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Abstract. We establish an asymptotic formula for a general sequence
of positive linear operators of discrete type. This class represents a,
generalization in ¢-Calculus of the operators introduced by G. Mas-
troianni, the construction taking its origin in a paper of Baskakov.
‘We also mark out Voronovskaja-type formulas for two particular cases
which are g-extensions of the Szdsz-Mirakjan operator and the ordi-
nary Baskakov operator.
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1 Introduction

The roots of the paper are in connection with a general class of opera-
tors introduced by Baskakov [6] and developed by Mastroianni [8]. For
comparing, [3, p. 344, p. 351] can also be consulted. A g-analogue of
these operators has been introduced in [9]. The author investigated their
weighted statistical approximation properties. For the sake of complete-
ness, we recall: a g-analogue or a g-extension of a mathematical object X
is a family of objects X (g) (usually, 0 < g < 1) such that 111‘{1 X(g) = X.
q—1-

This paper is in final form and no version of it will be submitted for publication
elsewhere.
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Deeping the researches on the mentioned g-operators, in [1] all their mo-
ments were explicitly expressed with the help of a new g-analogue of the
Stirling numbers of the second kind. At the same time, the rate of conver-
gence was established in two cases: for bounded functions and for functions
having a polynomial growth.

The aim of this note is to present an asymptotic formula of Voronovskaja-
type for g-Baskakov-Mastroianni operators. As applications, we deduce
asymptotic formulae for two special cases which are g-extensions of the
Szasz-Mirakjan operators and the ordinary Baskakov operators, respec-
tively.

The paper is organized as follows. Section 2 includes elements of g-
Calculus, the form of the announced class of operators and some results
obtained previously. Section 3 comprises the statement of the main result
and two particular asymptotic formulae. The last Section is devoted to the

proofs of our results.

2 The T, , operators

First of all we collect some useful formulas in ¢-Calculus, see, e.g., [4], [7].
Let ¢ > 0. For any n € Ng = {0} UN, the g-integer [n], and the
g-factorial [n],! are respectively defined by

n—1 n
[n]q = quv Hj]qv
7=0

g=1

and [0], = 0, [0],! = 1. The g-binomial coefficients are denoted by [ z ]
q

and are defined by

[Hqﬁ% k=0,1,...,n.

For ¢ = 1 one has [n]; = n, [n];! = n! and [ : J turns into the ordinary

binomial coefficient ( :

We also recall the significance of the notation (z — a)y.

7]
r (k1)
(z —a)] H(T—qa Z[k:l g 7z *(-a)~
q

k=0
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In the sequel we always will assume that ¢ € (0,1).
The g-derivative of a function f : R — R is defined by

Dot 0) = LD 40, Dyt (0) =ty Dt (),

and the high g-derivatives Dgf = [, Dgf:= Dy (Df;_lf), =12 ..

A function f is g-differentiable on a real interval I if for any ¢ € (0,1)
the g-derivative of f exists and is finite in every z € I. Also, we recall the
product rule

Dy (f(z)9(z)) = 9(z) Dy f(z) + f(qz) Deg(z).

For each (m,r) € Ny x Np, a g-analogue of Stirling numbers of the
second kind can be considered the following

jgr=ir—i-ny2 [ | [r =318
'Z ’a [j L G D)

Lemma 2.1 ([1, Lemma 2|) The numbers o4(m,r), (m,r) € Ny x Ny,
given by (2.1) enjoy the following properties.

Jq , [T]q

oq(m,0) =0, meN, and 0,(0,0)=1, (2.2
q og(m+1,7) = [rlyoq(m, ) + og(m,r — 1),m € Ny, r € N,(2.3)

og4(m,r) =0, r>m.

It is known that a g-analogue is not unique. In this direction it is worth
to be mentioned that others g-Stirling numbers denoted by S,(m,r) have
been used by Ali Aral [5] in studying a g-generalization of Szdsz-Mirakjan
operators.

Now we are in position to present T, 4, n € N, ¢ € (0,1), operators
[1, Section 3]|. Let (¢,),~; be a sequence of real valued functions defined
on R;, continuously infinitely g-differentiable on R, and satisfying the
following conditions.

(P1)  $a(0)=1, neN, (2.5)

(P2 ~1)*D*¢,(x) >0, neNkeNy,z>0, 2.6
q

(P3)  For every (n,k) € N x Ny there exists a positive integer iy,

0 <4 <k, and a real function B, 1, 4 : R+ — R such that
D'“chn( ) = (~1) %L DE g (@ 2) B i 0 (®), (2.7)

where
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= [n]";k+ qk—zk

We define the opéra.tors

k
e (M[%) z>0, (29)

h{.l\, 1)

Toaf) (@ Z
k=0

where f € F(Ry) :={f: Ryt — R, the seriesin (2.9) is absolutely
convergent for all n € N}.
Clearly, for each n € N, T,,, is linear and positive operator. With
the help of g-Stirling numbers defined by (2.1), we are able to indicate all

moments of our operators.

Lemma 2.2 ([1, Lemma 4]) Let T,, 4, n € N, be defined by (2.9). One
has

mD;d)n(O)Uq(m,r), x>0, (2.10)

(Th,qm) (=
r=0

where e, stands for the monomial of m degree, m € Ny.

We easily deduce

(Tn,q€0) (z) =1, (2.11)
(Thqe1) (z) = —w%}‘;o), [5.12)
(Tnge2) (2) = 2” Dy#n(0) _ Dyt (0) (2.13)

gz nf2

These three particular moments have been obtained by a straightfor-
ward calculation in [9, Lemma 1], without involving g¢-Stirling numbers

aq(m,r).
Since hm[n]q (1 —q) L, relation (2.13) implies

liTan (Tnqe2) () = ¢ 2% + (1 — g)x # ex(a),

where the index i; can be 0 or 1, see relation (2.7). Clearly, (Tnq),, does
not form an approximation process.
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Remark 2.3 To becomne (Th,q),, an approzimation process, for eachn € N,
the constant q will be replaced by a number q,, € (0,1) such that limg, = 1.
T

Under this assumption, for any compact K C Ry and for each f € F (R,)
which is continuous and bounded, one has

liTrtn(Tn,qnf) (z) = f(z), uniformly in z € K. (2.14)

The fastest motivation of the above statement can be made by using a more
general result obtained by Altomare [2] in the setting of locally compact
metric space. It reads as follows.

Theorem 2.4 ([2, Theorem 3.5]) Let J be a real interval and consider
a lattice subspace E of the space F(J) of all real-valued functions on J,
containing the functions eg(z) = 1, ei(z) = z and ea(x) = 22 (z € J).
Consider a sequence (L,)n > 1 of positive linear operators from E into
F(J) and assume that for every k=0,1,2

lim L,(ex) = e uniformly on compact subsets of J.
Tn—r0Q0

Then

le Ly (f) = [ uniformly on compact subsets of J
TL—r00

for every f € ENCy(J) (Cp(J) denoting the space of all continuous and
bounded functions on J).

Choosing J = Ry, E = F (R,), and taking into account relations (2.11),
(2.12), (2.13), Theorem 2.4 leads us to the identity (2.14).

3 Results

Examining (2.6) and (2.7), for the sake of brevity we denote
dnk = DE¢n(0), n€EN, keN. (3.1)

For each z > 0, let ; be the function defined by ¢.(t) =t —z, t > 0.
T5,qtpz represents the s-th order central moment of the operator T), ;, where
i NO.

On the basis of relations (2.5), (2.7) and (2.8) one has d,, # 0 for
every n € N and k € Ng. Also 0,4(s,0) =0, s € N, see (2.2). By inspecting
relation (2.10), we conclude
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Remark 3.1 For a given s € N, both T, 4e; and T, 405 are polynomials
in z of s degree having the constant term null.

Consequently, we can write
( ,q‘P:c ’ Z MMy, s, k: ; =0, (32)

Lemma 3.2 Let T, 4, n € N, be defined by (2.9). For s = 4, the coeffi-
cients of the polynomial introduced by (3.2) have the following values.

dn, 1+3g+ 3@_’ dn 2
Mna1(q) = _—[HJ;L Min,a,2(q) = P [n]g =+ 4[ ]3, (3.3}
1+2q+3q2dn3 4(1+29)dﬂ,2 dp1

P — . 3 . 3 — 3 -4
e P A 1 A T A

d d d n Nl
. = 4 6 1l 3.5
mott@) = ot g + O R, ¢ a8

Lemma 3.3 Let (gn),~1, 0 < gn < 1, be a sequence such that limg, = 1.
ok (3

Supposing that the properties (P1), (P2), (P3) take place for q = q,, one
has

dy,
lim —F = (—1)F, keN, (3.6)

L [n] dn

where dp, i, is defined as in (3.1).

Lemma 3.4 Let (qn)n>1, 0<qn <1, and ( n)n2], An > 0, be sequences
such that hmqn =1, hm Ap = 00 and hrn[ T is finite. Let T,, 4., n € N,

be defined as in (2.9). If the sequences
(A2mnaa(qn)), and (Aimn}4,4(qn))n are bounded, (3.7)

then (A2 (Tn,q. %) (:C))n is bounded with respect to n. In the above, my43
and Mpa4 are given by (8.4) and (3.5), respectively.

As usual, C%(R ) denotes the space of all real-valued continuous func-
tions on R4 which are twice continuously differentiable in R..

Returning at the sequence (\,), -, of strictly positive real numbers with
the property lign An = 00, we suppose that the real numbers 71, T, T3 exist
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verifying the following relations

hm)\ ({d’]1 t 1)
An
hin M = T (3.8)

an
i dn,1 _dn2 | _
lltrI-.,:Il An (1 + 2 n an + Qn. [n]gn ) a T3’

where dy1,d, > are defined as in (3.1) with ¢ = ¢,. The sequence (),
will play a crucial role in establishing the Voronovskaja-type theorem.

Theorem 3.5 Let (qn),>1, 0 < n <1, and (An),>1, An > 0, be sequences
such that Ilmqn =1, hm A, = oo and the conditions (3 8) are fulfilled.
Let Tr.q., 1 €N, be a’eﬁned as in (2.9). If (3.7) takes place, then for any
function f € F(R,)NC?(Ry) with f" bounded, one has

lim A (T, f) () — £(2)) =~ f' (&) + £ (e +72%) f(a), (39)

T—r0o0

for any x > 0.

The theorem shows that (7,4, f) () — f(z) is of order not better then
1/An, if f'(z) and f”(x) are not simultaneous null.

Two special cases of T}, 4., n € N, operators have been exhibited in
[9, Section 5]. In order to obtain an asymptotic formula of Voronovskaja-
type for these classes of g-operators, we will check the possibility to apply
Theorem 3.5.

Application 1. We choose ¢,(z) := E,, (_ [],, :c), z>0,neN
Here I, is the known expansion in g-Calculus of the exponential function
being defined as follows

k
qu(k 1)/2 z z€ER,

'fI'n. ]qn

see, e.g., |7, p. 31]. T, 4, operators turn into S qn» & g-analogue of Szdsz-
Mirakjan operators. For all (n,k) € N x Np, we have ¢,,(0) = 1,
1)

D pu(w) = (-1 [y, n 7 By, (Il ahz), x>0,

and
Df;:lﬁﬁn(l) = *Df;n Pn (Qrzm)ﬁn,k,ﬂ,qn (I)
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Consequently, relations (2.5)-(2.8) hold, where, for every (n, k) € NxNg,
ix, = 0 and By 4,0,4n (2) = [n]4,q¥ is a constant function. Taking A, = [7)gn s
all we have to do is to verify conditions (3.8) and (3.7).

b(k—1
Since dygx = (—l)k[n]f;nqn 2 wegetn =0, 7 =1and 3 = 0.
Further on, by using (3.4) and (3.5), we easily deduce

(L= q'n)2

=1
qg[n]qn ) mn,4,4(@'n) 3

mn,4,3(@n) —
and (3.7) takes place. The asymptotic formula (3.9) for S Will be read
as follows

Jim [y, ((S24,5) @)= £(2) = 2/"(@), ©>0,  (3.10)

where f € F(R;) N C? (Ry) with f” bounded.

Application 2. Choosing ¢,(z) := (1 + gnely e =0, meN, B,
operators become a g-analogue of the ordinary Baskakov operators, say
Vo - With the help of the known formulas [-n], = —[n],¢ ", n €N, and

T qn "
Dy (14 az); = [o],a(1+ aqa:)f;_l for any real numbers a, a, we deduce

k—1
—-n—k
Didn(@) = (-1 | []ln+dla, | (1+ai*a) *, 220,
2 dn
7=0

Conditions (2.5) and (2.6) are satisfied. Choosing iy = k and B, 4 .4, (z) =
k
(]—[ [n+j]qn) (1+ qﬁ+1m);k_l, n € N, k € Ny, (2.7) and (2.8) are also

fulfilled. In the above we used the formula (1+ y)g(1+ *y)s = (L +y)gt?
forg=¢gn,a=-n, f=-k—1and y=gt*tlz.

Again, we choose A, = [n],,,. This time, d,,x = (—1)%[n],, -... [n+k—
1], and, in accordance with (3.8), one gets 71 =0, 75 = 1, 73 = 1. With a
little more effort we find

(qn - 1)2[?’2,] o (l + ZQH)(QEL — Qqﬂ. i 1)

/\3;, Mn,4,3 (Q'n) =

q ' an
N (14 gn)(1 + 2g, + 3¢2)
q?l[n}Q'n
and A
QTL_I)Q 93_3Q'rt”1 (1+qﬂ)(1+qﬂ +q2)
Mo gl = 2= 10 g, — = + =
ralin) = gl = T,
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We used the identities [n+k]g, = 1+gn+...+¢x[nly, for k= 1,2,3. Since
€ (0,1) and g, — 1, the requirement (3.7) is fulfilled. Actually, both
sequences are convergent.
Applying Theorem 3.5, we obtain the following asymptotic formula.

timfrlg, (Vi) (@) - £@) = 2EX Y 1@, 250, @)

where f € F(Ry)NC?(R;) with f/ bounded.

Remark 3.6 For g, = 1, S, and V;'; turn into the classical Szdsz-
Mirakjan and Baskakov operators, respectively. Our formulae (3.10), (8.11)
become the known Voronouskaja-type identities verified by these discrete op-
erators. In these two special cases the order of approzimation is 1/n.

4 Proofs

Proof of Lemma 3.2
First of all, examining relations (2.2)-(2.4), we deduce o4(m,m) =

_m(m+1
q z ,m € Ny.

To calculate all required coefficients, we need to know some particular
values of ¢-Stirling numbers o,(m,r) described by (2.1). The below table

may be useful.

m\r |0 1 2 3 4
0 |1 0 0 0 0
1 |0 ¢! 0 0 0
g |8 g% g 0 0
3 |0 ¢73 (1+2g)g~° q° 0
4 [0 ¢* (1+3¢+3¢*)q" (1+2¢+3¢%)g° ¢ '

The identities (3.3)-(3.5) result after a boring calculation based on
(2.10) and taking in view that

(Th,a5) i ( )xm(Tn,qem)(z).

m=0
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Proof of Lemma 3.3
For k = 0 the conclusion is evident, see (2.5). Further on, choosing

z =01in (2.7), we can write

d’ﬁ‘,,k-"l o (_1)?‘k+1 k—ip, ﬁ:’!.]x.l;‘ ,qn(o) d’ll k—ig (4 1)
[?’L]E-'—l n [ Tk+1 k: —ik [n]k Tk’ '

for a certain index i € {0,1,...,k}.

The proof runs by mathematical induction with respect to k. Assuming
nk+1

Ilm [ ']” = (~1)/ for j = 0, k, relations (4.1) and (2.8) imply hm[ e =
an
( 1)¥+1, Consequently, relation (3.6) holds.

Proof of Lemma 3.4
Since hén T ] = 0, setting hm ﬁ?— =79 € R, we get hm)\ W 41(00) =

0 and lim A2my, 42(qn) = 778 — 472, see (3.3). Taking 1nL0 account (3.2),
i
the assumptions’ lemma guarantee the achievement of the statement.

O

Proof of Theorem 3.5
Let z > 0 be fixed. For any f € F(Ry)NC%(R,) with f” bounded, we
define

[ @) e )220 ()
b1(w:9) = == R
0, it =,

where ¢ € Ry.. We get hm fij(:E t) = 0= ¢y(x;z), consequently ¢¢(z;-) €

C(R,). Moreover, @2 and ©2p¢(z;-) belong to F (Ry). For the function
f, we can write the Lagrange form of the Taylor formula

F(£) = F(@) + el () + 5030/ () + PO a31).

Applying T}, 4, and using (2.11), we obtain

(Tnga f) () — f ()

= (Tn,qn‘ro:c) (z)f (T) + = ! ( .qn‘:oac) (z )f”(m) + T gn (‘P?:ﬁbf(x; )) (T)
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Taking into account relations (2.12)-(2.13), we get

(Togas) ) = — (d + 1) s

[n]fIn

d 9 d 1 dnl
Tﬂ 9 _ T, 2 T, 1 27 e ) y
(Toan 2?) (2) (qmgn Tl }e .

and hence

M (Baga) (@) = ) = = (T +1) 27 (2)

1 dn,? dﬂ,l 2 A'ndn,l "
+§ (/\n (Qn[n]gn =+ Q[H]qn e 1) 5% — [”'En 37) f(z)
+AnTng, (P305(250)) (2)- (4.2)

Since p2¢¢(z,-) € F(R) and the series in (2.9) is absolutely convergent, we
deduce @2 |¢¢(z,)| € F(Ry). Further on, by applying Cauchy inequality
for the last term of (4.2), one has

0 < A |Tngy (0507(; ) (2)] € AnTg, (2 log(257)], )

1/2 1/2
S {)“7’2?. (Tn,qﬂﬁai) (a:)} {(Tﬂ,qn QS?(‘T’ )) (.7:)} o
Clearly, qb%(:c; -) is continuous on R;. Under the assumption made on the
function f, we get qbfr(u:, ) € Cp(Ry) € F(R4), and in harmony with Re-
mark 2.3, we have lim (Tn,qnqﬁfc(m; )) () = gbff(z;:ﬂ} = 0. On the other
T

hand, since (3.7) holds, Lemma 3.4 guarantees that a constant k(z) inde-
pendent of n exists, such that A2 (T, 4, ¢1) (z) < k(z) for each n € N.

Consequently, lim A, 'Tn’qn ((pgcﬁf(m; )) (:E)| = 0. Returning at (4.2),

T

for n tending to infinity, on the basis of (3.8) and (3.6) with £k = 1,2, we

obtain the desired pointwise convergence.

(]
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