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Abstract

Existence, localization and multiplicity results of positive solutions to a system of singular second-order differential equations
are established by means of the vector version of Krasnoselskii’s cone fixed point theorem. The results are then applied for positive
radial solutions to semilinear elliptic systems.
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1. Introduction

The paper is concerned with the existence, localization and multiplicity of positive radial solutions to the following
semilinear elliptic system:

{
�u1 + f1

(|x|)g1(u1, u2) = 0,

�u2 + f2
(|x|)g2(u1, u2) = 0

(1.1)

in Ω := {x ∈ Rn: |x| > r0} (n � 3), under the conditions

u1 = u2 = 0 for |x| = r0 and u1, u2 → 0 as |x| → ∞. (1.2)

Our interest in studying these systems comes from their applications in many areas from physics, biology, chemistry,
etc. There exists an extensive literature devoted to scalar semilinear elliptic equations. We list here, for example,
papers [1–3,8], and especially paper [7] which has mainly motivated us. As regards systems of type (1.1), we just
name the works [4–6,9,11,12].
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0022-247X/$ – see front matter © 2008 Published by Elsevier Inc.
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Looking for radial solutions, we can write (1.1) in the radial variable r = |x|, as⎧⎪⎨
⎪⎩

u′′
1(r) + n − 1

r
u′

1(r) + f1(r)g1
(
u1(r), u2(r)

) = 0,

u′′
2(r) + n − 1

r
u′

2(r) + f2(r)g2
(
u1(r), u2(r)

) = 0
(1.3)

for r > r0, and the boundary conditions (1.2) as

u1(r0) = u2(r0) = 0 and u1(r), u2(r) → 0 as r → ∞. (1.4)

Furthermore, following [7], we set

s := r2−n, vi(s) = ui

(
r(s)

)
(i = 1,2),

and then

t := (
r2−n

0 − s
)
/r2−n

0 , zi(t) = vi

(
s(t)

)
(i = 1,2),

in order to rewrite (1.3)–(1.4) as{
z′′

1(t) + q1(t)g1
(
z1(t), z2(t)

) = 0,

z′′
2(t) + q2(t)g2

(
z1(t), z2(t)

) = 0
(1.5)

for 0 < t < 1, and respectively

z1(0) = z1(1) = z2(0) = z2(1) = 0. (1.6)

Here

qi(t) = r2
0

(n − 2)2
(1 − t)−

2(n−1)
n−2 fi

(
r0(1 − t)−

1
n−2

)
. (1.7)

Thus, the problem of radial solutions (1.1)–(1.2) reduces to the singular boundary-value problem (1.5)–(1.6).
Our approach to problem (1.5)–(1.6) is based on a new method to treat systems of operator equations which was

established in [10], namely the vector version of Krasnoselskii’s cone fixed point theorem:

Theorem 1.1. (See [10].) Let (X, |.|) be a normed linear space; K1,K2 ⊂ X two cones; K := K1 ×K2; r,R ∈ R2+ with
0 < ri < Ri for i = 1,2, Kr,R := {u = (u1, u2) ∈ K: ri � |ui | � Ri, i = 1,2}, and let N :Kr,R → K, N = (N1,N2)

be a compact map. Assume that for each i ∈ {1,2}, one of the following conditions is satisfied in Kr,R :

(a) ui − Ni(u) /∈ Ki if |ui | = ri , and Ni(u) − ui /∈ Ki if |ui | = Ri ;
(b) Ni(u) − ui /∈ Ki if |ui | = ri , and ui − Ni(u) /∈ Ki if |ui | = Ri.

Then N has a fixed point u = (u1, u2), i.e., ui = Ni(u1, u2) and ri < |ui | < Ri for i = 1,2.

Remark 1.1. Under the assumptions of Theorem 1.1 four cases are possible for u ∈ Kr,R :

(c1) u1 − N1(u) /∈ K1 if |u1| = r1, N1(u) − u1 /∈ K1 if |u1| = R1,

u2 − N2(u) /∈ K2 if |u2| = r2, N2(u) − u2 /∈ K2 if |u2| = R2;
(c2) u1 − N1(u) /∈ K1 if |u1| = r1, N1(u) − u1 /∈ K1 if |u1| = R1,

N2(u) − u2 /∈ K2 if |u2| = r2, u2 − N2(u) /∈ K2 if |u2| = R2;
(c3) N1(u) − u1 /∈ K1 if |u1| = r1, u1 − N1(u) /∈ K1 if |u1| = R1,

u2 − N2(u) /∈ K2 if |u2| = r2, N2(u) − u2 /∈ K2 if |u2| = R2;
(c4) N1(u) − u1 /∈ K1 if |u1| = r1, u1 − N1(u) /∈ K1 if |u1| = R1,

N2(u) − u2 /∈ K2 if |u2| = r2, u2 − N2(u) /∈ K2 if |u2| = R2.
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2. Positive solutions for singular differential systems

In this section we discuss the boundary value (1.5)–(1.6). We shall assume that gi ∈ C(R2+;R+) and qi ∈
C((0,1); (0,∞)) ∩ L1(0,1) and that qi are singular at 0 and/or 1.

By a positive solution of (1.5)–(1.6), we understand a function z = (z1, z2) ∈ C2((0,1);R2) ∩ C1([0,1];R2) with
zi(t) > 0 for all t ∈ (0,1) and i = 1,2, and which satisfies (1.5) on (0,1) and the boundary condition (1.6).

Let X = C[0,1] be endowed with norm |v|∞ = maxt∈[0,1]|v(t)|, and let P be the cone of all nonnegative functions
from X. Let

G(t, s) =
{

t (1 − s) if 0 � t � s � 1,

s(1 − t) if 0 � s � t � 1

be the Green function associated to the differential operator −u′′ and the Dirichlet boundary condition.
Notice that condition qi ∈ L1(0,1) guarantees that for every v ∈ C[0,1] and i ∈ {1,2}, the function

u(t) :=
1∫

0

G(t, s)qi(s)v(s) ds

is well-defined and belongs to C1[0,1].
Now the problem of finding nonnegative solutions for (1.5)–(1.6) is equivalent to the integral system in P 2,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z1(t) =
1∫

0

G(t, s)q1(s)g1
(
z1(s), z2(s)

)
ds,

z2(t) =
1∫

0

G(t, s)q2(s)g2
(
z1(s), z2(s)

)
ds.

(2.1)

Let N :P 2 → P 2 be the completely continuous map N = (N1,N2) given by

Ni(z)(t) =
1∫

0

G(t, s)qi(s)gi

(
z1(s), z2(s)

)
ds, i = 1,2.

Then (2.1) is equivalent to the fixed point problem

z = N(z), z ∈ P 2.

Now we fix any subinterval [a, b] of [0,1], with 0 < a < b < 1, and we easily check that

G(t, s) � G(s, s) for all t, s ∈ [0,1], and

MG(s, s) � G(t, s) for t ∈ [a, b], s ∈ [0,1], (2.2)

where M = min{a,1 − b}.
If v ∈ P,

u(t) :=
1∫

0

G(t, s)qi(s)v(s) ds

and u(t0) = |u|∞, then according to (2.2), for every t ∈ [a, b], we have

u(t) � M

1∫
0

G(s, s)qi(s)v(s) ds � M

1∫
0

G(t0, s)qi(s)v(s) ds = Mu(t0) = M|u|∞.

Thus, if in X := C[0,1] we consider the cone K1 = K2 defined as
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K1 := {
v ∈ P : v(t) � M|v|∞ for all t ∈ [a, b]}

and in X2 the corresponding cone K := (K1)
2, then we have that N(K) ⊂ K.

Before we state our main result, we introduce the following notations. For αi,βi > 0 with αi �= βi , we let ri =
min{αi,βi}, Ri = max{αi,βi} (i = 1,2), and

γ1 = min
{
g1(u1, u2): Mβ1 � u1 � β1, Mr2 � u2 � R2

}
,

γ2 = min
{
g2(u1, u2): Mr1 � u1 � R1, Mβ2 � u2 � β2

}
,

Γ1 = max
{
g1(u1, u2): 0 � u1 � α1, 0 � u2 � R2

}
,

Γ2 = max
{
g2(u1, u2): 0 � u1 � R1, 0 � u2 � α2

}
. (2.3)

Also, let

Ai = max
t∈[0,1]

b∫
a

G(t, s)qi(s) ds, Bi = max
t∈[0,1]

1∫
0

G(t, s)qi(s) ds.

Clearly, Bi > Ai > 0 for i = 1,2.

Theorem 2.1. Assume that there exist αi,βi > 0 with αi �= βi, i = 1,2, such that

B1Γ1 < α1, A1γ1 > β1,

B2Γ2 < α2, A2γ2 > β2. (2.4)

Then (1.5)–(1.6) has at least one positive solution z = (z1, z2) with ri < |zi |∞ < Ri, i = 1,2, where ri = min{αi,βi}
and Ri = max{αi,βi}. Moreover, the orbit of z for t ∈ [a, b] is included in the rectangle (Mr1,R1) × (Mr2,R2).

Proof. First note that if z ∈ Kr,R, r1 < |z1|∞ < R1 and r2 < |z2|∞ < R2, then by the definition of K,

Mr1 < z1(t) < R1 and Mr2 < z2(t) < R2

for all t ∈ [a, b], showing that the orbit of z for t ∈ [a, b] is included in the rectangle (Mr1,R1) × (Mr2,R2).

Also, if we know for example that |zi |∞ = αi, then zi(t) � αi for all t ∈ [0,1] and

Mαi � zi(t) � αi for all t ∈ [a, b].
We claim that for every z ∈ Kr,R and i ∈ {1,2}, the following properties hold:

|zi |∞ = αi implies Ni(z) − zi /∈ Ki,

|zi |∞ = βi implies zi − Ni(z) /∈ Ki (2.5)

guaranteeing the applicability of Theorem 1.1.
Indeed, if |z1|∞ = α1 and we would have that N1(z) − z1 ∈ K1, then

z1(t) � N1(z)(t) � Γ1

1∫
0

G(t, s)q1(s) ds � B1Γ1

for all t ∈ [0,1]. This yields the contradiction α1 < α1. Now if |z1|∞ = β1 and z1 − N1(z) ∈ K1, then we obtain

z1
(
t∗1

)
� N1(z)

(
t∗1

)
�

b∫
a

G
(
t∗1 , s

)
q1(s)g1

(
z1(s), z2(s)

)
ds � A1γ1,

where t∗1 ∈ [0,1] is such that A1 = ∫ b

a
G(t∗1 , s)q1(s) ds. This implies β1 > β1, a contradiction. Hence (2.5) holds for

i = 1. Similarly, (2.5) is true for i = 2. �
In particular, if g1, g2 have some monotonicity properties in z1 and z2, for z1 ∈ [0,R1] and z2 ∈ [0,R2], then we

can precise the numbers γ1, γ2,Γ1,Γ2. For example,
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(1) if g1, g2 are increasing in z1 and z2, then

Γ1 = g1(α1,R2), γ1 = g1(Mβ1,Mr2),

Γ2 = g2(R1, α2), γ2 = g2(Mr1,Mβ2);
(2) if g1 is increasing in z1 and z2, g2 is increasing in z1 and decreasing in z2, then

Γ1 = g1(α1,R2), γ1 = g1(Mβ1,Mr2),

Γ2 = g2(R1,0), γ2 = g2(Mr1, β2);
(3) if g1 is increasing in z1 and decreasing in z2, g2 is decreasing in z1 and increasing in z2, then

Γ1 = g1(α1,0), γ1 = g1(Mβ1,R2)

Γ2 = g2(0, α2), γ2 = g2(R1,Mβ2).

Notice that conditions (2.4) indicate the behavior of g1, g2 in some regions of R2+, in order to establish the exis-
tence and the localization of at least one solution. Combined with monotonicity properties like those in (1)–(3), the
hypotheses (2.4) show us how the nonlinearities g1, g2 behave at four points in R2+. Under more restrictive mono-
tonicity conditions on g1, g2 we can also prove the uniqueness of solution as shows the next theorem.

For the next result we say that gi is increasing in both variables on (0,R1) × (0,R2) if{
0 < u1 � ū1 < R1,

0 < u2 � ū2 < R2
⇒ gi(u1, u2) � gi(ū1, ū2).

Also we say that the g1(u1,u2)
u1

is strictly increasing (decreasing) on (0,R1) × (0,R2) if{
0 < u1 < ū1 < R1,

0 < u2 � ū2 < R2
⇒ g1(u1, u2)

u1
< (>)

g1(ū1, ū2)

ū1
.

Similarly, g2(u1,u2)
u2

is said to be strictly increasing (decreasing) on (0,R1) × (0,R2) if{
0 < u1 � ū1 < R1,

0 < u2 < ū2 < R2
⇒ g2(u1, u2)

u2
< (>)

g1(ū1, ū2)

ū2
.

Theorem 2.2. Assume that there exist 0 < R1,R2 � ∞ such that g1, g2 are increasing in both variables and g1(u1,u2)
u1

,
g2(u1,u2)

u2
are strictly monotone on (0,R1) × (0,R2). Then problem (1.5)–(1.6) has at most one positive solution z =

(z1, z2) satisfying |zi |∞ < Ri, i = 1,2.

Proof. Assume that z = (z1, z2) and z̄ = (z̄1, z̄2) are two distinct positive solutions of (1.5)–(1.6) with |zi |∞ < Ri

and |z̄i |∞ < Ri for i = 1,2. We may assume that z1 � z̄1 and z2 � z̄2. Indeed, otherwise, if we let

ui(t) = min
{
zi(t), z̄i (t)

}
(i = 1,2), u = (u1, u2),

and we take into account that gi is increasing in both variables, we obtain

Ni(u)(t) =
1∫

0

G(t, s)qi(s)gi

(
u1(s), u2(s)

)
ds �

1∫
0

G(t, s)qi(s)gi

(
z1(s), z2(s)

)
ds = zi(t)

and similarly Ni(u)(t) � z̄i (t). Then Ni(u) � ui, i = 1,2. Consequently, for each i ∈ {1,2}, the sequence (Nk
i (u))k

decreases to a positive function z∗
i , z∗

i � ui, and z∗ = N(z∗), where z∗ = (z∗
1, z

∗
2). Thus we may replace the couple of

distinct solutions [z, z̄] by an ordered couple of distinct solutions, namely by [z∗, z] or [z∗, z̄]. This proves our claim.
Since z, z̄ are distinct, there exists i ∈ {1,2} and a subinterval [α,β] of [0,1] with zi(t) < z̄i(t) on (α,β). Let

ui(t) = zi(t)z̄
′
i (t) − z′

i (t)z̄i (t).
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Clearly, ui ∈ C1(0,1) ∩ C[0,1] and ui(0) = ui(1) = 0. Also, for t ∈ (0,1), one has

u′
i (t) = zi(t)z̄

′′
i (t) − z′′

i (t)z̄i (t) = qi(t)zi(t)z̄i (t)

(
gi(z(t))

zi(t)
− gi(z̄(t))

z̄i (t)

)
.

Since gi(z)
zi

is strictly monotone, we deduce that

u′
i (t) � 0 on (0,1) and u′

i (t) > 0 on (α,β),

or

u′
i (t) � 0 on (0,1) and u′

i (t) < 0 on (α,β),

which contradicts ui(0) = ui(1) = 0. �
Theorem 2.1 immediately yields multiplicity results provided that nonlinearities g1, g2 are oscillating functions.

Theorem 2.3. Assume that there exist a natural number N � 1 and αk
i , β

k
i > 0 with αk

i �= βk
i for i = 1,2 and k =

1,2, . . . ,N, such that

Rk
1 � rk+1

1 or Rk
2 � rk+1

2 (2.6)

for k = 1,2, . . . ,N − 1, and

B1Γ
k

1 < αk
1, A1γ

k
1 > βk

1 ,

B2Γ
k

2 < αk
2, A2γ

k
2 > βk

2

for k = 1,2, . . . ,N. Here rk
i = min{αk

i , β
k
i }, Rk

i = max{αk
i , β

k
i } and γ k

i ,Γ k
i are defined by (2.3), correspondingly.

Then (1.5)–(1.6) has at least N distinct positive solutions zk = (zk
1, z

k
2) with rk

i < |zk
i |∞ < Rk

i for i = 1,2 and k =
1,2, . . . ,N.

Proof. Apply Theorem 2.1 for each k ∈ {1,2, . . . ,N} to obtain a positive solution zk satisfying

rk
i <

∣∣zk
i

∣∣∞ < Rk
i , i = 1,2. (2.7)

From (2.6), we have that for each k ∈ {1,2, . . . ,N − 1},(
rk
i ,Rk

i

) ∩ (
rk+1
i ,Rk+1

i

) = ∅ for i = 1 or i = 2. (2.8)

Now (2.7) and (2.8) guarantee that zk, k = 1,2, . . . ,N , are distinct solutions. �
Remark 2.1. In particular, the previous theorems established for a system reduce to results for a scalar equation.
Indeed, the boundary value problem for a scalar equation{

z′′(t) + q(t)g
(
z(t)

) = 0,

z(0) = z(1) = 0
(2.9)

can be viewed as a problem of type (1.5)–(1.6) if we take qi(t) = q(t) for i = 1,2, g1(z1, z2) = g(z1) and
g2(z1, z2) = g(z2).

3. Positive radial solutions

Theorem 2.1 yields the following existence and localization result of positive radial solutions to problem (1.1)–
(1.2).
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Theorem 3.1. Assume that gi ∈ C(R2+;R+), fi ∈ C([r0,∞); (0,∞)) and

∞∫
r0

τn−1fi(τ ) dτ < ∞ (3.1)

for i = 1,2. In addition assume that there exist αi,βi > 0 with αi �= βi, i = 1,2, such that (2.4) holds. Then (1.1)–(1.2)
has at least one positive radial solution u = (u1, u2) with ri < sup|x|�r0

|ui(x)| < Ri for i = 1,2.

Proof. Notice that (3.1) guarantees that functions qi given by (1.7) belong to L1(0,1). Now the result follows from
Theorem 2.1. �

From Theorem 2.2 we immediately obtain a uniqueness result for (1.1)–(1.2).

Theorem 3.2. If in addition to the assumptions of Theorem 3.1, g1, g2 are increasing in both variables and g1(u1,u2)
u1

,
g2(u1,u2)

u2
are strictly monotone on (0,R1)× (0,R2), then (1.1)–(1.2) has a unique positive radial solution u = (u1, u2)

satisfying ri < sup|x|�r0
|ui(x)| < Ri for i = 1,2.

Proof. Apply Theorems 3.1 and 2.2. �
Finally, Theorem 2.3 implies the following multiplicity result for (1.1)–(1.2).

Theorem 3.3. Assume that gi and fi are as in Theorem 3.1 and that there exist numbers N, αk
i and βk

i , k =
1,2, . . . ,N , satisfying all the conditions from Theorem 2.3. Then (1.1)–(1.2) has at least N distinct positive radial
solutions uk = (uk

1, u
k
2) with rk

i < sup|x|�r0
|uk

i (x)| < Rk
i for i = 1,2 and k = 1,2, . . . ,N.

The next theorems can be viewed as examples of applicability of the previous results. For all these theorems we
assume that the functions fi, i = 1,2, are like in Theorem 3.1.

Theorem 3.4. Let g1(u1, u2), g2(u1, u2) be nondecreasing in u1 and u2 for u1, u2 ∈ R+. If

lim
x→∞

gi(x, x)

x
= 0 and lim

x→0

gi(x, x)

x
= ∞ (3.2)

for i = 1,2, then (1.1)–(1.2) has at least one positive radial solution.

Proof. From (3.2) there are α1, β1 with 0 < β1 < α1 such that

gi(α1, α1)

α1
<

1

Bi

,
gi(Mβ1,Mβ1)

Mβ1
>

1

MAi

(3.3)

for i = 1,2. Let α2 = α1 and β2 = β1. Then ri = β1,Ri = α1, and according to (1), Γi = gi(α1, α1), γi =
gi(Mβ1,Mβ1) for i = 1,2. Now (3.3) guarantees (2.4). �
Example 3.1. The functions gi(u1, u2) = (u1u2)

1
3 , i = 1,2, satisfy the conditions of Theorem 3.4.

Theorem 3.5. Let g1(u1, u2), g2(u1, u2) be nondecreasing in u1 and u2 for u1, u2 ∈ R+. Assume that

lim
x→∞

g2(x, x)

x
= 0, lim

x→0

g2(x, x)

x
= ∞, (3.4)

lim
x→∞

g1(x,0)

x
= ∞ and lim

x→0

g1(x, y)

x
= 0 for every y > 0. (3.5)

Then (1.1)–(1.2) has at least one positive radial solution.
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Proof. From (3.4) there are α0, β0 > 0 such that

g2(Mα1,Mα1)

Mα1
>

1

MA2
and

g2(β1, β1)

β1
<

1

B2
(3.6)

for every α1 � α0 and β1 � β0. Let α1 < β1, α2 = β1 and β2 = α1. Then ri = α1, Ri = β1 for i = 0,1, and according
to (1), Γ1 = g1(α1, β1), Γ2 = g2(β1, β1), γ1 = g1(Mβ1,Mα1) and γ2 = g2(Mα1,Mα1). Clearly (3.6) guarantees that
the inequalities in (2.4) corresponding to i = 2 hold for every α1 � α0 and β1 � β0. Now due to (3.5), since

g1(Mβ1,Mα1)

Mβ1
� g1(Mβ1,0)

Mβ1
,

we may first choose β1 � β0 with g1(Mβ1,0)
Mβ1

> 1
MA1

, and then α1 � α0, 0 < α1 < β1 with g1(α1,β1)
α1

< 1
B1

. Thus
condition (2.4) is satisfied. �
Example 3.2. The functions g1(u1, u2) = u2

1(1 + u2
2), g2(u1, u2) = (u1u2)

1
3 satisfy the conditions of Theorem 3.5.

Theorem 3.6. Let g1(u1, u2) be nondecreasing in u1 and nonincreasing in u2, and g2(u1, u2) be nonincreasing in u1
and nondecreasing in u2, for u1, u2 ∈ R+. Assume that

lim
x→0

g1(x,Mx)

x
= 0, lim

x→∞
g1(Mx,x)

x
= ∞,

lim
x→0

g2(Mx,x)

x
= 0, lim

x→∞
g2(x,Mx)

x
= ∞. (3.7)

Then (1.1)–(1.2) has at least one positive radial solution.

Proof. From (3.7) it follows that there exist α1 and β1 with 0 < α1 < β1 such that

g1(α1,Mα1)

α1
<

1

B1
,

g1(Mβ1, β1)

β1
>

1

A1
,

g2(Mα1, α1)

α1
<

1

B2
,

g2(β1,Mβ1)

β1
>

1

A2
. (3.8)

Let α2 = α1 and β2 = β1. Then ri = α1, Ri = β1 for i = 1,2. Also, by (3), Γ1 = g1(α1,Mα1), Γ2 = g2(Mα1, α1),

γ1 = g1(Mβ1, β1) and γ2 = g2(β1,Mβ1). Now (3.8) guarantees (2.4). �
Example 3.3. The functions g1(u1, u2) = u3

1
u2+1 , g2(u1, u2) = u3

2
u1+1 satisfy the conditions of Theorem 3.6.

Theorem 3.7. Let s, t,p, q ∈ R+ satisfy t > s + 1 and q > p + 1. Then the system{
�u1 + f1

(|x|)ut
1u

s
2 = 0,

�u2 + f2
(|x|)up

1 u
q

2 = 0

has a unique positive radial solution satisfying (1.2).

Proof. In this case g1(u1, u2) = ut
1u

s
2, g2(u1, u2) = u

p

1 u
q

2 are increasing in both variables and since t, q > 1, the

functions g1(u1,u2)
u1

,
g2(u1,u2)

u2
are strictly monotone on (0,∞) × (0,∞). Thus the problem has at most one positive

radial solution. For the existence, we only have to find numbers αi,βi > 0 with αi �= βi, i = 1,2, such that (2.4)
holds. We shall look for these numbers such that αi < βi, i = 1,2. Take βi = θαi, with any θ > 1 large enough that

θ t−s−1 >
B1

A1Mt+s
and θq−p−1 >

B2

A2Mp+q
.

Then we may choose numbers c1, c2 such that

1
t+s t−1

< c1 <
1

s
,

1
p+q q−1

< c2 <
1

p
. (3.9)
A1M θ B1θ A2M θ B2θ
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Now we let α1, α2 be the solution of the system

αt−1
1 αs

2 = c1, α
p

1 α
q−1
2 = c2. (3.10)

Notice this system is solvable. To see this, we rewrite it as

α
(t−1)p

1 α
sp

2 = c
p

1 , α
(t−1)p

1 α
(t−1)(q−1)

2 = ct−1
2 .

Then

α
(t−1)(q−1)−sp

2 = ct−1
2 c

−p

1 . (3.11)

Here the exponent (t − 1)(q − 1) − sp �= 0 since t − 1 > s and q − 1 > p. Hence α2 is uniquely defined by (3.11).
Then α1 follows uniquely from the first equation in (3.10), since t − 1 > 0. Now (3.9) and (3.10) give

B1α
t−1
1 αs

2θ
s < 1, A1M

t+sθ t−1αt−1
1 αs

2 > 1,

B2α
p

1 θpα
q−1
2 < 1, A2M

p+qθq−1α
p

1 α
q−1
2 > 1. (3.12)

Since in our case ri = αi, Ri = θαi for i = 1,2, and

Γ1 = g1(α1, θα2), γ1 = g1(Mθα1,Mα2),

Γ2 = g2(θα1, α2), γ2 = g2(Mα1,Mθα2),

we easily see that (3.12) is equivalent to condition (2.4). �
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