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a b s t r a c t

In this paperwe explain the advantage of vector-valued norms and the role ofmatrices that
are convergent to zero in the study of semilinear operator systems by means of some basic
methods of nonlinear analysis: the contraction principle, Schauder’s fixed point theorem,
the Leray–Schauder continuation principle and Krasnoselskii’s cone fixed point theorem.
A vector version of Krasnoselskii’s theorem is also established.
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1. Introduction

In this paper we are concerning with the solvability of the semilinear operator system{
N1 (u1, u2) = u1
N2 (u1, u2) = u2

(1)

in a Banach space X with norm |.|. HereNi : X2 → X (i = 1, 2) are given nonlinear operators. Systems of this type arise from
mathematical modelling of many processes from a variety of disciplines, including physics, biology, chemistry, engineering
and other sciences. Thus, initial value problems and boundary value problems for nonlinear competitive or cooperative
differential systems from mathematical biology [4] and mathematical economics [3] can be put in the operator form (1).
It is obvious that system (1) can be viewed as a fixed point problem:

N (u) = u (2)

in the space X2, where u = (u1, u2) and N = (N1,N2). Therefore, we may think of applying to (2), in X2 endowed with a
norm induced by the norm of X , different abstract existence results from nonlinear functional analysis, such as the Banach
contraction principle, the Schauder fixed point theorem, the Leray–Schauder continuation principle, Krasnoselskii’s cone
fixed point theorem, and so on. The aim of this paper is to point out that better results can be obtained for system (1) if in
X2 we consider the vector-valued norm

||u|| =
(
|u1|
|u2|

)
(3)
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for u = (u1, u2) ∈ X2, instead of a usual scalar norm such as

|u|l = |u1| + |u2| ,
|u|m = max {|u1| , |u2|} , or

|u|e =
√
|u1|2 + |u2|2.

Historically, this was shown by Perov and Kibenko [7] (see also [1,8,9]) in connection with the contraction principle.

Theorem 1 (Perov). Let (E, d) be a complete generalized metric space with d : E × E → Rn and let N : E → E be such that

d (N (u) ,N (v)) ≤ M d (u, v)

for all u, v ∈ E and some square matrix M of nonnegative numbers. If the matrix M is convergent to zero, that is Mk → 0 as
k→∞, then N has a unique fixed point u and

d
(
Nk (v) , u

)
≤ Mk (I −M)−1 d (N (v) , v)

for every v ∈ E and k ≥ 1.

Let us note the following properties of matrices that are convergent to zero:

Lemma 2. Let M be a square matrix of nonnegative numbers. The following statements are equivalent:

(i) M is a matrix convergent to zero.
(ii) I −M is non-singular and

(I −M)−1 = I +M +M2 + · · · .

(iii) |λ| < 1 for every λ ∈ C with det (M − λI) = 0.
(iv) I −M is non-singular and (I −M)−1 has nonnegative elements.

Proof. The equivalence of (i), (ii) and (iii) iswell known; see for example [9,8]. Also the implication from (ii) to (iv) is obvious.
Thus the proof will be complete if we show that (iv) implies (i). Assume (iv). Then from the identity

Sk (I −M) = I −Mk+1

which is true for Sk = I +M + · · · +Mk, sinceM and (I −M)−1 have nonnegative elements, we deduce that

Sk =
(
I −Mk+1

)
(I −M)−1

= (I −M)−1 −Mk+1 (I −M)−1

≤ (I −M)−1 .

Thus (Sk)k≥1 is a bounded sequence. Since it is nondecreasing (on elements) by its definition, we deduce that it is convergent.
As a consequenceMk → 0 as k→∞. �

We conclude this introduction by three other well-known abstract results of nonlinear functional analysis. For proofs
and more information we refer the reader to [2,6].

Theorem 3 (Schauder). Let E be a Banach space, D a nonempty closed bounded and convex subset of E, and N : D → D a
completely continuous operator. Then N has at least one fixed point.

Theorem 4 (Leray–Schauder). Let E be a Banach space, U a bounded open subset of E with 0 ∈ U, and N : U → E a completely
continuous operator. If u 6= λN (u) for all u ∈ U \ U and λ ∈ (0, 1), then N has at least one fixed point.

Theorem 5 (Krasnoselskii). Let (E, |.|0) be a Banach space, W a proper wedge of E (i.e., a closed convex set satisfying λW ⊂ W
for all λ ≥ 0 and which is not a linear subspace of E) and let α, β > 0 with α 6= β . Assume that N : W → W is a completely
continuous operator such that

x 6= λN (x) for |x|0 = a and λ ∈ (0, 1) , (4)

x 6= λN (x) for |x|0 = β and λ ∈ (1,∞) , (5)

and

inf {|N (x)|0 : |x|0 = β} > 0. (6)

Then N has at least one fixed point x with

min {α, β} ≤ |x|0 ≤ max {α, β} .
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Notice that a sufficient condition for (4) is that

|N (x)|0 ≤ |x|0 for |x|0 = α. (7)

Also, a sufficient condition for (5) and (6) is that

|N (x)|0 ≥ |x|0 for |x|0 = β. (8)

2. Application of Perov’s fixed point theorem

First we shall present an application of Perov’s theorem to system (1).

Theorem 6. Assume that for each i ∈ {1, 2}, there exist nonnegative numbers ai and bi such that

|Ni (u1, u2)− Ni (v1, v2)| ≤ ai |u1 − v1| + bi |u2 − v2| (9)

for all u1, u2, v1, v2 ∈ X. In addition assume that

M =
[
a1 b1
a2 b2

]
is a convergent to zero matrix. (10)

Then (1) has a unique solution u = (u1, u2) in X2 and Nki (v)→ ui as k→∞ for every v ∈ X2 and i = 1, 2.

Proof. Condition (9) can be rewritten as

‖N (u)− N (v)‖ ≤ M ‖u− v‖ .

Thus Perov’s fixed point theorem applies. Here E := X2 and d (u, v) := ‖u− v‖ . �

3. Application of Schauder’s fixed point theorem

Now we shall relax assumption (9) to an at most linear growth condition, but we shall require instead a compactness
property for Ni.

Theorem 7. Assume that for each i ∈ {1, 2}, the operator Ni is completely continuous and that there exist nonnegative numbers
ai, bi and ci such that

|Ni (u1, u2)| ≤ ai |u1| + bi |u2| + ci (11)

for all u1, u2 ∈ X. In addition assume that condition (10) is satisfied. Then (1) has at least one solution u = (u1, u2) with[
|u1|
|u2|

]
≤ (I −M)−1

[
c1
c2

]
. (12)

Proof. Condition (11) can be written in a matrix form as[
|N1 (u)|
|N2 (u)|

]
≤ M

[
|u1|
|u2|

]
+

[
c1
c2

]
. (13)

We shall apply Schauder’s fixed point theorem to the restriction of N to a subset of X2, of the form

D :=
{
u = (u1, u2) ∈ X2 : |u1| ≤ R1 and |u2| ≤ R2

}
.

Thus the existence problem reduces to the invariance condition N (D) ⊂ D. Therefore, we have to find two nonnegative
numbers R1, R2 such that

|u1| ≤ R1, |u2| ≤ R2 imply |N1 (u)| ≤ R1, |N2 (u)| ≤ R2.

According to (13), if |ui| ≤ Ri for i = 1, 2, then[
|N1 (u)|
|N2 (u)|

]
≤ M

[
R1
R2

]
+

[
c1
c2

]
.

Hence it would be enough that

M
[
R1
R2

]
+

[
c1
c2

]
=

[
R1
R2

]
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that is [
R1
R2

]
= (I −M)−1

[
c1
c2

]
. (14)

Notice that (14) gives us nonnegative constants R1, R2, since c1, c2 ≥ 0 and (I −M)−1 has nonnegative elements as follows
from Lemma 2(iv). �

4. Application of the Leray–Schauder principle

In this section, we assume that X is a Hilbert space with inner product 〈., .〉 and norm |.| and we shall refine the result of
Theorem 6 assuming that the operators Ni, i = 1, 2, split into N ′i +N

′′

i with N
′

i satisfying an at most linear growth condition
of type (11) and N ′′i satisfying a sign-type condition. No growth conditions will be required for N

′′

i .

Theorem 8. Assume that for each i ∈ {1, 2} , Ni is completely continuous and splits into N ′i + N
′′

i , where∣∣N ′i (u)∣∣ ≤ ai |u1| + bi |u2| + ci (15)〈
N ′′i (u) , ui

〉
≤ 0 (16)

for all u = (u1, u2) ∈ X2 and some nonnegative constants ai, bi and ci. In addition assume that condition (10) is satisfied. Then
(1) has at least one solution u = (u1, u2) in X2, and any solution of (1) satisfies (12).

Proof. According to the Leray–Schauder continuation principle, it suffices to show that the set of all solutions in X2 to the
equations{

λN1 (u1, u2) = u1
λN2 (u1, u2) = u2

(17)

when λ ∈ [0, 1] is bounded. Let u = (u1, u2) be any solution of (17). Then, for each i ∈ {1, 2}, from (15) and (16), we obtain

|ui|2 = λ 〈Ni (u) , ui〉 ≤ λ
〈
N ′i (u) , ui

〉
≤
∣∣N ′i (u)∣∣ |ui|

≤ (ai |u1| + bi |u2| + ci) |ui| .

Hence

|ui| ≤ ai |u1| + bi |u2| + ci.

These inequalities can be put in the form[
|u1|
|u2|

]
≤ M

[
|u1|
|u2|

]
+

[
c1
c2

]
which by (10) immediately yields (12). �

5. Application of Krasnoselskii’s theorem

In this section the notation |.|0 stands for any norm on X2. Also, for a square matrix M of nonnegative numbers, the
notation M ≤ 1 means that µM is convergent to zero for every µ ∈ (0, 1), or equivalently, that |λ| ≤ 1 for every λ ∈ C
with det (M − λI) = 0.

Theorem 9. Let K be a proper wedge of the Banach space (X, |.|) and let Ni : K 2 → K be completely continuous maps, i = 1, 2.
Assume that there are α, β ∈ (0,∞) with α 6= β , and nonnegative numbers ai, bi, a′i, b

′

i(i = 1, 2) such that

|Ni (u)| ≤ ai |u1| + bi |u2| for |u|0 = α, i = 1, 2 (18)

|ui| ≤ a′i |N1 (u)| + b
′

i |N2 (u)| for |u|0 = β, i = 1, 2. (19)

If in addition M ≤ 1 and M ′ ≤ 1 where

M =
[
a1 b1
a2 b2

]
and M ′ =

[
a′1 b′1
a′2 b′2

]
then (1) has at least one solution u = (u1, u2) ∈ K × K satisfying

min {α, β} ≤ |u|0 ≤ max {α, β} .
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Proof. Notice that conditions (18) and (19) can be written in the form

‖N (u)‖ ≤ M ‖u‖ for |u|0 = α (20)

and respectively

M ′ ‖N (u)‖ ≥ ‖u‖ for |u|0 = β. (21)

First we show that u 6= λN (u) for all u ∈ K 2 with |u|0 = α and λ ∈ (0, 1) . Indeed, otherwise, if u = λN (u) for some u
with |u|0 = α and λ ∈ (0, 1), then ‖u‖ = λ ‖N (u)‖ ≤ λM ‖u‖. Thus (I − λM) ‖u‖ ≤ 0. Since λM is convergent to zero, we
deduce that ‖u‖ ≤ (I − λM)−1 0 = 0, whence u = 0. This contradicts |u|0 = α > 0.
Next we prove that u 6= λN (u) for all u ∈ K 2 with |u|0 = β and λ ∈ (1,∞) . Indeed, if u = λN (u) for some u with

|u|0 = β and λ ∈ (1,∞), then ‖u‖ = λ ‖N (u)‖ and soM ′ ‖u‖ = λM ′ ‖N (u)‖ ≥ λ ‖u‖. Consequently,
(
I − 1

λ
M ′
)
‖u‖ ≤ 0,

whence ‖u‖ ≤
(
I − 1

λ
M ′
)−1
0. Hence u = 0, which contradicts |u|0 = β > 0.

Finally, we note that (21) guarantees that inf{|N (u)|0 : |u|0 = β} > 0. Therefore we may apply Krasnoselskii’s theorem
to E = X2 andW = K 2. �

6. The vector-valued norm versus scalar norms

The aim of this section is to show that the results in Sections 2–4, obtained by using the vector-valued norm (3), are
better than those established by means of any scalar norm in X2.
10. Let us first consider the scalar norm |u|l = |u1| + |u2|. Then, if N1,N2 satisfy the Lipschitz conditions (9), we obtain

|N (u)− N (v)|l ≤ max {a1 + a2, b1 + b2} |u− v|l (22)

for all u, v ∈ X2. Similarly, if N1,N2 satisfy (11), then

|N (u)|l ≤ max {a1 + a2, b1 + b2} |u|l + c1 + c2. (23)

Finally, if N1,N2 are as in Theorem 7, and u is any solution of (17), then

|u|l ≤ max {a1 + a2, b1 + b2} |u|l + c1 + c2. (24)

Thus, the Banach contraction principle, Schauder’s fixed point theorem and the Leray–Schauder continuation principle can
be applied, provided that

α := max {a1 + a2, b1 + b2} < 1. (25)

20. If in X2 we consider the scalar norm |u|m = max {|u1| , |u2|}, then the corresponding formulas for (22)–(24) are,
respectively,

|N (u)− N (v)|m ≤ max {a1 + b1, a2 + b2} |u− v|m
|N (u)|m ≤ max {a1 + b1, a2 + b2} |u|m +max {c1, c2}
|u|m ≤ max {a1 + b1, a2 + b2} |u|m +max {c1, c2} .

Thus, with this choice of a scalar norm in X2, the above three results of nonlinear functional analysis apply provided that

β := max {a1 + b1, a2 + b2} < 1. (26)

30. Similarly, if in X2 we consider the euclidean norm |u|e =
√
|u1|2 + |u2|2, then the corresponding formulas for (22)–

(24) are, respectively,

|N (u)− N (v)|e ≤
√
a21 + a

2
2 + b

2
1 + b

2
2 |u− v|e

|N (u)|e ≤
√
a21 + a

2
2 + b

2
1 + b

2
2 |u|e +

√
c21 + c

2
2

|u|e ≤
√
a21 + a

2
2 + b

2
1 + b

2
2 |u|e +

√
c21 + c

2
2 .

Thus, the applicability condition for the above abstract results is the following inequality:

γ := a21 + a
2
2 + b

2
1 + b

2
2 < 1. (27)

The following examples show that, in general, the condition that M is a matrix convergent to zero is weaker than
conditions (25)–(27).
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Example 1. Let

M =
[
a a
b b

]
.

Then the characteristic roots of M are λ1 = 0 and λ2 = a + b. Hence M is convergent to zero if and only if a + b < 1. On
the other hand,

α = a+ b, β = max {2a, 2b} , γ = 2
(
a2 + b2

)
.

Hence each one of the conditions β < 1 and γ < 1 is more restrictive than the condition thatM is convergent to zero.

Example 2. Let

M =
[
a b
a b

]
.

Now the characteristic roots ofM are λ1 = 0, λ2 = a+ b and so againM is convergent to zero if and only if a+ b < 1. Also,
in this case

α = max {2a, 2b} , β = a+ b, γ = 2
(
a2 + b2

)
.

Hence each one of the conditions α < 1 and γ < 1 is more restrictive than the condition thatM is convergent to zero.

Example 3. Let

M =
[
a b
b a

]
.

Then, the characteristic roots ofM are λ1 = a− b, λ2 = a+ b and so againM is convergent to zero if and only if a+ b < 1.
Now

α = a+ b, β = a+ b, γ = 2
(
a2 + b2

)
.

Hence the condition γ < 1 is more restrictive than the condition thatM is convergent to zero.

Example 4. Assume

M =
[
a b
0 c

]
.

Then, the characteristic roots ofM are λ1 = a, λ2 = c andM is convergent to zero if and only if max {a, c} < 1. Here

α = max {a, b+ c} , β = max {a+ b, c} , γ = a2 + b2 + c2

which show that in general, each one of the conditions α < 1, β < 1 and γ < 1 is more restrictive than the condition that
M is convergent to zero.

Similar considerations can be given in connection with Theorem 9. More exactly, one can test that for different choices of
the norm |.|0 on X2, and different types of matricesM,M ′ ≤ 1, conditions (20) and (21) are less restrictive than (7) and (8).
Therefore, wemay conclude that for different types of estimations, the use of the vector-valued norm and, correspondingly,
of the matrices convergent to zero, is more appropriate when treating systems of equations.
Notice that our approach can be adapted in order to treat systems of n equations (n ≥ 3). For related topics we refer the

reader to the forthcoming paper [5].
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