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Positive solutions of functional-differential systems via the

vector version of Krasnoselskii’s fixed point theorem in
cones

SORIN BUDISAN and RADU PRECUP

ABSTRACT. We study the existence of positive solutions of the functional-differential system
{ uy () + a1 () f1(u1(g(t)), u2 (9 (8))) =0,
ug (t) + a2(t) f2(u1(g(t)), u2 (9 (t))) = 0

(0 < t < 1), subject to linear boundary conditions. We prove the existence of at least one positive solution by
using the vector version of Krasnoselskii’s fixed point theorem in cones.

1. INTRODUCTION

This paper deals with the second-order functional-differential system

(1) { w(t) + ar(t) f (u (9(1)), u2 (9 (1)) = 0,
uj(t) + az(t) f2(u1(g(t)), u2 (9 (¢))) =0

(0 <t < 1), under the boundary conditions

aiui(O) - ﬂ,u:(O) = 0,
(12) Yiui(1) + d;ui(1) = 0,
ui(t) =k; for —0<t<0 (i= 1,2).
Hered > 0and g : [0,1] — [—6, 1]. We seek positive solutions to (1.1)-(1.2), that is a couple
u = (u1,uz) with 4;(t)>0 for 0<t<1l and i=1,2.
We shall assume that the following conditions are satisfied for i € {1,2} :

(A1) f; € C([0,00)2,[0,00)) and g € C([0,1],[-6,1]);

(A2) a; € C([0,1],[0,00)) and a;(t) is not identically zero on any proper subinterval
of [0,1];

(A3) a;, Bis i, 0, ki 20, pi == viPi + iy + aid; > 0.

Our existence result is based on the vector version of Krasnoselskii’s fixed point the-
orem in cones, due to the second author [5] (see also [6]-[8]) and extends to systems the
main result from [1]. To present the vector version of Krasnoselskii’s theorem, we need to
introduce some notations and notions. Let (X, |.||) be a normed linear space, let K, K,
be two cones of X and let K := K; x K;. We shall use the same symbol < to denote
the partial order relation induced by K in X2 and by Kj, K, in X. Similarly, the
same symbol < will be used to denote the strict order relation induced by K; and K>
in X. Also, in X2, the symbol < will have the following meaning: u < v (u,v € X?) if
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166 Sorin Budigan and Radu Precup
u; <v; for i =1,2. For ,Re€ R2, r = (r1,72), R = (R1,Rz), wewrite 0 <r < R if
0<ri < R; and 0 < r; < Ry and we use the notations:
(Ki)rsry, @ ={veK;:r; <|v| <R} (i=1,2)
Kr,R : = {u = (ul,U2) eK:r; < ||u,|| <R; for i = 1,2}‘
Clearly, K, r = (K1)r,,R, X (K2)rs,R,-

Now we are ready to present the vector version of Krasnoselskii’s fixed point theorem
in cones.

Theorem 1.1 ([6]). Let (X,|.|) bea normed linear space; K;, Ko C X two cones; K :=
K1 x Ky; 1, Re R% with 0<r <R, andlet N : K, p — K, N = (N1, N;) be a compact
map. Assume that for each i € {1,2}, one of the following conditions is satisfied in K, g :
(@) Ni(w) A u; if |lwil| =i, and Ny(u) # w if ||uil = Rs;
(b) Ni(u) # us if |lwil =ri, and Ni(u) £ u; if |luil| = R;.
Then N has a fixed point v in K with r; < ||u;]| < R; for i € {1,2}.
Remark 1.1. In Theorem 1.1 four cases are posible for v € K, g :
(c1) N1(u) £ uy if |lus|| =71, and Ny(u) # uy if ||us]| = Ry,
Na(u) £ ug if |jug|| =72, and Na(u) ¥ ug if |luz| = Re;
(C2) Nl(u) 1( ul if ||u1|[ =7, and Nl(u) )‘ (5% if Hulﬂ = Rl,
Ng(u) )‘ U2 if ”’U2” =T, and Nz(’u) 74 U if ”'ll,z“ = Rz;
(C3) Nl(u) )‘ ul if ||u1I| =T, and Nl(u) 1( u if |Iu1|| = R1,
Nz(u) 74 U2 if "’ttzll =T, and Nz(u) )‘ U if ||u2|| = Rg;
(c4) Ni(u) # uy if ||lusl| =71, and Ny(u) A uy if jui]| = Ry,
No(u) ¥ ug if |juzl| =re, and Na(u) £ ug if |uz|| = Re.
Related results obtained by means of Krasnoselskii’s fixed point theorem in cones [4]
can be found in [2], [3], [9] - [11].

2. THE MAIN RESULT
Let G; be the Green function of the problem
u’ =0,
o;u (0) — B;u'(0) =0,
yiu(l) + 6;u'(1) = 0.
One has

1
—pi(t)i(s), 0<s<t<1
G,‘(t, S) = ’ii

;w(s)t,b,-(t), 0<t<s<1,

where <pi(t) = y; + 0; — vit, 'l,[)i(t) = B + a;t (0 <t< 1).
Notice that

2.1) Gi(t,s) < %cpi(s)d}i(s) = Gi(s,s) for 0<t,s<1.
In addition the following result (Lemma 2.1 from [1]) holds:

4
Lemma 2.1. For every n > 3 and i € {1,2}, thereexists M;(n) > 0 such that

G,‘ (t, S) 3
Gi(s, s) 4

22) > Mi(n) for % <t<3amdo<s<i.
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Positive solutions of functional-differential systems 167

In what follows by ||v||, where v € C'[0,1], we mean the norm |v| = tm[galc] lv(t)|.
€lo,
Also we make the following notations:

(o) o= lim BELTD) (1) (0 .o g SilELT2)
for i,j € {1,2} with i+ j=3.

The main result of this paper is the following existence theorem.

Theorem 2.2. Assume that conditions (A1)-(A3) hold. In addition assume that
g € C'([0,1],[-6,1]), ¢ > 0, g(0) < 0 and g(1) > 0. Then problem (1.1)-(1.2) has at
least one positive solution w := (u1,uz) in each of the following four cases:

(fi)o(z2) =0  uniformly for all z, > 0,

23) (f1)oo(x2) = 00 uniformly for all z; > 0,
’ (f2)o(z1) =0  uniformly forall z, >0,
(f2)oo(z1) = 00  uniformly for all x, > 0;

(fi)o(z2) = 00 uniformly for all x5 > 0,
2.4) (f1)oo (x2) = 0  uniformly for all x5 > 0, if fi is unbounded,
' (f2)o (z1) = 0o  uniformly for all =, > 0,
(f2)oo (1) =0  uniformly for all x, >0, if f; is unbounded;

[ (f1)o (x2) =00  uniformly forall z2 >0,

@5) ) (fi)oo (z2) =0  uniformly for all x2 > 0, if f is unbounded,
’ (f2)o (x1) =0  uniformly for all z; >0,

| (f2)oo (x1) = 00 uniformly for all x; > 0;

[ (f1)o(x2) =0  uniformly for all z2 >0,
2.6) ) (f1)oo (z2) = 00  uniformly for all o > 0,
’ (f2)o (z1) =00 uniformly for all z, > 0,
| (f2)o (1) =0 uniformly for all x; > 0, if f> is unbounded.

Proof. First note that u = (u1,u2) € C([0,1], R%) is a solution of (1.1)-(1.2) if and only if
u solves the operator system

1
ui(t) = / Gi(t, s)ai(s) fi(ur (g (s)) uz (9 (s)))ds := Niu (), i =1,2.
0
Let K; be the conein C[0,1] given by
K;,={veC[0,1]:v >0, rgtil<1bv(t) > M; v},

3
wherea =1 ,b=min { g(1), Z} and M; stands for M;(n) given by Lemma 2.1. Then, for
u € K = Ky x Ky, using (2.1) and (2.2) we obtain

1
o Nou(8) = min, /0 Gi(t, $)ai(s) fi(u (g (5)))ds
1
> M / Gi(s, 5)ai(s) fi(u (g (5)))ds
0

1
> M /0 Gi(t', 8)a:(s) fi(u (9 (5)))ds = M;Niu (¥)
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168 Sorin Budigsan and Radu Precup

for every t’ € [0,1]. Consequently
1 . > . .
aréltléle,u (t) > M; || Nyl .

Therefore, N;(K) C K;, for i = 1,2. Moreover, it is easy to see that N; : K — K; is
completely continuous. Hence N : K, g = K, N = (N, Ny) is well defined and compact
forevery r,Re R% with 0<r <R.

Assume now that (2.3) holds. We will prove that |V satisfies condition (c4) from Remark
1.1. The first relation from (2.3) guarantees that there exists H; > 0 so that fi(uq,u2) <
nuy, for 0 < u; < H; and uz > 0, where > 0 may be chosen conveniently. We choose
0 < r1 < H;. Suppose that N;(u) > u; for ||ui]| = r1. From |jui|| = < H;, we have
that 0 < u; < Hy, so

27) | Nvull

IA

/0 G (s, 8)ax(s) fr(u (g (5)))ds

,
< [ Giloar(eyur (g (s) ds
1 ((:) Gulo™ 0,57 ) A Dy )y
”
<mf (;)Gl(g y), g7 () 2 W) ‘((g_l((;’))))
using that u;(y) < [Jus]| = r1. We choose 5 > 0 so that
2.8) 1 o (a7 () g~ ) 2 W gy < gy,

9(0) ' g (g‘l(y))

From u; € K; we obtain ri M; = ||u; || M; < Igtigbul(t), s0 (2.7) and (2.8) imply
asts
[N < Jnin ),
and from Nju < || Nyu|| it follows
Nu(t) < aréltuslbul(t)’ for t €[0,1],

so Nu(t) < Igtixgbul(t) < uy(t), for t € [a,b], a contradiction with the assumption
Niu > u1. So Nyu % uy if ||ua]| = r1. From (2.3) we have that there exists Hy; >0
so that fi(u1,u2) > puy, for uy > Hy; and up > 0, where p > 0 may be chosen

H
conveniently. Let R; := max {2H1, Mz} We suppose that Ny (u) < uy if ||ui]l = R;.

1

Using the hypothesis g(1) > 0, g(0) < 0, g > 0, we obtain for a < ty < b, u; € K,
"Ulll = Rl, that

in u(t) > M. > H,,
al‘éltlgb’l,u( ) > My ||lw|| > Ha,
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Positive solutions of functional-differential systems 169

SO

g(1) ai(a~
Niu(to) = /(0) Grlto g~ ) 29O ¢ iy

9' (97 (v))
> [ it BT i
> / Glto, ™ ) 2 D 1)y
> pM, [/a Gl(to,g‘l(y))%f—((jT((z))))dy} [Ja |
2wl Zw(t), fortelo,1],

if we choose p > 0 so that

-1
uM, [ / Crlto, s~ ) lﬁj_l((z))))dy] >1

Here we used the inclusion [a,b] C [g (0), g (1)] which is true for the above chosen b and
some n with a =1/n <b. So Ny(u)(to) > ui(to), a contradiction with the assumption
N](’u) < Uy if ||U1" = Rl. So, we obtain Nl(u) 74 u if ||u1 “ = Rl.

Similarly, from (2.3) we obtain that

No(u) # ug if |lug|| =re and No(u) £ up if ||uz|| = Ra.
Thus condition (c4) from Remark 1.1 holds.
Assume now that (2.4) holds. We will prove that N satisfies condition (c1) from
Remark 1.1. From (2.4) we have that there exists H; > 0 so that fi(u) > nu;, for

0 < u; < H; and all uy > 0, where n may be chosen conveniently. We choose M; from
the definition of cone K;. We also choose r; so that 0 < r; < H;. We suppose that
Ni(u) < u;p if ||ug]| = r1. Then, for a <ty <b,u; € K; and ||u;|| = r; < H;, we have

g(1) ai(a~
e = [° Gl(to,g-l(y)>;((§_—f((yy;))fl(u<y))dy
> / Galtorg -l(y))gl((j_l((j))))ﬁ(u(y»dy
a1(97*(y))

> / Gl(tO) _l(y)) (g_l( )) (y)dy

> [an / Ga(to, g~ () 2 W) (‘gf’;))dy fuall > [l

if we choose 7 > 0 so that

nM, / Ga(to, g7 (y)) W) ‘(("_1((”)))) >1,

We obtain Nj(u)(to) > ||ui|| > ui(t), forall ¢ € [0,1], and we have that N;(u)(to) >
u1(to), a contradiction with the assumption that we made. It follows that N;(u) A u; if
luall = 7.
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170 Sorin Budigan and Radu Precup

Part 1. We assume that f; is unbounded. From (2.4) we have that there exists Q; > 0
so that fi(u) < Auy, for u; > Qq, for all uz > 0, where A > 0 may be chosen conveniently.
There exists Ho = (H,, H,) with H, > max{Q;,m} so that fi(u) < fi(Ha), for
0 < u < H; (we may do this because f; is unbounded). We choose R; := H; and we
suppose that Nj(u) > uy if ||ui|| = Ry. Then, for all up with |jug]| < H, , we have:

g(1)
Mo = [ e )3 a9~ W) o (y))ay

©) g(g‘l(y))
g(1)
< [, oo y‘l(y))gl((g_l((:))))fl(u(y))dy
9(1)
< o Gl(g‘l(y),g'l(y))g—}—((g_l—((y))))fl(Hz)dy
< ’\Hz/ Gi(97'(v), 97 (¥) 1((9_1((y)))) y < =2 =%,

if we choose A > 0 so that

A / Gi(g™ (v), 97 (3)) L W) 1((9_1((”)))) y<s

R
So Ni(u)(t) < 71, for all t € [0,1]. But, by our assumption, N;(u) > u;, we obtain

R
[[N1(w)]] = |lwill = R1, so Ry < ?1, a contradiction. It follows that Nj(u) ¥ uy, for
lurll = Ry.

Part 2. We assume that f; is bounded, so sup fi(u) = M’ < co. We choose R; so
u€(0,00)2
that

e -1 ai(g” (y))
R, >2M ( o Gi(97 (v), 9~ (y))g (1)) y).

We suppose that Ny(u) > uy for |ui|| = Ry, so

9(1) -
mwe = [° Gl(t,g-l(y»%mu(y»dys
R na(eTl®) R
< M [ G e ) gy y<2.

R
It follows that | Nyu| < ?1 But, from the assumption that we made, we obtain ||Nju|| >
llur]l = Ri1, a contradiction. It follows that Ny(u) ¥ ui if ||ua]| = R;. Similarly, we
obtain, for fp, that Nao(u) £ ug if ||uz|| = ro and Na(u) ¥ ug if ||ug|| = Rz, so condition
(c1) from Remark 1.1 holds.

Assume now that (2.5) holds. Using the same arguments for f;, like in the case (2.4),
we obtain:

Nl(u) 74 uy if IIU1" =T and Nl(u) )‘ Uy if ||u1|| = R].
Using the same arguments for f;, like in the case (2.3), we obtain:

Ng(u) )‘ U2 if ”’Uq” =T and Ng(’u,) 74 U if ”’Uq” = R2
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Positive solutions of functional-differential systems 171

It follows that condition (c2) from Remark 1.1 is satisfied.
Assume now that (2.6) holds. Using the same arguments for f;, like in the case (2.3),
we obtain:
Nl(u) )‘ uy if ||u1|| =7, and Nl(u) 74 uy if ||u1|| =R;.
Using the same arguments for f2, like in the case (2.4), we obtain:
Nz(u) 74 u2 if Ilugll =T2 and Ng(u) )‘ u2 if ||U2" = Rz.
Thus condition (c3) from Remark 1.1 holds. a

Remark 2.2. (1) An example of functions like in (2.3):
i (zg +1)
fi(z1,72) pramrs

1 , 1
o) = 2 |y 1] ot [+,

where r > 1; p>2; ¢q,s > 0.

Indeed,
- -1
f1(z1,x2) _ xp l(~’lﬂ2+1) x <150
x Ty +z9+1 1+;'2-_’|:-1'
as 1 — 0, for p > 2, so (f1), (2) =0 uniformly forall z, > 0, and
-1 -1
fi(@y,z2)| 2 > xf 5o
T 1+ ;2—_,’3 14+

as x; = oo, for p > 2,50 (f1),, (z2) = oo uniformly forall z; > 0. Also
fo(z,z2)| oy 1 r—1 1
=% Gy T mr

T
< 2207t 422771 50

as 1 — 0, for r,p > 1,50 (f2), (x2) = 0 uniformly for all z; > 0, and
f2(z1, )| o1 1 r—1 1
== = —__(182 1) + 1| +x] —(xz 1) +1

1
> p—1 r—1
2z +zx; —o0

as x1 — oo, for r,p > 1,50 (f2),, (2) = oo uniformly forall z; > 0.
(2) An example of functions like in (2.4):

pavm) = | 1] ot ).
fa(z1,22) = '1’[ e ] [ - 1],

where 0 <r, p<1l;q, s>0.

Indeed, f; and f; are unbounded and one has

fi(z1,72) r—1 1
-'17—1 +1] + x; [m +1]

— p—1
=% [($2+1)q

-1 —
2T 5 0

\v

This content downloaded from 92.81.68.202 on Wed, 08 Mar 2023 12:12:08 UTC
All use subject to https://about.jstor.org/terms



172 Sorin Budisan and Radu Precup
as r;1 =0, for0 <r, p <1,50 (f1)y(x2) = oo uniformly forall z; > 0. and

fi (21, 72) p-1 1 r—1 1
EERGE LA 7 — 41 — +1
T Il (.’l,‘z-l—l)q + +1'1 (:1)2+1)8 +
227 422771 50
as 1 = oo, for0 <, p<1,s0 (f1)y (r2) =0 uniformly for all z3 > 0. Also

fo(z1,x2)| o1 g2 r—1| T2
- = 12+1+1 + 3 Zz+1+1

-1 -
> 27 +a] 1 5 o

INA

as z; — 0,for 0 <, p <1,s0(f2),(z2) =00 uniformly forall z; > 0,and
f2 (z1,72) p-1|_4%2 _1 [ sz
g el e T | T o2
T 1 a:2+1+ ! :::2+1+1
< @+ '+ (s+ 1)z 50

as 1 - oo, for 0 <r, p<1,s0 (f2), (z2) =0 uniformly forall z; > 0.
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