Poincaré inequalities in reflexive cones

Petru Jebelean ${ }^{\text {a,* }}$, Radu Precup ${ }^{\text {b }}$
${ }^{a}$ West University of Timişoara, Department of Mathematics, Blvd. V. Pârvan no. 4, 300223 Timişoara, Romania
${ }^{\text {b }}$ Babeş-Bolyai University, Department of Applied Mathematics, Str. M. Kogălniceanu no. 1, 400084 Cluj, Romania

A R T I C L E IN F O

Article history:

Received 4 May 2010
Accepted 19 October 2010

Keywords:

Reflexive cone
Compact embedding
Trace operator
Boundary value problem
A priori bounds

Abstract

We present an abstract result concerning Poincaré inequalities in cones. Some examples in Sobolev spaces are provided. We also discuss an application to a priori bounds of solutions for a general boundary value problem involving the vector p-Laplacian operator.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Given a bounded open domain $\Omega \subset \mathbb{R}^{N}$ and $p>1$, the classical Poincaré (others call it Friedrichs-Poincaré) inequality says that there exists a positive constant $k=k(p, \Omega)$ such that

$$
\begin{equation*}
\|u\|_{L^{p}} \leq k\|\nabla u\|_{L^{p}} \quad \forall u \in W \tag{1.1}
\end{equation*}
$$

where W is either $W_{0}^{1, p}(\Omega)$ or $\tilde{W}=\left\{u \in W^{1, p}(\Omega): \int_{\Omega} u=0\right\}$; for $N=1$ and $W=\tilde{W}$ inequality (1.1) is also known as the Wirtinger inequality [1]. More generally, the following result is known (see e.g. [2, Theorem 2.5.19]).

Theorem A. If W is a closed subspace of $W^{1, p}(\Omega)$ which contains no nonzero constant functions, then there exists a constant $k>0$ such that (1.1) holds true.

The aim of this note is to give an abstract unifying approach to a class of Poincaré type inequalities. As the examples provided show, this approach can be applied, among others to cones from $W^{1, p}(\Omega)$. The application that we give suggests the applicability of these inequalities for inferring a priori bounds on the solutions for a class of boundary value problems involving the vector p-Laplacian operator.

2. An abstract result

Below, X will be a subspace of a fixed normed linear space $(Y,\| \|)$ and $\|: X \rightarrow \mathbb{R}$ will be a seminorm on X. For $K \subset X$ a given nonzero (pointed) cone ($\alpha K \subset K, \forall \alpha \geq 0$), we introduce the constant

$$
\begin{equation*}
\mu_{K}:=\inf \left\{\frac{|u|}{\|u\|}: u \in K \backslash\{0\}\right\} \tag{2.1}
\end{equation*}
$$

[^0]0893-9659/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.10.024

Clearly, as

$$
\left\{\frac{|u|}{\|u\|}: u \in K \backslash\{0\}\right\}=\{|u|: u \in K,\|u\|=1\}
$$

one has that

$$
\begin{equation*}
\mu_{K}=\inf \{|u|: u \in K,\|u\|=1\} \tag{2.2}
\end{equation*}
$$

The space X will be endowed with the norm

$$
[u]=\left(\|u\|^{p}+|u|^{p}\right)^{\frac{1}{p}}, \quad \forall u \in X
$$

and the topological properties of K will be understood with respect to ($X,[]$). We say that the cone K is reflexive if every bounded sequence $\left\{u_{n}\right\} \subset K$ has a subsequence which is weakly convergent to some $u \in K$. Defining

$$
N:=\{u \in X:|x|=0\}
$$

we have the following:
Theorem 2.1. Assume that:
(i) the cone K is reflexive,
(ii) the embedding $K \subset Y$ is compact.

Then the infimum in (2.1) is attained: there exists some $e \in K \backslash\{0\}$ such that $\mu_{K}=|e| /\|e\|$; if, in addition $N \cap K=\{0\}$, one has that $\mu_{K}>0$.
Proof. It suffices to prove that the infimum is attained in (2.2). Let $\left\{u_{n}\right\} \subset K$ be such that

$$
\left\|u_{n}\right\|=1 \quad \text { and } \quad \mu_{K} \leq\left|u_{n}\right| \leq \mu_{K}+\frac{1}{n} \quad \forall n \in \mathbb{N}
$$

As $\left[u_{n}\right]^{p}=1+\left|u_{n}\right|^{p}$, the sequence $\left\{u_{n}\right\}$ is bounded in X. From (i) there is a subsequence of $\left\{u_{n}\right\}$, still denoted by $\left\{u_{n}\right\}$, with $u_{n} \rightarrow u \in K$ weakly in X. Using (ii) we infer that $u_{n} \rightarrow u$ strongly in Y. This implies that $\|u\|=1$, and so $\mu_{K} \leq|u|$. Then, by the weak lower semicontinuity of the norm [], we get

$$
\left(1+|u|^{p}\right)^{\frac{1}{p}}=[u] \leq \liminf _{n \rightarrow \infty}\left[u_{n}\right]=\left(1+\mu_{K}^{p}\right)^{\frac{1}{p}},
$$

which gives $|u| \leq \mu_{K}$. We infer that $\mu_{K}=|u|$ and the proof is complete.
Corollary 2.2. If ($X,[]$) is reflexive, the cone $K \subset X$ is weakly closed, the embedding $K \subset Y$ is compact and $N \cap K=\{0\}$, then $\mu_{K}>0$.

Corollary 2.3. If $(X,[])$ is reflexive, the embedding $X \subset Y$ is compact and $N=\{0\}$, then $\mu_{X}>0$ and

$$
\|u\| \leq \frac{1}{\mu_{X}}|u| \quad \forall u \in X
$$

In addition, || is a norm on X which is equivalent to [].
Proof. We have

$$
|u| \leq[u] \leq\left(\frac{1}{\mu_{X}^{p}}|u|^{p}+|u|^{p}\right)^{\frac{1}{p}} \leq\left(2 \max \left\{\frac{1}{\mu_{X}^{p}}, 1\right\}\right)^{\frac{1}{p}}|u| \quad \forall u \in X
$$

Remark 2.4. It is clear that Theorem A is an immediate consequence of Corollary 2.3.

3. Some examples

Example 1. Let $C_{1} \subset \mathbb{R}^{N} \times \mathbb{R}^{N}$ be a closed cone and $d=\left\{(x, x): x \in \mathbb{R}^{N}\right\}$. We set

$$
K_{1}:=\left\{u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right):(u(0), u(T)) \in C_{1}\right\}
$$

Note that since $W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right) \subset C\left([0, T] ; \mathbb{R}^{N}\right)$, the evaluations of $u(0)$ and $u(T)$ in the definition of K_{1} make sense.
Theorem 3.1. If $C_{1} \cap d=\{(0,0)\}$ then

$$
\mu_{K_{1}}=\inf \left\{\frac{\left\|u^{\prime}\right\|_{L^{p}}}{\|u\|_{L^{p}}}: u \in K_{1} \backslash\{0\}\right\}>0 .
$$

Proof. We apply Corollary 2.2 with the following choices:

$$
\begin{aligned}
& (Y,\| \|)=\left(L^{p}\left([0, T] ; \mathbb{R}^{N}\right),\| \|_{L^{p}}\right) \\
& X=W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right), \quad|u|=\left\|u^{\prime}\right\|_{L^{p}} \quad \forall u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)
\end{aligned}
$$

and $K=K_{1}$. The space $W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)$ endowed with the norm

$$
\begin{equation*}
[u]:=[u]_{1, p}=\left(\|u\|_{L^{p}}^{p}+\left\|u^{\prime}\right\|_{L^{p}}^{p}\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

is uniformly convex (see [3, Theorem 2.1] or [4, Corollary 3.8]) and hence it is reflexive by the Milman-Pettis theorem. On the other hand, C_{1} being closed, by the compactness of the embedding $W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right) \subset C\left([0, T] ; \mathbb{R}^{N}\right)$ we deduce that K_{1} is weakly closed. Also, as $W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right) \subset L^{p}\left([0, T] ; \mathbb{R}^{N}\right)$ is compact, the embedding $K_{1} \subset L^{p}\left([0, T] ; \mathbb{R}^{N}\right)$ is compact. From $C_{1} \cap d=\{(0,0)\}$ we get $\left\{u \in K_{1}:\left\|u^{\prime}\right\|_{L^{p}}=0\right\}=\{0\}$ and the proof is complete.

Corollary 3.2. If $C_{1} \cap d=\{(0,0)\}$ then there is a constant $k>0$ such that

$$
\|u\|_{L^{p}} \leq k\left\|u^{\prime}\right\|_{L^{p}} \quad \forall u \in K_{1} \cup\left(-K_{1}\right) .
$$

Example 2. Next, let Ω be a smooth bounded domain in \mathbb{R}^{N} and $C_{2} \subset L^{p}(\partial \Omega)$ be a closed cone. We denote by \mathcal{R} the set of all constant functions defined on $\partial \Omega$. Putting

$$
K_{2}:=\left\{u \in W^{1, p}(\Omega):\left.u\right|_{\partial \Omega} \in C_{2}\right\}
$$

we have the following result.
Theorem 3.3. If $C_{2} \cap \mathcal{R}=\{0\}$ then

$$
\mu_{K_{2}}=\inf \left\{\frac{\|\nabla u\|_{L^{p}}}{\|u\|_{L^{p}}}: u \in K_{2} \backslash\{0\}\right\}>0
$$

Proof. Again, we apply Corollary 2.2 with the following choices:

$$
\begin{aligned}
& (Y,\| \|)=\left(L^{p}(\Omega),\| \|_{L^{p}}\right), \\
& X=W^{1, p}(\Omega), \quad|u|=\|\nabla u\|_{L^{p}} \quad \forall u \in W^{1, p}(\Omega)
\end{aligned}
$$

and $K=K_{2}$. It is standard that the space $W^{1, p}(\Omega)$ endowed with its usual norm

$$
[u]:=\|u\|_{1, p}=\left(\|u\|_{L^{p}}^{p}+\|\nabla u\|_{L^{p}}^{p}\right)^{\frac{1}{p}}
$$

is reflexive. Since C_{2} is closed in $L^{p}(\partial \Omega)$ and the trace mapping $\gamma: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)\left(\gamma(u)=\left.u\right|_{\partial \Omega}\right)$ is compact, we infer that K_{2} is weakly closed in $W^{1, p}(\Omega)$. By the compactness of the inclusion $W^{1, p}(\Omega) \subset L^{p}(\Omega)$ it follows that the embedding $K_{2} \subset L^{p}(\Omega)$ is also compact. From $C_{2} \cap \mathcal{R}=\{0\}$ we obtain $\left\{u \in K_{2}:\|\nabla u\|_{L^{p}}=0\right\}=\{0\}$, which completes the proof.

Corollary 3.4. If $C_{2} \cap \mathcal{R}=\{0\}$ then there is a constant $k>0$ such that

$$
\|u\|_{L^{p}} \leq k\|\nabla u\|_{L^{p}} \quad \forall u \in K_{2} \cup\left(-K_{2}\right) .
$$

Example 3. We conclude this section with a Poincaré inequality on a set of type

$$
K_{3}:=\left\{u \in W^{1, p}(\Omega): \int_{\Omega}|u|^{q-2} u=0\right\} .
$$

Let p^{*} be the Sobolev conjugate of p. Recall that this is

$$
p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } p<N \\ \infty & \text { if } p \geq N\end{cases}
$$

Theorem 3.5. If $q \in\left(1, p^{*}\right)$ then there is a constant $k>0$ such that

$$
\|u\|_{L^{p}} \leq k\|\nabla u\|_{L^{p}} \quad \forall u \in K_{3} .
$$

Proof. Claim: The cone K_{3} is weakly closed in the space $\left(W^{1, p}(\Omega),\| \|_{1, p}\right)$. To prove this we can argue as follows. Denoting by N_{f} the Nemytskii operator associated with $f(s)=|s|^{q-2} s, s \in \mathbb{R}$, we know that N_{f} is continuous from $L^{q}(\Omega)$ into $L^{q^{\prime}}(\Omega)$
$\left(1 / q+1 / q^{\prime}=1\right)$ (see [5]). On the other hand, the linear functional $L: L^{q^{\prime}}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\langle L, u\rangle=\int_{\Omega} u
$$

is continuous. Therefore, the mapping $L \circ N_{f}: L^{q}(\Omega) \rightarrow \mathbb{R}$ is also continuous. But

$$
L \circ N_{f}(u)=\int_{\Omega}|u|^{q-2} u \quad \forall u \in L^{q}(\Omega)
$$

and the claim follows by the compactness of the embedding $W^{1, p}(\Omega) \subset L^{q}(\Omega)$.
Then, like in the proof of Theorem 3.3 we have that

$$
\mu_{K_{3}}=\inf \left\{\frac{\|\nabla u\|_{L^{p}}}{\|u\|_{L^{p}}}: u \in K_{3} \backslash\{0\}\right\}>0
$$

which yields the conclusion.
Remark 3.6. It should be noticed that Corollary 3.4 and Theorem 3.5 cannot be inferred by means of Theorem A.

4. An application

In this section we obtain the boundedness of the set of solutions for a two-parameter boundary value problem involving the vector p-Laplacian operator. The approach that we provide appears to be of interest when techniques such as Schaefer's theorem are employed in order to derive existence results (see e.g. [6, Theorem 1.1], [7, Theorem 2.1]).

Below we shall denote by $|\cdot|$ the Euclidean norm and $(\cdot \mid \cdot)$ will stand for the usual inner product on \mathbb{R}^{N}.
Let $h_{p}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be the homeomorphism defined by $h_{p}(x)=|x|^{p-2} x\left(x \in \mathbb{R}^{N}\right)$ and $f:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a Carathéodory function-this means:

- for almost every $t \in[0, T]$ the function $f(t, \cdot)$ is continuous,
- for each $x \in \mathbb{R}^{N}$ the function $f(\cdot, x)$ is measurable,
- for each $\rho>0$ there is $\alpha_{\rho} \in L^{1}\left([0, T] ; \mathbb{R}_{+}\right)$such that, for almost every $t \in[0, T]$ and every $x \in \mathbb{R}^{N}$ with $|x| \leq \rho$, one has

$$
\begin{equation*}
|f(t, x)| \leq \alpha_{\rho}(t) \tag{4.1}
\end{equation*}
$$

By a weak solution of the equation

$$
\begin{equation*}
-\left[h_{p}\left(u^{\prime}\right)\right]^{\prime}=f(t, u) \quad \text { in }[0, T] \tag{4.2}
\end{equation*}
$$

we will understand a function $u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)$ which satisfies

$$
\begin{equation*}
\int_{0}^{T}\left(h_{p}\left(u^{\prime}\right) \mid \varphi^{\prime}\right)=\int_{0}^{T}(f(t, u) \mid \varphi) \quad \forall \varphi \in C_{0}^{\infty}\left((0, T) ; \mathbb{R}^{N}\right) \tag{4.3}
\end{equation*}
$$

Proposition 4.1. If u is a weak solution of the Eq. (4.2) then $u \in C^{1}\left([0, T] ; \mathbb{R}^{N}\right), h_{p}\left(u^{\prime}\right)$ is absolutely continuous and (4.2) is satisfied almost everywhere in $[0, T]$.

Proof. Since $u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)$, it follows that $h_{p}\left(u^{\prime}\right) \in L^{p^{\prime}}\left([0, T] ; \mathbb{R}^{N}\right)\left(1 / p+1 / p^{\prime}=1\right)$. Also, the embedding $W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right) \subset C\left([0, T] ; \mathbb{R}^{N}\right)$ and (4.1) imply $f(\cdot, u) \in L^{1}\left([0, T] ; \mathbb{R}^{N}\right)$. Using (4.3) we deduce that $h_{p}\left(u^{\prime}\right) \in$ $W^{1,1}\left([0, T] ; \mathbb{R}^{N}\right)$ and (4.2) is satisfied almost everywhere in $[0, T]$. As h_{p} is a homeomorphism, we get $u^{\prime} \in C\left([0, T] ; \mathbb{R}^{N}\right)$.

Let $f_{\lambda}:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}(\lambda \in \Lambda)$ be a family of Carathéodory functions and $\mathcal{M}: D(\mathcal{M}) \subset \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow 2^{\mathbb{R}^{N} \times \mathbb{R}^{N}}$ be a monotone mapping. Given a set $\Sigma \subset(0, \infty)$, we consider the two-parameter boundary value problem

$$
\begin{align*}
& -\left[h_{p}\left(u^{\prime}\right)\right]^{\prime}=f_{\lambda}\left(t, u^{\prime}\right) \quad \text { in }[0, T], \\
& \left(h_{p}\left(s u^{\prime}\right)(0),-h_{p}\left(s u^{\prime}\right)(T)\right) \in \mathcal{M}(s u(0), s u(T)), \tag{s}
\end{align*}
$$

with $\lambda \in \Lambda$ and $s \in \Sigma$. Note that on account of Proposition 4.1 the boundary condition in (4.4s) makes sense. It is worth pointing out that $\left(4.4_{s}\right)$ recovers the classical boundary conditions as well as other ones of special interest [8,3,9].

Denoting by s the set of those $u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)$ for which there is a pair $(\lambda, s) \in \Lambda \times \Sigma$ such that u is a weak solution of $\left(4.4_{\lambda}\right),\left(4.4_{s}\right)$, we are interested in the boundedness of s in the space $\left(W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right),[]_{1, p}\right)$ (see (3.1)).

We introduce the constant

$$
\mu_{\mathcal{M}}:=\inf \left\{\frac{\left\|u^{\prime}\right\|_{L^{p}}}{\|u\|_{L^{p}}}: u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right) \backslash\{0\},(u(0), u(T)) \in D(\mathcal{M})\right\}
$$

Theorem 4.2. Assume that $(0,0) \in \mathcal{M}(0,0)$. If there are constants $a<\mu_{\mathcal{M}}^{p}$ and $b \in \mathbb{R}_{+}$such that, for all $\lambda \in \Lambda$, the Carathéodory function f_{λ} satisfies

$$
\begin{equation*}
\left(f_{\lambda}(t, x) \mid x\right) \leq a|x|^{p}+b \quad \text { for a.e. } t \in[0, T], \forall x \in \mathbb{R}^{N}, \tag{4.5}
\end{equation*}
$$

then the set $\&$ is bounded in $\left(W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right),[]_{1, p}\right)$.
Proof. Let $u \in W^{1, p}\left([0, T] ; \mathbb{R}^{N}\right)$ be a weak solution of $(4.4 \lambda),\left(4.4_{s}\right)$ for some $(\lambda, s) \in \Lambda \times \Sigma$. Multiplying (4.4 $)$ by u, integrating over $[0, T]$ and using the integration by parts formula, we get

$$
-\left(h_{p}\left(u^{\prime}\right)(T) \mid u(T)\right)+\left(h_{p}\left(u^{\prime}\right)(0) \mid u(0)\right)+\int_{0}^{T}\left|u^{\prime}\right|^{p}=\int_{0}^{T}\left(f_{\lambda}(t, u) \mid u\right)
$$

The monotonicity of $\mathcal{M},\left(4.4_{s}\right)$ and the hypothesis $(0,0) \in \mathcal{M}(0,0)$ give

$$
-\left(h_{p}\left(u^{\prime}\right)(T) \mid u(T)\right)+\left(h_{p}\left(u^{\prime}\right)(0) \mid u(0)\right) \geq 0
$$

Then, using (4.5) we obtain

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{L^{p}}^{p} \leq a\|u\|_{L^{p}}^{p}+b T \tag{4.6}
\end{equation*}
$$

If $\mu_{\mathcal{M}}^{p}=0$ then $a<0$ and from (4.6) it follows that

$$
[u]_{1, p}^{p} \leq \frac{b T}{\min \{1,-a\}}
$$

If $\mu_{\mathcal{M}}^{p}>0$ then, since $(s u(0), s u(T)) \in D(\mathcal{M})$, by the definition of $\mu_{\mathcal{M}}$ and (4.6) we infer

$$
\mu_{\mathcal{M}}^{p}\|u\|_{L^{p}}^{p} \leq\left\|u^{\prime}\right\|_{L^{p}}^{p} \leq a\|u\|_{L^{p}}^{p}+b T,
$$

which gives

$$
\begin{equation*}
\|u\|_{L^{p}}^{p} \leq \frac{b T}{\mu_{\mathcal{M}}^{p}-a} . \tag{4.7}
\end{equation*}
$$

Then, using (4.6) we infer

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{L^{p}}^{p} \leq \frac{\mu_{\mathcal{M}}^{p}}{\mu_{\mathcal{M}}^{p}-a} \tag{4.8}
\end{equation*}
$$

The conclusion follows from (4.7) and (4.8).
Notice that according to Theorem 3.1, a sufficient condition ensuring that $\mu_{\mathcal{M}}>0$ (equivalently, the Poincaré inequality holds true) is that $D(\mathcal{M})$ be a closed cone and $D(\mathcal{M}) \cap d=\{(0,0)\}$. The case $\mu_{\mathcal{M}}>0$ is of particular interest since the a priori boundedness of the set $\&$ can be established for positive values of the constant a in (4.5), or more precisely for $a \in\left[0, \mu_{\mathcal{M}}^{p}\right)$.

References

[1] C. Bandle, M. Flucher, Table of inequalities in elliptic boundary value problems, in: G.V. Milovanovic (Ed.), Recent Progress in Inequalities, Niš, 1996, in: Math. Appl., vol. 430, Kluwer Acad. Publ., Dordrecht, 1998, pp. 97-125.
[2] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall/CRC, Boca Raton, 2006.
[3] P. Jebelean, Variational methods for ordinary p-Laplacian systems with potential boundary conditions, Adv. Differential Equations 13 (2008) $273-322$.
[4] D. O'Regan, R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[5] D.G. de Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1989.
[6] G. Dincă, P. Jebelean, A priori estimates for the vector p-Laplacian with potential boundary conditions, Arch. Math. 90 (2008) 60-69.
[7] P. Jebelean, R. Precup, Solvability of p, q-Laplacian systems with potential boundary conditions, Appl. Anal. 89 (2) (2010) $221-228$.
[8] L. Gasinski, N.S. Papageorgiou, Nonlinear second-order multivalued boundary value problems, Proc. Indian Acad. Sci. Math. Sci. 113 (3) (2003) 293-319.
[9] E.H. Papageorgiou, N.S. Papageorgiou, Nonlinear boundary value problems involving p-Laplacian and p-Laplacian-like operators, Z. Anal. Anwend. 24 (4) (2005) 691-707.

[^0]: * Corresponding author.

 E-mail address: jebelean@math.uvt.ro (P. Jebelean).

