OCTAVIAN AGRATINI - CRISTINA RADU

ASYMPTOTIC FORMULAE FOR BASKAKOV-MASTROIANNI OPERATORS BASED ON q-INTEGERS

Estratto

Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II - Numero 82 - Anno 2010

PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON FUNCTIONAL ANALYSIS AND APPROXIMATION THEORY

DIREZIONE E REDAZIONE VIA ARCHIRAFI, 34 - PALERMO (ITALY)

Asymptotic formulae for Baskakov-Mastroianni operators based on q-integers

Octavian Agratini and Cristina Radu

Abstract. We establish an asymptotic formula for a general sequence of positive linear operators of discrete type. This class represents a generalization in q-Calculus of the operators introduced by G. Mastroianni, the construction taking its origin in a paper of Baskakov. We also mark out Voronovskaja-type formulas for two particular cases which are q-extensions of the Szász-Mirakjan operator and the ordinary Baskakov operator.

Mathematical Subject Classification (2010). Primary 41A36; Secondary 41A60

Keywords and phrases. Linear positive operator, q-integers, Voronovskaja-type formula

1 Introduction

The roots of the paper are in connection with a general class of operators introduced by Baskakov [6] and developed by Mastroianni [8]. For comparing, [3, p. 344, p. 351] can also be consulted. A q-analogue of these operators has been introduced in [9]. The author investigated their weighted statistical approximation properties. For the sake of completeness, we recall: a q-analogue or a q-extension of a mathematical object X is a family of objects X(q) (usually, 0 < q < 1) such that $\lim_{q \to 1^-} X(q) = X$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Deeping the researches on the mentioned q-operators, in [1] all their moments were explicitly expressed with the help of a new q-analogue of the Stirling numbers of the second kind. At the same time, the rate of convergence was established in two cases: for bounded functions and for functions having a polynomial growth.

The aim of this note is to present an asymptotic formula of Voronovskajatype for q-Baskakov-Mastroianni operators. As applications, we deduce asymptotic formulae for two special cases which are q-extensions of the Szász-Mirakjan operators and the ordinary Baskakov operators, respectively.

The paper is organized as follows. Section 2 includes elements of q-Calculus, the form of the announced class of operators and some results obtained previously. Section 3 comprises the statement of the main result and two particular asymptotic formulae. The last Section is devoted to the proofs of our results.

2 The $T_{n,q}$ operators

First of all we collect some useful formulas in q-Calculus, see, e.g., [4], [7]. Let q > 0. For any $n \in \mathbb{N}_0 = \{0\} \cup \mathbb{N}$, the q-integer $[n]_q$ and the q-factorial $[n]_q!$ are respectively defined by

$$[n]_q = \sum_{j=0}^{n-1} q^j, \quad [n]_q! = \prod_{j=1}^n [j]_q, \quad n \in \mathbb{N},$$

and $[0]_q=0,\ [0]_q!=1.$ The q-binomial coefficients are denoted by $\left[\begin{array}{c} n\\k\end{array}\right]_q$ and are defined by

$$\left[\begin{array}{c} n \\ k \end{array}\right]_{q} = \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad k = 0, 1, \dots, n.$$

For q=1 one has $[n]_1=n$, $[n]_1!=n!$ and $\left[\begin{array}{c} n \\ k \end{array} \right]_1$ turns into the ordinary binomial coefficient $\left(\begin{array}{c} n \\ k \end{array} \right)$.

We also recall the significance of the notation $(x-a)_q^r$.

$$(x-a)_q^r = \prod_{s=0}^{r-1} (x-q^s a) = \sum_{k=0}^r \begin{bmatrix} r \\ k \end{bmatrix}_q q^{\frac{k(k-1)}{2}} x^{r-k} (-a)^k.$$

In the sequel we always will assume that $q \in (0, 1)$.

The q-derivative of a function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \quad x \neq 0, \quad D_q f(0) := \lim_{x \to 0} D_q f(x),$$

and the high q-derivatives $D_q^0 f := f$, $D_q^n f := D_q \left(D_q^{n-1} f \right)$, $n = 1, 2, \dots$

A function f is q-differentiable on a real interval I if for any $q \in (0, 1)$ the q-derivative of f exists and is finite in every $x \in I$. Also, we recall the product rule

$$D_q(f(x)g(x)) = g(x)D_qf(x) + f(qx)D_qg(x).$$

For each $(m,r) \in \mathbb{N}_0 \times \mathbb{N}_0$, a q-analogue of Stirling numbers of the second kind can be considered the following

$$\sigma_q(m,r) = \frac{1}{[r]_q!} \sum_{j=0}^r (-1)^j q^{(r-j)(r-j-1)/2} \begin{bmatrix} r \\ j \end{bmatrix}_q \frac{[r-j]_q^m}{q^{(r-j)m}}.$$
 (2.1)

Lemma 2.1 ([1, Lemma 2]) The numbers $\sigma_q(m,r)$, $(m,r) \in \mathbb{N}_0 \times \mathbb{N}_0$, given by (2.1) enjoy the following properties.

$$\sigma_q(m,0) = 0, \quad m \in \mathbb{N}, \quad and \quad \sigma_q(0,0) = 1,$$
 (2.2)

$$q^r \sigma_q(m+1,r) = [r]_q \sigma_q(m,r) + \sigma_q(m,r-1), m \in \mathbb{N}_0, r \in \mathbb{N}, (2.3)$$

$$\sigma_q(m,r) = 0, \quad r > m. \tag{2.4}$$

It is known that a q-analogue is not unique. In this direction it is worth to be mentioned that others q-Stirling numbers denoted by $S_q(m,r)$ have been used by Ali Aral [5] in studying a q-generalization of Szász-Mirakjan operators.

Now we are in position to present $T_{n,q}$, $n \in \mathbb{N}$, $q \in (0,1)$, operators [1, Section 3]. Let $(\phi_n)_{n\geq 1}$ be a sequence of real valued functions defined on \mathbb{R}_+ , continuously infinitely q-differentiable on \mathbb{R}_+ and satisfying the following conditions.

$$(P1) \phi_n(0) = 1, n \in \mathbb{N}, (2.5)$$

$$(P2) (-1)^k D_q^k \phi_n(x) \ge 0, n \in \mathbb{N}, k \in \mathbb{N}_0, x \ge 0, (2.6)$$

(P3) For every $(n,k) \in \mathbb{N} \times \mathbb{N}_0$ there exists a positive integer i_k , $0 \le i_k \le k$, and a real function $\beta_{n,k,i_k,q} : \mathbb{R}_+ \to \mathbb{R}$ such that $D_q^{k+1}\phi_n(x) = (-1)^{i_k+1}D_q^{k-i_k}\phi_n(q^{i_k+1}x)\beta_{n,k,i_k,q}(x)$, (2.7) where

$$\lim_{n} \frac{\beta_{n,k,i_k,q}(0)}{[n]_q^{i_k+1} q^{k-i_k}} = 1.$$
 (2.8)

We define the operators

$$(T_{n,q}f)(x) = \sum_{k=0}^{\infty} \frac{(-x)^k}{[k]_q!} q^{\frac{k(k-1)}{2}} D_q^k \phi_n(x) f\left(\frac{[k]_q}{[n]_q q^{k-1}}\right), \quad x \ge 0, \quad (2.9)$$

where $f \in \mathcal{F}(\mathbb{R}_+) := \{f : \mathbb{R}_+ \to \mathbb{R}, \text{ the series in } (2.9) \text{ is absolutely convergent for all } n \in \mathbb{N} \}$.

Clearly, for each $n \in \mathbb{N}$, $T_{n,q}$ is linear and positive operator. With the help of q-Stirling numbers defined by (2.1), we are able to indicate all moments of our operators.

Lemma 2.2 ([1, Lemma 4]) Let $T_{n,q}$, $n \in \mathbb{N}$, be defined by (2.9). One has

$$(T_{n,q}e_m)(x) = \sum_{r=0}^{m} \frac{(-x)^r}{[n]_q^m} q^m D_q^r \phi_n(0) \sigma_q(m,r), \quad x \ge 0,$$
 (2.10)

where e_m stands for the monomial of m degree, $m \in \mathbb{N}_0$.

We easily deduce

$$(T_{n,q}e_0)(x) = 1,$$
 (2.11)

$$(T_{n,q}e_1)(x) = -x\frac{D_q\phi_n(0)}{[n]_q},$$
 (2.12)

$$(T_{n,q}e_2)(x) = x^2 \frac{D_q^2 \phi_n(0)}{q[n]_q^2} - x \frac{D_q \phi_n(0)}{[n]_q^2}.$$
 (2.13)

These three particular moments have been obtained by a straightforward calculation in [9, Lemma 1], without involving q-Stirling numbers $\sigma_q(m,r)$.

Since $\lim_{n} [n]_q = (1-q)^{-1}$, relation (2.13) implies

$$\lim_{n} (T_{n,q}e_2)(x) = q^{-i_1}x^2 + (1-q)x \neq e_2(x),$$

where the index i_1 can be 0 or 1, see relation (2.7). Clearly, $(T_{n,q})_n$ does not form an approximation process.

Remark 2.3 To become $(T_{n,q})_n$ an approximation process, for each $n \in \mathbb{N}$, the constant q will be replaced by a number $q_n \in (0,1)$ such that $\lim_n q_n = 1$. Under this assumption, for any compact $K \subset \mathbb{R}_+$ and for each $f \in \mathcal{F}(\mathbb{R}_+)$ which is continuous and bounded, one has

$$\lim_{n} (T_{n,q_n} f)(x) = f(x), \text{ uniformly in } x \in \mathcal{K}.$$
 (2.14)

The fastest motivation of the above statement can be made by using a more general result obtained by Altomare [2] in the setting of locally compact metric space. It reads as follows.

Theorem 2.4 ([2, Theorem 3.5]) Let J be a real interval and consider a lattice subspace E of the space F(J) of all real-valued functions on J, containing the functions $e_0(x) = 1$, $e_1(x) = x$ and $e_2(x) = x^2$ $(x \in J)$. Consider a sequence (L_n) $n \ge 1$ of positive linear operators from E into F(J) and assume that for every k = 0, 1, 2

 $\lim_{n\to\infty} L_n(e_k) = e_k \text{ uniformly on compact subsets of } J.$

Then

 $\lim_{n\to\infty} L_n(f) = f \text{ uniformly on compact subsets of } J$

for every $f \in E \cap C_b(J)$ ($C_b(J)$ denoting the space of all continuous and bounded functions on J).

Choosing $J = \mathbb{R}_+$, $E = \mathcal{F}(\mathbb{R}_+)$, and taking into account relations (2.11), (2.12), (2.13), Theorem 2.4 leads us to the identity (2.14).

3 Results

Examining (2.6) and (2.7), for the sake of brevity we denote

$$d_{n,k} = D_q^k \phi_n(0), \quad n \in \mathbb{N}, \quad k \in \mathbb{N}_0.$$
(3.1)

For each $x \geq 0$, let φ_x be the function defined by $\varphi_x(t) = t - x$, $t \geq 0$. $T_{n,q}\varphi_x^s$ represents the s-th order central moment of the operator $T_{n,q}$, where $s \in \mathbb{N}_0$.

On the basis of relations (2.5), (2.7) and (2.8) one has $d_{n,k} \neq 0$ for every $n \in \mathbb{N}$ and $k \in \mathbb{N}_0$. Also $\sigma_q(s,0) = 0$, $s \in \mathbb{N}$, see (2.2). By inspecting relation (2.10), we conclude

Remark 3.1 For a given $s \in \mathbb{N}$, both $T_{n,q}e_s$ and $T_{n,q}\varphi_x^s$ are polynomials in x of s degree having the constant term null.

Consequently, we can write

$$(T_{n,q}\varphi_x^s)(x) = \sum_{k=1}^s m_{n,s,k}(q)x^k, \quad x \ge 0.$$
 (3.2)

Lemma 3.2 Let $T_{n,q}$, $n \in \mathbb{N}$, be defined by (2.9). For s = 4, the coefficients of the polynomial introduced by (3.2) have the following values.

$$m_{n,4,1}(q) = -\frac{d_{n,1}}{[n]_q^4}, \quad m_{n,4,2}(q) = \frac{1+3q+3q^2}{q^3} \frac{d_{n,2}}{[n]_q^4} + 4\frac{d_{n,1}}{[n]_q^3}, \quad (3.3)$$

$$m_{n,4,3}(q) = -\frac{1+2q+3q^2}{q^5} \frac{d_{n,3}}{[n]_q^4} - \frac{4(1+2q)}{q^2} \frac{d_{n,2}}{[n]_q^3} - 6\frac{d_{n,1}}{[n]_q^2},$$
 (3.4)

$$m_{n,4,4}(q) = \frac{d_{n,4}}{q^6[n]_q^4} + 4\frac{d_{n,3}}{q^3[n]_q^3} + 6\frac{d_{n,2}}{q[n]_q^2} + 4\frac{d_{n,1}}{[n]_q} + 1.$$
 (3.5)

Lemma 3.3 Let $(q_n)_{n\geq 1}$, $0 < q_n < 1$, be a sequence such that $\lim_{n} q_n = 1$. Supposing that the properties (P1), (P2), (P3) take place for $q = q_n$, one has

$$\lim_{n} \frac{d_{n,k}}{[n]_{q_n}^k} = (-1)^k, \quad k \in \mathbb{N}_0, \tag{3.6}$$

where $d_{n,k}$ is defined as in (3.1).

Lemma 3.4 Let $(q_n)_{n\geq 1}$, $0 < q_n < 1$, and $(\lambda_n)_{n\geq 1}$, $\lambda_n > 0$, be sequences such that $\lim_n q_n = 1$, $\lim_n \lambda_n = \infty$ and $\lim_n \frac{\lambda_n}{[n]_{q_n}}$ is finite. Let T_{n,q_n} , $n \in \mathbb{N}$, be defined as in (2.9). If the sequences

$$\left(\lambda_n^2 m_{n,4,3}(q_n)\right)_n$$
 and $\left(\lambda_n^2 m_{n,4,4}(q_n)\right)_n$ are bounded, (3.7)

then $(\lambda_n^2(T_{n,q_n}\varphi_x^4)(x))_n$ is bounded with respect to n. In the above, $m_{n,4,3}$ and $m_{n,4,4}$ are given by (3.4) and (3.5), respectively.

As usual, $C^2(\mathbb{R}_+)$ denotes the space of all real-valued continuous functions on \mathbb{R}_+ which are twice continuously differentiable in \mathbb{R}_+ .

Returning at the sequence $(\lambda_n)_{n\geq 1}$ of strictly positive real numbers with the property $\lim_n \lambda_n = \infty$, we suppose that the real numbers τ_1, τ_2, τ_3 exist

verifying the following relations

$$\begin{cases}
\lim_{n} \lambda_{n} \left(\frac{d_{n,1}}{[n]q_{n}} + 1 \right) = \tau_{1}, \\
\lim_{n} \frac{\lambda_{n}}{[n]q_{n}} = \tau_{2}, \\
\lim_{n} \lambda_{n} \left(1 + 2 \frac{d_{n,1}}{[n]q_{n}} + \frac{d_{n,2}}{q_{n}[n]_{q_{n}}^{2}} \right) = \tau_{3},
\end{cases} (3.8)$$

where $d_{n,1}, d_{n,2}$ are defined as in (3.1) with $q = q_n$. The sequence $(\lambda_n)_n$ will play a crucial role in establishing the Voronovskaja-type theorem.

Theorem 3.5 Let $(q_n)_{n\geq 1}$, $0 < q_n < 1$, and $(\lambda_n)_{n\geq 1}$, $\lambda_n > 0$, be sequences such that $\lim_n q_n = 1$, $\lim_n \lambda_n = \infty$ and the conditions (3.8) are fulfilled. Let T_{n,q_n} , $n \in \mathbb{N}$, be defined as in (2.9). If (3.7) takes place, then for any function $f \in \mathcal{F}(\mathbb{R}_+) \cap C^2(\mathbb{R}_+)$ with f'' bounded, one has

$$\lim_{n \to \infty} \lambda_n \left((T_{n,q_n} f)(x) - f(x) \right) = -\tau_1 f'(x) + \frac{1}{2} \left(\tau_2 x + \tau_3 x^2 \right) f''(x), \quad (3.9)$$

for any x > 0.

The theorem shows that $(T_{n,q_n}f)(x) - f(x)$ is of order not better then $1/\lambda_n$, if f'(x) and f''(x) are not simultaneous null.

Two special cases of T_{n,q_n} , $n \in \mathbb{N}$, operators have been exhibited in [9, Section 5]. In order to obtain an asymptotic formula of Voronovskaja-type for these classes of q-operators, we will check the possibility to apply Theorem 3.5.

Application 1. We choose $\phi_n(x) := E_{q_n}\left(-[n]_{q_n}x\right)$, $x \geq 0$, $n \in \mathbb{N}$. Here E_{q_n} is the known expansion in q-Calculus of the exponential function being defined as follows

$$E_{q_n}(x) = \sum_{k=0}^{\infty} q_n^{k(k-1)/2} \frac{x^k}{[k]_{q_n}!}, \quad x \in \mathbb{R},$$

see, e.g., [7, p. 31]. T_{n,q_n} operators turn into S_{n,q_n}^* , a q-analogue of Szász-Mirakjan operators. For all $(n,k) \in \mathbb{N} \times \mathbb{N}_0$, we have $\phi_n(0) = 1$,

$$D_{q_n}^k \phi_n(x) = (-1)^k \left[n \right]_{q_n}^k q_n^{\frac{k(k-1)}{2}} E_{q_n} \left(- \left[n \right]_{q_n} q_n^k x \right), \quad x \ge 0,$$

and

$$D_{q_n}^{k+1}\phi_n(x) = -D_{q_n}^k\phi_n(q_n x)\beta_{n,k,0,q_n}(x).$$

Consequently, relations (2.5)-(2.8) hold, where, for every $(n, k) \in \mathbb{N} \times \mathbb{N}_0$, $i_k = 0$ and $\beta_{n,k,0,q_n}(x) = [n]_{q_n} q_n^k$ is a constant function. Taking $\lambda_n = [n]_{q_n}$, all we have to do is to verify conditions (3.8) and (3.7).

all we have to do is to verify conditions (3.8) and (3.7). Since $d_{n,k} = (-1)^k [n]_{q_n}^k q_n^{\frac{k(k-1)}{2}}$, we get $\tau_1 = 0$, $\tau_2 = 1$ and $\tau_3 = 0$. Further on, by using (3.4) and (3.5), we easily deduce

$$m_{n,4,3}(q_n) = \frac{(1-q_n)^2}{q_n^2[n]_{q_n}}, \quad m_{n,4,4}(q_n) = 0,$$

and (3.7) takes place. The asymptotic formula (3.9) for S_{n,q_n}^* will be read as follows

$$\lim_{n \to \infty} [n]_{q_n} \left(\left(S_{n,q_n}^* f \right)(x) - f(x) \right) = \frac{x}{2} f''(x), \quad x > 0, \tag{3.10}$$

where $f \in \mathcal{F}(\mathbb{R}_+) \cap C^2(\mathbb{R}_+)$ with f'' bounded.

Application 2. Choosing $\phi_n(x) := (1 + q_n^n x)_{q_n}^{-n}$, $x \ge 0$, $n \in \mathbb{N}$, T_{n,q_n} operators become a q-analogue of the ordinary Baskakov operators, say V_{n,q_n}^* . With the help of the known formulas $[-n]_q = -[n]_q q^{-n}$, $n \in \mathbb{N}$, and $D_q (1 + ax)_q^{\alpha} = [\alpha]_q a (1 + aqx)_q^{\alpha-1}$ for any real numbers a, α , we deduce

$$D_{q_n}^k \phi_n(x) = (-1)^k \left(\prod_{j=0}^{k-1} [n+j]_{q_n} \right) \left(1 + q_n^{n+k} x \right)_{q_n}^{-n-k}, \quad x \ge 0.$$

Conditions (2.5) and (2.6) are satisfied. Choosing $i_k = k$ and $\beta_{n,k,k,q_n}(x) = \left(\prod_{j=0}^k [n+j]_{q_n}\right) \left(1+q_n^{k+1}x\right)_{q_n}^{-k-1}, n \in \mathbb{N}, k \in \mathbb{N}_0, (2.7) \text{ and } (2.8) \text{ are also fulfilled. In the above we used the formula } (1+y)_q^{\alpha}(1+q^{\alpha}y)_q^{\beta} = (1+y)_q^{\alpha+\beta}$

for $q = q_n$, $\alpha = -n$, $\beta = -k - 1$ and $y = q_n^{n+k+1}x$.

Again, we choose $\lambda_n = [n]_{q_n}$. This time, $d_{n,k} = (-1)^k [n]_{q_n} \cdot \ldots \cdot [n+k-1]_{q_n}$ and, in accordance with (3.8), one gets $\tau_1 = 0$, $\tau_2 = 1$, $\tau_3 = 1$. With a little more effort we find

$$\lambda_n^2 m_{n,4,3}(q_n) = \frac{(q_n - 1)^2}{q_n^2} [n]_{q_n} - \frac{(1 + 2q_n)(q_n^2 - 2q_n - 1)}{q_n^4} + \frac{(1 + q_n)(1 + 2q_n + 3q_n^2)}{q_n^5 [n]_{q_n}}$$

and

$$\lambda_n^2 m_{n,4,4}(q_n) = \frac{(q_n - 1)^2}{q_n^3} [n]_{q_n} - \frac{q_n^3 - 3q_n - 1}{q_n^5} + \frac{(1 + q_n)(1 + q_n + q_n^2)}{q_n^6 [n]_{q_n}}.$$

We used the identities $[n+k]_{q_n} = 1 + q_n + \ldots + q_n^k[n]_{q_n}$ for k = 1, 2, 3. Since $q_n \in (0,1)$ and $q_n \to 1$, the requirement (3.7) is fulfilled. Actually, both sequences are convergent.

Applying Theorem 3.5, we obtain the following asymptotic formula.

$$\lim_{n} [n]_{q_n} \left(\left(V_{n,q_n}^* f \right)(x) - f(x) \right) = \frac{x(x+1)}{2} f''(x), \quad x > 0,$$
 (3.11)

where $f \in \mathcal{F}(\mathbb{R}_+) \cap C^2(\mathbb{R}_+)$ with f'' bounded.

Remark 3.6 For $q_n = 1$, $S_{n,1}^*$ and $V_{n,1}^*$ turn into the classical Szász-Mirakjan and Baskakov operators, respectively. Our formulae (3.10), (3.11) become the known Voronovskaja-type identities verified by these discrete operators. In these two special cases the order of approximation is 1/n.

4 Proofs

Proof of Lemma 3.2

First of all, examining relations (2.2)-(2.4), we deduce $\sigma_q(m,m) = q^{-\frac{m(m+1)}{2}}, m \in \mathbb{N}_0$.

To calculate all required coefficients, we need to know some particular values of q-Stirling numbers $\sigma_q(m,r)$ described by (2.1). The below table may be useful.

$m \setminus r$	0	1	2	3	4
0	1	0	0	0	0
1	0	q^{-1}	0	0	0
2	0	q^{-2}	q^{-3}	0	0
3	0	q^{-3}		q^{-6}	0
4	0	q^{-4}	$(1+3q+3q^2)q^{-7}$	$(1+2q+3q^2)q^{-9}$	q^{-10}

The identities (3.3)-(3.5) result after a boring calculation based on (2.10) and taking in view that

$$\left(T_{n,q}\varphi_x^4\right)(x) = \sum_{m=0}^4 (-1)^m \begin{pmatrix} 4 \\ m \end{pmatrix} x^m \left(T_{n,q}e_m\right)(x).$$

Г

Proof of Lemma 3.3

For k=0 the conclusion is evident, see (2.5). Further on, choosing x=0 in (2.7), we can write

$$\frac{d_{n,k+1}}{[n]_{q_n}^{k+1}} = (-1)^{i_k+1} q_n^{k-i_k} \frac{\beta_{n,k,i_k,q_n}(0)}{[n]_{q_n}^{i_k+1} q_n^{k-i_k}} \frac{d_{n,k-i_k}}{[n]_{q_n}^{k-i_k}},\tag{4.1}$$

for a certain index $i_k \in \{0, 1, \dots, k\}$.

The proof runs by mathematical induction with respect to k. Assuming $\lim_{n} \frac{d_{n,j}}{[n]_{q_n}^j} = (-1)^j \text{ for } j = \overline{0,k}, \text{ relations (4.1) and (2.8) imply } \lim_{n} \frac{d_{n,k+1}}{[n]_{q_n}^{k+1}} = (-1)^{k+1}. \text{ Consequently, relation (3.6) holds.}$

Proof of Lemma 3.4

Since $\lim_{n} \frac{1}{[n]_{q_n}} = 0$, setting $\lim_{n} \frac{\lambda_n}{[n]_{q_n}} = \tau_2 \in \mathbb{R}$, we get $\lim_{n} \lambda_n^2 m_{n,4,1}(q_n) = 0$ and $\lim_{n} \lambda_n^2 m_{n,4,2}(q_n) = 7\tau_2^2 - 4\tau_2$, see (3.3). Taking into account (3.2), the assumptions' lemma guarantee the achievement of the statement.

Proof of Theorem 3.5

Let x > 0 be fixed. For any $f \in \mathcal{F}(\mathbb{R}_+) \cap C^2(\mathbb{R}_+)$ with f'' bounded, we define

$$\phi_f(x;t) = \begin{cases} \frac{f(t) - f(x) - \varphi_x(t)f'(x) - 2^{-1}\varphi_x^2(t)f''(x)}{(t - x)^2}, & \text{if } t \neq x, \\ 0, & \text{if } t = x, \end{cases}$$

where $t \in \mathbb{R}_+$. We get $\lim_{t \to x} \phi_f(x;t) = 0 = \phi_f(x;x)$, consequently $\phi_f(x;\cdot) \in$ $C(\mathbb{R}_+)$. Moreover, φ_x^2 and $\varphi_x^2 \phi_f(x;\cdot)$ belong to $\mathcal{F}(\mathbb{R}_+)$. For the function f, we can write the Lagrange form of the Taylor formula

$$f(t) = f(x) + \varphi_x(t)f'(x) + \frac{1}{2}\varphi_x^2(t)f''(x) + \varphi_x^2(t)\phi_f(x;t).$$

Applying T_{n,q_n} and using (2.11), we obtain

$$\left(T_{n,q_{n}}f\right)\left(x\right)-f(x)$$

$$= \left(T_{n,q_n}\varphi_x\right)(x)f'(x) + \frac{1}{2}\left(T_{n,q_n}\varphi_x^2\right)(x)f''(x) + T_{n,q_n}\left(\varphi_x^2\phi_f(x;\cdot)\right)(x).$$

Taking into account relations (2.12)-(2.13), we get

$$(T_{n,q_n}\varphi_x)(x) = -\left(\frac{d_{n,1}}{[n]_{q_n}} + 1\right)x,$$

$$(T_{n,q_n}\varphi_x^2)(x) = \left(\frac{d_{n,2}}{q_n[n]_{q_n}^2} + 2\frac{d_{n,1}}{[n]_{q_n}} + 1\right)x^2 - \frac{d_{n,1}}{[n]_{q_n}^2}x,$$

and hence

$$\lambda_{n} ((T_{n,q_{n}}f)(x) - f(x)) = -\lambda_{n} \left(\frac{d_{n,1}}{[n]_{q_{n}}} + 1\right) x f'(x)$$

$$+ \frac{1}{2} \left(\lambda_{n} \left(\frac{d_{n,2}}{q_{n}[n]_{q_{n}}^{2}} + 2\frac{d_{n,1}}{[n]_{q_{n}}} + 1\right) x^{2} - \frac{\lambda_{n} d_{n,1}}{[n]_{q_{n}}^{2}} x\right) f''(x)$$

$$+ \lambda_{n} T_{n,q_{n}} \left(\varphi_{x}^{2} \phi_{f}(x; \cdot)\right) (x). \tag{4.2}$$

Since $\varphi_x^2 \phi_f(x,\cdot) \in \mathcal{F}(\mathbb{R}_+)$ and the series in (2.9) is absolutely convergent, we deduce $\varphi_x^2 |\phi_f(x,\cdot)| \in \mathcal{F}(\mathbb{R}_+)$. Further on, by applying Cauchy inequality for the last term of (4.2), one has

$$0 \le \lambda_n \left| T_{n,q_n} \left(\varphi_x^2 \phi_f(x; \cdot) \right) (x) \right| \le \lambda_n T_{n,q_n} \left(\varphi_x^2 \left| \phi_f(x; \cdot) \right|, x \right)$$
$$\le \left\{ \lambda_n^2 \left(T_{n,q_n} \varphi_x^4 \right) (x) \right\}^{1/2} \left\{ \left(T_{n,q_n} \phi_f^2(x; \cdot) \right) (x) \right\}^{1/2}.$$

Clearly, $\phi_f^2(x;\cdot)$ is continuous on \mathbb{R}_+ . Under the assumption made on the function f, we get $\phi_f^2(x,\cdot) \in C_b(\mathbb{R}_+) \subset \mathcal{F}(\mathbb{R}_+)$, and in harmony with Remark 2.3, we have $\lim_n \left(T_{n,q_n}\phi_f^2(x;\cdot)\right)(x) = \phi_f^2(x;x) = 0$. On the other hand, since (3.7) holds, Lemma 3.4 guarantees that a constant k(x) independent of n exists, such that $\lambda_n^2\left(T_{n,q_n}\phi_x^4\right)(x) \leq k(x)$ for each $n \in \mathbb{N}$. Consequently, $\lim_n \lambda_n \left|T_{n,q_n}\left(\varphi_x^2\phi_f(x;\cdot)\right)(x)\right| = 0$. Returning at (4.2),

Consequently, $\lim_{n} \lambda_n |T_{n,q_n}(\varphi_x^2 \phi_f(x;\cdot))(x)| = 0$. Returning at (4.2), for n tending to infinity, on the basis of (3.8) and (3.6) with k = 1, 2, we obtain the desired pointwise convergence.

Acknowledgement

The authors are grateful to Professor F. Altomare for his active involvement in the proof of the identity (2.14), formulating relevant suggestions.

References

- [1] O. AGRATINI, C. RADU, On q-Baskakov-Mastroianni Operators, Rocky Mountain J. Math., (accepted for publication).
- [2] F. Altomare, Korovkin-type theorems and Approximation by Positive Linear Operators, Surveys in Approximation Theory (SAT), 2010 (to appear).
- [3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, Vol.17, Walter de Gruyter, Berlin, 1994.
- [4] G.E. Andrews, q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences, Number 66, American Mathematical Society, 1986.
- [5] A. Aral, A generalization of Szász-Mirakjan Operators Based on q-Integers, Math. Comput. Model. 47 (2008), 1052-1062.
- [6] V.A. BASKAKOV, An Example of a Sequence of Linear Positive Operators in the space of Continuous Functions, Dokl. Akad. Nauk. SSSR 113 (1957), 249-251, (in Russian).
- [7] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
- [8] G. MASTROIANNI, Su un Operatore Lineare e Positivo, Rend. Acc. Sc. Fis. Mat., Napoli, Serie IV, 46 (1979), 161-176.
- [9] C. Radu, On Statistical Approximation of a General Class of Positive Linear Operators Extended in q-Calculus, Appl. Math. Comput. 215 (2009), 6, 2317-2325.

OCTAVIAN AGRATINI, CRISTINA RADU Faculty of Mathematics and Computer Science Babeş-Bolyai University 1 Kogălniceanu St., 400084 Cluj-Napoca e-mail: agratini@math.ubbcluj.ro e-mail: rcristina@math.ubbcluj.ro