedding of H 1
0 (0,1) into C[0,1] is compact, N and J are compact from H 1

0 (0,1) to itself. Also
note that

G(t, s) � G(s, s) for all t, s ∈ [0,1], (3.2)

and for every interval [a, b] with 0 < a < b < 1, there is a constant M > 0 with

MG(s, s) � G(t, s) for all s ∈ [0,1], t ∈ [a, b]. (3.3)

These properties of Green’s function guarantee that for every nonnegative function v ∈ L2(0,1), one has

(Jv)(t) � M‖Jv‖ for all t ∈ [a, b]. (3.4)

Indeed, if v � 0 on [0,1], t ∈ [a, b] and t∗ ∈ [0,1], then from (3.2), (3.3), we obtain

(Jv)(t) =
1∫

0

G(t, s)v(s) ds � M

1∫
0

G(s, s)v(s) ds � M

1∫
0

G
(
t∗, s

)
v(s) ds = M(Jv)

(
t∗

)
.

This proves (3.4) if we choose t∗ with (Jv)(t∗) = |Jv|∞ and we take into account that |u|∞ � ‖u‖ for all u ∈ C[0,1].
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Now we consider a cone K in H 1
0 (0,1), defined by

K = {
u ∈ H 1

0 (0,1): u � 0 on [0,1] and u(t) � M‖u‖ for t ∈ [a, b]}.
If u � 0 on [0,1], then f (u) � 0 on [0,1] since f (R+) ⊂ R+ and so, according to (3.4), Jf (u) ∈ K. Consequently,
u − JE′(u) ∈ K for every u ∈ K.

Before we state our hypotheses, we recall that constant c0 is such that ‖u‖ � c0|u| for all u ∈ H 1
0 (0,1) and we

denote by c∞ the imbedding constant of the inclusion H 1
0 (0,1) ⊂ C[0,1], i.e., |u|∞ � c∞|u| for all u ∈ H 1

0 (0,1).

Also, for the subinterval [a, b] of [0,1], we let χ[a,b] be the characteristic function of [a, b], i.e., χ[a,b](t) = 1 if
t ∈ [a, b], χ[a,b](t) = 0 otherwise.

Our assumptions are as follows:

(H1) There exist R0,R1 with 0 < R0 < c0R1 such that

minτ∈[MR0,c∞R1] f (τ)

R0
� 1

|Jχ[a,b]|L2(a,b)

, (3.5)

maxτ∈[0,c∞R1] f (τ)

R1
� 1

c0
. (3.6)

(H2) There are u0, u1 ∈ KR0R1 and r such that |u0| < r < |u1| and

max
{
E(u0),E(u1)

}
< inf

u∈KR0R1|u|=r

E(u).

Remark 3.1.

(10) If f is nondecreasing on [0, c∞R1], then (3.5) and (3.6) become

f (MR0)

MR0
� 1

M|Jχ[a,b]|L2(a,b)

(3.7)

and, respectively,

f (c∞R1)

c∞R1
� 1

c0c∞
. (3.8)

Therefore, in this case, in order to guarantee (3.5) and (3.6), we only need to know how the nonlinearity f

behaves at two points MR0 and c∞R1.

(20) We can even precise constants c0, c∞,M and |Jχ[a,b]|L2(a,b). For example, from Wirtinger’s inequality, the best

constant c0 is 1
π
. Also we may take c∞ = 1 and M = min{a,1 − b}.

Theorem 3.1. Assume that (H1) and (H2) hold. Then (3.1) has at least two positive solutions in KR0R1 .

Proof. We shall apply Theorems 2.3 and 2.4. First we show that (3.5) guarantees condition (a) in Theorem 2.3. Let
u ∈ KR0R1 and ‖u‖ = R0. Then for every s ∈ [a, b] one has

MR0 = M‖u‖ � u(s) � |u|∞ � c∞|u| � c∞R1.

Furthermore, for every t ∈ [a, b], we have

N(u)(t) =
1∫

0

G(t, s)f
(
u(s)

)
ds �

b∫
a

G(t, s)f
(
u(s)

)
ds

� min
τ∈[MR0,c∞R1]

f (τ)

b∫
G(t, s) ds = min

τ∈[MR0,c∞R1]
f (τ)Jχa,b(t).
a
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Consequently, also using (3.5), we deduce that∥∥N(u)
∥∥ �

∣∣N(u)
∣∣
L2(a,b)

� min
τ∈[MR0,c∞R1]

f (τ)|Jχa,b|L2(a,b) � R0.

Hence∥∥N(u)
∥∥ � ‖u‖.

Next we show that (3.6) guarantees condition (b) in Theorem 2.3. Assume u ∈ KR0R1 and |u| = R1. Then u(t) �
|u|∞ � c∞R1 and∣∣N(u)

∣∣2 = ∣∣Jf (u)
∣∣2 = (

Jf (u), Jf (u)
) = 〈

f (u),N(u)
〉
�

∥∥f (u)
∥∥∥∥N(u)

∥∥
� c0

∣∣f (u)
∣∣∞∣∣N(u)

∣∣ � c0 max
τ∈[0,c∞R1]

f (τ)
∣∣N(u)

∣∣ � R1
∣∣N(u)

∣∣.
Hence∣∣N(u)

∣∣ � |u|.
Therefore Theorem 2.3 applies.

Finally we note that condition (2.35) in Theorem 2.4 is satisfied. Indeed, for u ∈ KR0R1 one has that 1
c0

R0 �
|u| � R1 and |u|∞ � c∞R1. Consequently

E(u) =
1∫

0

(
1

2
u′2 − F(u)

)
dt � 1

2c2
0

R2
0 − A,

where A � F(τ) for 0 � τ � c∞R1. Hence infKR0R1
E(u) > −∞. �

Example. Let

f (u) =

⎧⎪⎨⎪⎩
1
2

√
u if 0 � u � 1,

1
2u2 if 1 < u � b,

1
2 (

√
u − b + b2) if u > b.

(3.9)

Here b > 2 and will be specified later. Obviously f is increasing on R+ and

F(u) =
{

1
3u3/2 if 0 � u � 1,

1
6 (u3 + 1) if 1 < u � b.

First note that if we choose r = 2, then infu∈K, |u|=r E(u) � 1
2 . Indeed, if u ∈ K and |u| = 2, then since |u|∞ � |u|,

we have that 0 � u(t) � 2 and so F(u(t)) � 3
2 for all t ∈ [0,1]. Hence

E(u) = 1

2
|u|2 −

1∫
0

F
(
u(t)

)
dt � 2 − 3

2
= 1

2
.

Let u0 = φ, where φ is the positive eigenfunction corresponding to the first eigenvalue λ1, i.e.,

φ′′ + λ1φ = 0, t ∈ (0,1),

φ(0) = φ(1) = 0,

φ � 0 and |φ| = 1. Then |u0| = 1 < r and

E(u0) = 1

2
|φ|2 −

1∫
F

(
φ(t)

)
dt = 1

2
−

1∫
F

(
φ(t)

)
dt <

1

2
.

0 0
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Next we take u1 := bφ and we assume that b > 1
|φ|∞ . We have |u1| = b > r and

E(u1) <
1

2
b2 − 1

6

∫
(bφ(t)>1)

(
bφ(t)

)3
dt. (3.10)

Since the limit of the right side of (3.10) as b → ∞ is equal to −∞, we may choose b large enough that E(u1) < 1
2 .

Hence condition (H2) is satisfied. Finally, since

lim
τ→0

f (τ)

τ
= 1

2
lim
τ→0

√
τ

τ
= ∞ and lim

τ→∞
f (τ)

τ
= 1

2
lim

τ→∞

√
τ − b + b2

τ
= 0,

we may find R0,R1 such that u0, u1 ∈ KR0R1 and (3.7), (3.8) hold.
Therefore, according to Theorem 3.1, problem (3.1) with f given by (3.9) and b sufficiently large has two positive

solutions.

Acknowledgment

The author is grateful to Professor Martin Schechter for stimulating discussions during the preparation of the paper.

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
[2] H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991) 939–964.
[3] K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977.
[4] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[5] M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999) 96–120.
[6] L. Gasinski, N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman & Hall/CRC, 2005.
[7] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[8] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non

Linéaire 6 (1989) 321–330.
[9] D. Guo, J. Sun, G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations 1 (1988) 351–358.

[10] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer, Paris, 1993.
[11] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[12] Z. Liu, J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential

Equations 172 (2001) 257–299.
[13] L. Ma, Mountain pass on a closed convex set, J. Math. Anal. Appl. 205 (1997) 531–536.
[14] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
[15] D. Motreanu, V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems, Kluwer, Dor-

drecht, 2003.
[16] D. O’Regan, R. Precup, Theorems of Leray–Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[17] R. Precup, On the Palais–Smale condition for Hammerstein integral equations in Hilbert spaces, Nonlinear Anal. 47 (2001) 1233–1244.
[18] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.
[19] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 142–149.
[20] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65,

Amer. Math. Soc., Providence, RI, 1986.
[21] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992) 681–703.
[22] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999.
[23] M. Schechter, K. Tintarev, Nonlinear eigenvalues and mountain pass methods, Topol. Methods Nonlinear Anal. 1 (1993) 183–201.
[24] M. Struwe, Variational Methods, Springer, Berlin, 1990.
[25] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.


