Positive solutions of functional-differential systems via the vector version of Krasnoselskii's fixed point theorem in cones

Sorin Budişan and Radu Precup

ABSTRACT. We study the existence of positive solutions of the functional-differential system

$$
\left\{\begin{array}{l}
u_{1}^{\prime \prime}(t)+a_{1}(t) f_{1}\left(u_{1}(g(t)), u_{2}(g(t))\right)=0 \\
u_{2}^{\prime \prime}(t)+a_{2}(t) f_{2}\left(u_{1}(g(t)), u_{2}(g(t))\right)=0
\end{array}\right.
$$

($0<t<1$), subject to linear boundary conditions. We prove the existence of at least one positive solution by using the vector version of Krasnoselskii's fixed point theorem in cones.

1. Introduction

This paper deals with the second-order functional-differential system

$$
\left\{\begin{array}{l}
u_{1}^{\prime \prime}(t)+a_{1}(t) f_{1}\left(u_{1}(g(t)), u_{2}(g(t))\right)=0 \tag{1.1}\\
u_{2}^{\prime \prime}(t)+a_{2}(t) f_{2}\left(u_{1}(g(t)), u_{2}(g(t))\right)=0
\end{array}\right.
$$

($0<t<1$), under the boundary conditions

$$
\left\{\begin{array}{l}
\alpha_{i} u_{i}(0)-\beta_{i} u_{i}^{\prime}(0)=0 \tag{1.2}\\
\gamma_{i} u_{i}(1)+\delta_{i} u_{i}^{\prime}(1)=0, \\
u_{i}(t)=k_{i} \text { for }-\theta \leq t<0(i=1,2)
\end{array}\right.
$$

Here $\theta>0$ and $g:[0,1] \rightarrow[-\theta, 1]$. We seek positive solutions to (1.1)-(1.2), that is a couple $u=\left(u_{1}, u_{2}\right)$ with $u_{i}(t)>0$ for $0<t<1$ and $i=1,2$.

We shall assume that the following conditions are satisfied for $i \in\{1,2\}$:
(A1) $f_{i} \in C\left([0, \infty)^{2},[0, \infty)\right)$ and $g \in C([0,1],[-\theta, 1])$;
(A2) $a_{i} \in C([0,1],[0, \infty))$ and $a_{i}(t)$ is not identically zero on any proper subinterval of $[0,1]$;
(A3) $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, k_{i} \geq 0, \rho_{i}:=\gamma_{i} \beta_{i}+\alpha_{i} \gamma_{i}+\alpha_{i} \delta_{i}>0$.
Our existence result is based on the vector version of Krasnoselskii's fixed point theorem in cones, due to the second author [5] (see also [6]-[8]) and extends to systems the main result from [1]. To present the vector version of Krasnoselskii's theorem, we need to introduce some notations and notions. Let $(X,\|\|$.$) be a normed linear space, let K_{1}, K_{2}$ be two cones of X and let $K:=K_{1} \times K_{2}$. We shall use the same symbol \preceq to denote the partial order relation induced by K in X^{2} and by K_{1}, K_{2} in X. Similarly, the same symbol \prec will be used to denote the strict order relation induced by K_{1} and K_{2} in X. Also, in X^{2}, the symbol \prec will have the following meaning: $u \prec v\left(u, v \in X^{2}\right)$ if

[^0]$u_{i} \prec v_{i}$ for $i=1,2$. For $r, R \in \mathbf{R}_{+}^{2}, r=\left(r_{1}, r_{2}\right), R=\left(R_{1}, R_{2}\right)$, we write $0<r<R$ if $0<r_{1}<R_{1}$ and $0<r_{2}<R_{2}$ and we use the notations:
\[

$$
\begin{aligned}
&\left(K_{i}\right)_{r_{i}, R_{i}}:=\left\{v \in K_{i}: r_{i} \leq\|v\| \leq R_{i}\right\} \quad(i=1,2) \\
& K_{r, R}: \\
&=\left\{u=\left(u_{1}, u_{2}\right) \in K: r_{i} \leq\left\|u_{i}\right\| \leq R_{i} \text { for } i=1,2\right\} .
\end{aligned}
$$
\]

Clearly, $K_{r, R}=\left(K_{1}\right)_{r_{1}, R_{1}} \times\left(K_{2}\right)_{r_{2}, R_{2}}$.
Now we are ready to present the vector version of Krasnoselskii's fixed point theorem in cones.

Theorem 1.1 ([6]). Let $(X,\|\|$.$) be a normed linear space; K_{1}, K_{2} \subset X$ two cones; $K:=$ $K_{1} \times K_{2} ; r, R \in \mathbf{R}_{+}^{2}$ with $0<r<R$, and let $N: K_{r, R} \rightarrow K, N=\left(N_{1}, N_{2}\right)$ be a compact map. Assume that for each $i \in\{1,2\}$, one of the following conditions is satisfied in $K_{r, R}$:
(a) $N_{i}(u) \nprec u_{i}$ if $\left\|u_{i}\right\|=r_{i}$, and $N_{i}(u) \nsucc u_{i}$ if $\left\|u_{i}\right\|=R_{i}$;
(b) $N_{i}(u) \nsucc u_{i}$ if $\left\|u_{i}\right\|=r_{i}$, and $N_{i}(u) \nprec u_{i}$ if $\left\|u_{i}\right\|=R_{i}$.

Then N has a fixed point u in K with $r_{i} \leq\left\|u_{i}\right\| \leq R_{i}$ for $i \in\{1,2\}$.
Remark 1.1. In Theorem 1.1 four cases are posible for $u \in K_{r, R}$:
(c1) $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=r_{1}$, and $N_{1}(u) \nsucc u_{1}$ if $\left\|u_{1}\right\|=R_{1}$, $N_{2}(u) \nprec u_{2}$ if $\left\|u_{2}\right\|=r_{2}$, and $N_{2}(u) \nsucc u_{2}$ if $\left\|u_{2}\right\|=R_{2}$;
(c2) $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=r_{1}$, and $N_{1}(u) \nsucc u_{1}$ if $\left\|u_{1}\right\|=R_{1}$, $N_{2}(u) \nsucc u_{2}$ if $\left\|u_{2}\right\|=r_{2}$, and $N_{2}(u) \nprec u_{2}$ if $\left\|u_{2}\right\|=R_{2} ;$
(c3) $N_{1}(u) \nsucc u_{1}$ if $\left\|u_{1}\right\|=r_{1}$, and $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=R_{1}$, $N_{2}(u) \nprec u_{2}$ if $\left\|u_{2}\right\|=r_{2}$, and $N_{2}(u) \nsucc u_{2}$ if $\left\|u_{2}\right\|=R_{2}$;
(c4) $N_{1}(u) \nsucc u_{1}$ if $\left\|u_{1}\right\|=r_{1}$, and $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=R_{1}$, $N_{2}(u) \nsucc u_{2}$ if $\left\|u_{2}\right\|=r_{2}$, and $N_{2}(u) \nprec u_{2}$ if $\left\|u_{2}\right\|=R_{2}$.
Related results obtained by means of Krasnoselskii's fixed point theorem in cones [4] can be found in [2], [3], [9] - [11].

2. The main result

Let G_{i} be the Green function of the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}=0 \\
\alpha_{i} u(0)-\beta_{i} u^{\prime}(0)=0 \\
\gamma_{i} u(1)+\delta_{i} u^{\prime}(1)=0
\end{array}\right.
$$

One has

$$
G_{i}(t, s)= \begin{cases}\frac{1}{\rho_{i}} \varphi_{i}(t) \psi_{i}(s), & 0 \leq s \leq t \leq 1 \\ \frac{1}{\rho_{i}} \varphi_{i}(s) \psi_{i}(t), & 0 \leq t \leq s \leq 1\end{cases}
$$

where $\varphi_{i}(t):=\gamma_{i}+\delta_{i}-\gamma_{i} t, \quad \psi_{i}(t):=\beta_{i}+\alpha_{i} t(0 \leq t \leq 1)$.
Notice that

$$
\begin{equation*}
G_{i}(t, s) \leq \frac{1}{\rho_{i}} \varphi_{i}(s) \psi_{i}(s)=G_{i}(s, s) \text { for } 0 \leq t, s \leq 1 \tag{2.1}
\end{equation*}
$$

In addition the following result (Lemma 2.1 from [1]) holds:
Lemma 2.1. For every $n>\frac{4}{3}$ and $i \in\{1,2\}$, there exists $M_{i}(n)>0$ such that

$$
\begin{equation*}
\frac{G_{i}(t, s)}{G_{i}(s, s)} \geq M_{i}(n) \text { for } \frac{1}{n} \leq t \leq \frac{3}{4} \text { and } 0 \leq s \leq 1 \tag{2.2}
\end{equation*}
$$

In what follows by $\|v\|$, where $v \in C[0,1]$, we mean the norm $\|v\|=\max _{t \in[0,1]}|v(t)|$. Also we make the following notations:

$$
\left(f_{i}\right)_{0}\left(x_{j}\right):=\lim _{x_{i} \rightarrow 0} \frac{f_{i}\left(x_{1}, x_{2}\right)}{x_{i}}, \quad\left(f_{i}\right)_{\infty}\left(x_{j}\right):=\lim _{x_{i} \rightarrow \infty} \frac{f_{i}\left(x_{1}, x_{2}\right)}{x_{i}}
$$

for $i, j \in\{1,2\}$ with $i+j=3$.
The main result of this paper is the following existence theorem.
Theorem 2.2. Assume that conditions (A1)-(A3) hold. In addition assume that $g \in C^{1}([0,1],[-\theta, 1]), g^{\prime}>0, g(0) \leq 0$ and $g(1)>0$. Then problem (1.1)-(1.2) has at least one positive solution $u:=\left(u_{1}, u_{2}\right)$ in each of the following four cases:

$$
\begin{cases}\left(f_{1}\right)_{0}\left(x_{2}\right)=0 & \text { uniformly for all } x_{2} \geq 0 \tag{2.3}\\ \left(f_{1}\right)_{\infty}\left(x_{2}\right)=\infty & \text { uniformly for all } x_{2} \geq 0 \\ \left(f_{2}\right)_{0}\left(x_{1}\right)=0 & \text { uniformly for all } x_{1} \geq 0 \\ \left(f_{2}\right)_{\infty}\left(x_{1}\right)=\infty & \text { uniformly for all } x_{1} \geq 0\end{cases}
$$

$$
\begin{cases}\left(f_{1}\right)_{0}\left(x_{2}\right)=\infty & \text { uniformly for all } x_{2} \geq 0, \tag{2.4}\\ \left(f_{1}\right)_{\infty}\left(x_{2}\right)=0 & \text { uniformly for all } x_{2} \geq 0, \text { if } f_{1} \text { is unbounded }, \\ \left(f_{2}\right)_{0}\left(x_{1}\right)=\infty & \text { uniformly for all } x_{1} \geq 0, \\ \left(f_{2}\right)_{\infty}\left(x_{1}\right)=0 & \text { uniformly for all } x_{1} \geq 0, \text { if } f_{2} \text { is unbounded; }\end{cases}
$$

$$
\begin{align*}
& \begin{cases}\left(f_{1}\right)_{0}\left(x_{2}\right)=\infty & \text { uniformly for all } x_{2} \geq 0, \\
\left(f_{1}\right)_{\infty}\left(x_{2}\right)=0 & \text { uniformly for all } x_{2} \geq 0, \text { if } f_{1} \text { is unbounded, } \\
\left(f_{2}\right)_{0}\left(x_{1}\right)=0 & \text { uniformly for all } x_{1} \geq 0, \\
\left(f_{2}\right)_{\infty}\left(x_{1}\right)=\infty & \text { uniformly for all } x_{1} \geq 0\end{cases} \tag{2.5}\\
& \begin{cases}\left(f_{1}\right)_{0}\left(x_{2}\right)=0 & \text { uniformly for all } x_{2} \geq 0, \\
\left(f_{1}\right)_{\infty}\left(x_{2}\right)=\infty & \text { uniformly for all } x_{2} \geq 0, \\
\left(f_{2}\right)_{0}\left(x_{1}\right)=\infty & \text { uniformly for all } x_{1} \geq 0, \\
\left(f_{2}\right)_{\infty}\left(x_{1}\right)=0 & \text { uniformly for all } x_{1} \geq 0, \text { if } f_{2} \text { is unbounded. }\end{cases} \tag{2.6}
\end{align*}
$$

Proof. First note that $u=\left(u_{1}, u_{2}\right) \in C\left([0,1], R_{+}^{2}\right)$ is a solution of (1.1)-(1.2) if and only if u solves the operator system

$$
u_{i}(t)=\int_{0}^{1} G_{i}(t, s) a_{i}(s) f_{i}\left(u_{1}(g(s)), u_{2}(g(s))\right) d s:=N_{i} u(t), i=1,2
$$

Let K_{i} be the cone in $C[0,1]$ given by

$$
K_{i}=\left\{v \in C[0,1]: v \geq 0, \min _{a \leq t \leq b} v(t) \geq M_{i}\|v\|\right\}
$$

where $a=\frac{1}{n}, b=\min \left\{g(1), \frac{3}{4}\right\}$ and M_{i} stands for $M_{i}(n)$ given by Lemma 2.1. Then, for $u \in K=K_{1} \times K_{2}$, using (2.1) and (2.2) we obtain

$$
\begin{aligned}
\min _{a \leq t \leq b} N_{i} u(t) & =\min _{a \leq t \leq b} \int_{0}^{1} G_{i}(t, s) a_{i}(s) f_{i}(u(g(s))) d s \\
& \geq M_{i} \int_{0}^{1} G_{i}(s, s) a_{i}(s) f_{i}(u(g(s))) d s \\
& \geq M_{i} \int_{0}^{1} G_{i}\left(t^{\prime}, s\right) a_{i}(s) f_{i}(u(g(s))) d s=M_{i} N_{i} u\left(t^{\prime}\right)
\end{aligned}
$$

for every $t^{\prime} \in[0,1]$. Consequently

$$
\min _{a \leq t \leq b} N_{i} u(t) \geq M_{i}\left\|N_{i} u\right\| .
$$

Therefore, $N_{i}(K) \subset K_{i}$, for $i=1,2$. Moreover, it is easy to see that $N_{i}: K \rightarrow K_{i}$ is completely continuous. Hence $N: K_{r, R} \rightarrow K, N=\left(N_{1}, N_{2}\right)$ is well defined and compact for every $r, R \in \mathbf{R}_{+}^{2}$ with $0<r<R$.

Assume now that (2.3) holds. We will prove that N satisfies condition (c4) from Remark 1.1. The first relation from (2.3) guarantees that there exists $H_{1}>0$ so that $f_{1}\left(u_{1}, u_{2}\right) \leq$ ηu_{1}, for $0<u_{1} \leq H_{1}$ and $u_{2} \geq 0$, where $\eta>0$ may be chosen conveniently. We choose $0<r_{1} \leq H_{1}$. Suppose that $N_{1}(u) \succ u_{1}$ for $\left\|u_{1}\right\|=r_{1}$. From $\left\|u_{1}\right\|=r_{1} \leq H_{1}$, we have that $0<u_{1} \leq H_{1}$, so

$$
\begin{align*}
\left\|N_{1} u\right\| & \leq \int_{0}^{1} G_{1}(s, s) a_{1}(s) f_{1}(u(g(s))) d s \tag{2.7}\\
& \leq \eta \int_{0}^{1} G_{1}(s, s) a_{1}(s) u_{1}(g(s)) d s \\
& =\eta \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} u_{1}(y) d y \\
& \leq \eta r_{1} \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y
\end{align*}
$$

using that $u_{1}(y) \leq\left\|u_{1}\right\|=r_{1}$. We choose $\eta>0$ so that

$$
\begin{equation*}
\eta r_{1} \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y \leq M_{1} r_{1} \tag{2.8}
\end{equation*}
$$

From $u_{1} \in K_{1}$ we obtain $r_{1} M_{1}=\left\|u_{1}\right\| M_{1} \leq \min _{a \leq t \leq b} u_{1}(t)$, so (2.7) and (2.8) imply

$$
\left\|N_{1} u\right\| \leq \min _{a \leq t \leq b} u_{1}(t)
$$

and from $N_{1} u \leq\left\|N_{1} u\right\|$ it follows

$$
N_{1} u(t) \leq \min _{a \leq t \leq b} u_{1}(t), \text { for } t \in[0,1],
$$

so $N_{1} u(t) \leq \min _{a \leq t \leq b} u_{1}(t) \leq u_{1}(t)$, for $t \in[a, b]$, a contradiction with the assumption $N_{1} u \succ u_{1}$. So $N_{1} u \nsucc u_{1}$ if $\left\|u_{1}\right\|=r_{1}$. From (2.3) we have that there exists $\bar{H}_{2}>0$ so that $f_{1}\left(u_{1}, u_{2}\right) \geq \mu u_{1}$, for $u_{1} \geq \bar{H}_{2}$ and $u_{2} \geq 0$, where $\mu>0$ may be chosen conveniently. Let $R_{1}:=\max \left\{2 H_{1}, \frac{\bar{H}_{2}}{M_{1}}\right\}$. We suppose that $N_{1}(u) \prec u_{1}$ if $\left\|u_{1}\right\|=R_{1}$. Using the hypothesis $g(1)>0, g(0)<0, g^{\prime}>0$, we obtain for $a \leq t_{0} \leq b, u_{1} \in K_{1}$, $\left\|u_{1}\right\|=R_{1}$, that

$$
\min _{a \leq t \leq b} u_{1}(t) \geq M_{1}\left\|u_{1}\right\| \geq \bar{H}_{2}
$$

so

$$
\begin{aligned}
N_{1} u\left(t_{0}\right) & =\int_{g(0)}^{g(1)} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \geq \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \geq \mu \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} u_{1}(y) d y \\
& \geq \mu M_{1}\left[\int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y\right]\left\|u_{1}\right\| \\
& \geq\left\|u_{1}\right\| \geq u_{1}(t), \text { for } t \in[0,1],
\end{aligned}
$$

if we choose $\mu>0$ so that

$$
\mu M_{1}\left[\int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y\right] \geq 1
$$

Here we used the inclusion $[a, b] \subset[g(0), g(1)]$ which is true for the above chosen b and some n with $a=1 / n<b$. So $N_{1}(u)\left(t_{0}\right) \geq u_{1}\left(t_{0}\right)$, a contradiction with the assumption $N_{1}(u) \prec u_{1}$ if $\left\|u_{1}\right\|=R_{1}$. So, we obtain $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=R_{1}$.

Similarly, from (2.3) we obtain that

$$
N_{2}(u) \nsucc u_{2} \text { if }\left\|u_{2}\right\|=r_{2} \text { and } N_{2}(u) \nprec u_{2} \text { if }\left\|u_{2}\right\|=R_{2}
$$

Thus condition (c4) from Remark 1.1 holds.
Assume now that (2.4) holds. We will prove that N satisfies condition (c1) from Remark 1.1. From (2.4) we have that there exists $H_{1}>0$ so that $f_{1}(u) \geq \bar{\eta} u_{1}$, for $0<u_{1} \leq H_{1}$ and all $u_{2} \geq 0$, where $\bar{\eta}$ may be chosen conveniently. We choose M_{1} from the definition of cone K_{1}. We also choose r_{1} so that $0<r_{1} \leq H_{1}$. We suppose that $N_{1}(u) \prec u_{1}$ if $\left\|u_{1}\right\|=r_{1}$. Then, for $a \leq t_{0} \leq b, u_{1} \in K_{1}$ and $\left\|u_{1}\right\|=r_{1} \leq H_{1}$, we have

$$
\begin{aligned}
N_{1}(u)\left(t_{0}\right) & =\int_{g(0)}^{g(1)} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \geq \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \geq \bar{\eta} \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} u_{1}(y) d y \\
& \geq\left[\bar{\eta} M_{1} \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y\right]\left\|u_{1}\right\| \geq\left\|u_{1}\right\|
\end{aligned}
$$

if we choose $\bar{\eta}>0$ so that

$$
\bar{\eta} M_{1} \int_{a}^{b} G_{1}\left(t_{0}, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y \geq 1
$$

We obtain $N_{1}(u)\left(t_{0}\right) \geq\left\|u_{1}\right\| \geq u_{1}(t)$, for all $t \in[0,1]$, and we have that $N_{1}(u)\left(t_{0}\right) \geq$ $u_{1}\left(t_{0}\right)$, a contradiction with the assumption that we made. It follows that $N_{1}(u) \nprec u_{1}$ if $\left\|u_{1}\right\|=r_{1}$.

Part 1. We assume that f_{1} is unbounded. From (2.4) we have that there exists $Q_{1}>0$ so that $f_{1}(u) \leq \lambda u_{1}$, for $u_{1} \geq Q_{1}$, for all $u_{2} \geq 0$, where $\lambda>0$ may be chosen conveniently. There exists $H_{2}=\left(H_{2}^{\prime}, H_{2}^{\prime \prime}\right)$ with $H_{2}^{\prime}>\max \left\{Q_{1}, r_{1}\right\}$ so that $f_{1}(u) \leq f_{1}\left(H_{2}\right)$, for $0<u \leq H_{2}$ (we may do this because f_{1} is unbounded). We choose $R_{1}:=H_{2}^{\prime}$ and we suppose that $N_{1}(u) \succ u_{1}$ if $\left\|u_{1}\right\|=R_{1}$. Then, for all u_{2} with $\left\|u_{2}\right\| \leq H_{2}^{\prime \prime}$, we have:

$$
\begin{aligned}
N_{1}(u)(t) & =\int_{g(0)}^{g(1)} G_{1}\left(t, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \leq \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \\
& \leq \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}\left(H_{2}\right) d y \\
& \leq \lambda H_{2}^{\prime} \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y<\frac{H_{2}^{\prime}}{2}=\frac{R_{1}}{2},
\end{aligned}
$$

if we choose $\lambda>0$ so that

$$
\lambda \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y<\frac{1}{2} .
$$

So $N_{1}(u)(t) \leq \frac{R_{1}}{2}$, for all $t \in[0,1]$. But, by our assumption, $N_{1}(u) \succ u_{1}$, we obtain $\left\|N_{1}(u)\right\| \geq\left\|u_{1}\right\|=R_{1}$, so $R_{1} \leq \frac{R_{1}}{2}$, a contradiction. It follows that $N_{1}(u) \nsucc u_{1}$, for $\left\|u_{1}\right\|=R_{1}$.

Part 2. We assume that f_{1} is bounded, so $\sup _{u \in(0, \infty)^{2}} f_{1}(u)=M^{\prime}<\infty$. We choose R_{1} so that

$$
R_{1}>2 M^{\prime}\left(\int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y\right)
$$

We suppose that $N_{1}(u) \succ u_{1}$ for $\left\|u_{1}\right\|=R_{1}$, so

$$
\begin{aligned}
N_{1}(u)(t) & =\int_{g(0)}^{g(1)} G_{1}\left(t, g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} f_{1}(u(y)) d y \leq \\
& \leq M^{\prime} \int_{g(0)}^{g(1)} G_{1}\left(g^{-1}(y), g^{-1}(y)\right) \frac{a_{1}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y<\frac{R_{1}}{2}
\end{aligned}
$$

It follows that $\left\|N_{1} u\right\| \leq \frac{R_{1}}{2}$. But, from the assumption that we made, we obtain $\left\|N_{1} u\right\| \geq$ $\left\|u_{1}\right\|=R_{1}$, a contradiction. It follows that $N_{1}(u) \nsucc u_{1}$ if $\left\|u_{1}\right\|=R_{1}$. Similarly, we obtain, for f_{2}, that $N_{2}(u) \nprec u_{2}$ if $\left\|u_{2}\right\|=r_{2}$ and $N_{2}(u) \nsucc u_{2}$ if $\left\|u_{2}\right\|=R_{2}$, so condition (c1) from Remark 1.1 holds.

Assume now that (2.5) holds. Using the same arguments for f_{1}, like in the case (2.4), we obtain:

$$
N_{1}(u) \nprec u_{1} \text { if }\left\|u_{1}\right\|=r_{1} \text { and } N_{1}(u) \nsucc u_{1} \text { if }\left\|u_{1}\right\|=R_{1} .
$$

Using the same arguments for f_{2}, like in the case (2.3), we obtain:

$$
N_{2}(u) \nsucc u_{2} \text { if }\left\|u_{2}\right\|=r_{2} \text { and } N_{2}(u) \nprec u_{2} \text { if }\left\|u_{2}\right\|=R_{2} .
$$

It follows that condition (c2) from Remark 1.1 is satisfied.
Assume now that (2.6) holds. Using the same arguments for f_{1}, like in the case (2.3), we obtain:

$$
N_{1}(u) \nsucc u_{1} \text { if }\left\|u_{1}\right\|=r_{1} \text { and } N_{1}(u) \nprec u_{1} \text { if }\left\|u_{1}\right\|=R_{1} .
$$

Using the same arguments for f_{2}, like in the case (2.4), we obtain:

$$
N_{2}(u) \nprec u_{2} \text { if }\left\|u_{2}\right\|=r_{2} \text { and } N_{2}(u) \nsucc u_{2} \text { if }\left\|u_{2}\right\|=R_{2} .
$$

Thus condition (c3) from Remark 1.1 holds.
Remark 2.2. (1) An example of functions like in (2.3):

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{p}\left(x_{2}+1\right)}{x_{1}+x_{2}+1} \\
f_{2}\left(x_{1}, x_{2}\right) & =x_{1}^{p}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right]
\end{aligned}
$$

where $r>1 ; p>2 ; q, s>0$.
Indeed,

$$
\left|\frac{f_{1}\left(x_{1}, x_{2}\right)}{x_{1}}\right|=\frac{x_{1}^{p-1}\left(x_{2}+1\right)}{x_{1}+x_{2}+1}=\frac{x_{1}^{p-1}}{1+\frac{x_{1}}{x_{2}+1}} \leq x_{1}^{p-1} \rightarrow 0
$$

as $x_{1} \rightarrow 0$, for $p>2$, so $\left(f_{1}\right)_{0}\left(x_{2}\right)=0$ uniformly for all $x_{2} \geq 0$, and

$$
\left|\frac{f_{1}\left(x_{1}, x_{2}\right)}{x_{1}}\right|=\frac{x_{1}^{p-1}}{1+\frac{x_{1}}{x_{2}+1}} \geq \frac{x_{1}^{p-1}}{1+x_{1}} \rightarrow \infty
$$

as $x_{1} \rightarrow \infty$, for $p>2$, so $\left(f_{1}\right)_{\infty}\left(x_{2}\right)=\infty$ uniformly for all $x_{2} \geq 0$. Also

$$
\begin{aligned}
\left|\frac{f_{2}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r-1}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right] \\
& \leq 2 x_{1}^{p-1}+2 x_{1}^{r-1} \rightarrow 0
\end{aligned}
$$

as $x_{1} \rightarrow 0$, for $r, p>1$, so $\left(f_{2}\right)_{0}\left(x_{2}\right)=0$ uniformly for all $x_{2} \geq 0$, and

$$
\begin{aligned}
\left|\frac{f_{2}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r-1}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right] \\
& \geq x_{1}^{p-1}+x_{1}^{r-1} \rightarrow \infty
\end{aligned}
$$

as $x_{1} \rightarrow \infty$, for $r, p>1$, so $\left(f_{2}\right)_{\infty}\left(x_{2}\right)=\infty$ uniformly for all $x_{2} \geq 0$.
(2) An example of functions like in (2.4):

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}\right) & =x_{1}^{p}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right] \\
f_{2}\left(x_{1}, x_{2}\right) & =x_{1}^{p}\left[\frac{q x_{2}}{x_{2}+1}+1\right]+x_{1}^{r}\left[\frac{s x_{2}}{x_{2}+1}+1\right]
\end{aligned}
$$

where $0<r, p<1 ; q, s>0$.
Indeed, f_{1} and f_{2} are unbounded and one has

$$
\begin{aligned}
\left|\frac{f_{1}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r-1}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right] \\
& \geq x_{1}^{p-1}+x_{1}^{r-1} \rightarrow \infty
\end{aligned}
$$

as $x_{1} \rightarrow 0$, for $0<r, p<1$, so $\left(f_{1}\right)_{0}\left(x_{2}\right)=\infty$ uniformly for all $x_{2} \geq 0$, and

$$
\begin{aligned}
\left|\frac{f_{1}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{1}{\left(x_{2}+1\right)^{q}}+1\right]+x_{1}^{r-1}\left[\frac{1}{\left(x_{2}+1\right)^{s}}+1\right] \\
& \leq 2 x_{1}^{p-1}+2 x_{1}^{r-1} \rightarrow 0
\end{aligned}
$$

as $x_{1} \rightarrow \infty$, for $0<r, p<1$, so $\left(f_{1}\right)_{\infty}\left(x_{2}\right)=0$ uniformly for all $x_{2} \geq 0$. Also

$$
\begin{aligned}
\left|\frac{f_{2}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{q x_{2}}{x_{2}+1}+1\right]+x_{1}^{r-1}\left[\frac{s x_{2}}{x_{2}+1}+1\right] \\
& \geq x_{1}^{p-1}+x_{1}^{r-1} \rightarrow \infty
\end{aligned}
$$

as $x_{1} \rightarrow 0$, for $0<r, p<1$, so $\left(f_{2}\right)_{0}\left(x_{2}\right)=\infty$ uniformly for all $x_{2} \geq 0$, and

$$
\begin{aligned}
\left|\frac{f_{2}\left(x_{1}, x_{2}\right)}{x_{1}}\right| & =x_{1}^{p-1}\left[\frac{q x_{2}}{x_{2}+1}+1\right]+x_{1}^{r-1}\left[\frac{s x_{2}}{x_{2}+1}+1\right] \\
& \leq(q+1) x_{1}^{p-1}+(s+1) x_{1}^{r-1} \rightarrow 0
\end{aligned}
$$

as $x_{1} \rightarrow \infty$, for $0<r, p<1$, so $\left(f_{2}\right)_{\infty}\left(x_{2}\right)=0$ uniformly for all $x_{2} \geq 0$.
Acknowledgement. The author Radu Precup thanks CNCSIS-UEFISCSU for the support of this research under Grant PN II IDEI PCCE code 55/2008.

References

[1] Budişan, S.,Positive solutions of functional differential equations, Carpathian J. Math. 22 (2006), No. 1-2, 13-19
[2] Erbe, L. H. and Wang, H.,On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748
[3] Erbe, L. H., Hu, S. and Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640-648
[4] Krasnoselskii, M. A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964
[5] Precup, R., A vector version of Krasnoselskii's fixed point theorem in cones and positive periodic solutions of nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141-151
[6] Precup, R., Positive solutions of nonlinear systems via the vector version of Krasnoselskii's fixed point theorem in cones, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 129-138
[7] Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in Proceedings of the International Conference on Boundary Value Problems, Santiago de Compostela, Spain, September 16-19, 2008 (Cabada, A., Liz, E. and Nieto, J. J., Eds.), AIP Conference Proceedings, 1124, 2009, 284-293
[8] Precup, R., Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl. 352 (2009), 48-56
[9] Tang, X. and Zou, X., On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments, Proc. Amer. Math. Soc. 134 (2006), 2967-2974
[10] Torres, P. J., Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643-662
[11] Wang, H., Positive periodic solutions of functional differential equations, J. Differential Equations 202 (2004), 354-366

"Babeş-Bolyai" University
Department of Mathematics
400084 Cluj-Napoca, Romania
E-mail address: sorinbudisan@yahoo.com
E-mail address: r.precup@math.ubbcluj.ro

[^0]: Received: 09.11.2010; In revised form: 20.03.2011; Accepted: 30.06.2011
 2000 Mathematics Subject Classification. 34B18, 34K10.
 Key words and phrases. Positive solution, boundary value problem, fixed point, cone.

