CARPATHIAN J. MATH. Online version available at http://carpathian.ubm.ro 27 (2011), No. 2, 165 - 172 Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Positive solutions of functional-differential systems via the vector version of Krasnoselskii's fixed point theorem in cones

SORIN BUDIŞAN and RADU PRECUP

ABSTRACT. We study the existence of positive solutions of the functional-differential system

$$\begin{cases} u_1''(t) + a_1(t)f_1(u_1(g(t)), u_2(g(t))) = 0, \\ u_2''(t) + a_2(t)f_2(u_1(g(t)), u_2(g(t))) = 0 \end{cases}$$

(0 < t < 1), subject to linear boundary conditions. We prove the existence of at least one positive solution by using the vector version of Krasnoselskii's fixed point theorem in cones.

1. INTRODUCTION

This paper deals with the second-order functional-differential system

(1.1)
$$\begin{cases} u_1''(t) + a_1(t)f_1(u_1(g(t)), u_2(g(t))) = 0\\ u_2''(t) + a_2(t)f_2(u_1(g(t)), u_2(g(t))) = 0 \end{cases}$$

(0 < t < 1), under the boundary conditions

(1.2)
$$\begin{cases} \alpha_i u_i(0) - \beta_i u_i'(0) = 0, \\ \gamma_i u_i(1) + \delta_i u_i'(1) = 0, \\ u_i(t) = k_i \text{ for } -\theta \le t < 0 \ (i = 1, 2). \end{cases}$$

Here $\theta > 0$ and $g : [0,1] \rightarrow [-\theta,1]$. We seek positive solutions to (1.1)-(1.2), that is a couple $u = (u_1, u_2)$ with $u_i(t) > 0$ for 0 < t < 1 and i = 1, 2.

We shall assume that the following conditions are satisfied for $i \in \{1, 2\}$:

(A1) $f_i \in C([0,\infty)^2, [0,\infty))$ and $g \in C([0,1], [-\theta,1]);$

(A2) $a_i \in C([0,1],[0,\infty))$ and $a_i(t)$ is not identically zero on any proper subinterval of [0,1];

(A3) $\alpha_i, \beta_i, \gamma_i, \delta_i, k_i \ge 0, \ \rho_i := \gamma_i \beta_i + \alpha_i \gamma_i + \alpha_i \delta_i > 0.$

Our existence result is based on the vector version of Krasnoselskii's fixed point theorem in cones, due to the second author [5] (see also [6]-[8]) and extends to systems the main result from [1]. To present the vector version of Krasnoselskii's theorem, we need to introduce some notations and notions. Let $(X, \|.\|)$ be a normed linear space, let K_1, K_2 be two cones of X and let $K := K_1 \times K_2$. We shall use the same symbol \preceq to denote the partial order relation induced by K in X^2 and by K_1, K_2 in X. Similarly, the same symbol \prec will be used to denote the strict order relation induced by K_1 and K_2 in X. Also, in X^2 , the symbol \prec will have the following meaning: $u \prec v (u, v \in X^2)$ if

Received: 09.11.2010; In revised form: 20.03.2011; Accepted: 30.06.2011

²⁰⁰⁰ Mathematics Subject Classification. 34B18, 34K10.

Key words and phrases. Positive solution, boundary value problem, fixed point, cone.

 $u_i \prec v_i$ for i = 1, 2. For $r, R \in \mathbf{R}^2_+$, $r = (r_1, r_2)$, $R = (R_1, R_2)$, we write 0 < r < R if $0 < r_1 < R_1$ and $0 < r_2 < R_2$ and we use the notations:

$$\begin{array}{rcl} (K_i)_{r_i,R_i} & : & = \{ v \in K_i : r_i \leq \|v\| \leq R_i \} & (i=1,2) \\ K_{r,R} & : & = \{ u = (u_1,u_2) \in K : r_i \leq \|u_i\| \leq R_i \ \text{ for } i=1,2 \}. \end{array}$$

Clearly, $K_{r,R} = (K_1)_{r_1,R_1} \times (K_2)_{r_2,R_2}$.

Now we are ready to present the vector version of Krasnoselskii's fixed point theorem in cones.

Theorem 1.1 ([6]). Let $(X, \|.\|)$ be a normed linear space; $K_1, K_2 \subset X$ two cones; $K := K_1 \times K_2$; $r, R \in \mathbb{R}^2_+$ with 0 < r < R, and let $N : K_{r,R} \to K$, $N = (N_1, N_2)$ be a compact map. Assume that for each $i \in \{1, 2\}$, one of the following conditions is satisfied in $K_{r,R}$:

(a) $N_i(u) \not\prec u_i$ if $||u_i|| = r_i$, and $N_i(u) \not\prec u_i$ if $||u_i|| = R_i$; (b) $N_i(u) \not\succ u_i$ if $||u_i|| = r_i$, and $N_i(u) \not\prec u_i$ if $||u_i|| = R_i$. Then N has a fixed point u in K with $r_i \leq ||u_i|| \leq R_i$ for $i \in \{1, 2\}$.

Remark 1.1. In Theorem 1.1 four cases are possible for $u \in K_{r,R}$:

Related results obtained by means of Krasnoselskii's fixed point theorem in cones [4] can be found in [2], [3], [9] - [11].

2. THE MAIN RESULT

Let G_i be the Green function of the problem

$$\begin{cases} u'' = 0, \\ \alpha_i u(0) - \beta_i u'(0) = 0, \\ \gamma_i u(1) + \delta_i u'(1) = 0. \end{cases}$$

One has

$$G_i(t,s) = \begin{cases} \frac{1}{\rho_i} \varphi_i(t) \psi_i(s), & 0 \le s \le t \le 1\\ \frac{1}{\rho_i} \varphi_i(s) \psi_i(t), & 0 \le t \le s \le 1, \end{cases}$$

where $\varphi_i(t) := \gamma_i + \delta_i - \gamma_i t$, $\psi_i(t) := \beta_i + \alpha_i t$ $(0 \le t \le 1)$. Notice that

(2.1)
$$G_i(t,s) \leq \frac{1}{\rho_i} \varphi_i(s) \psi_i(s) = G_i(s,s) \text{ for } 0 \leq t, s \leq 1.$$

In addition the following result (Lemma 2.1 from [1]) holds:

Lemma 2.1. For every
$$n > \frac{4}{3}$$
 and $i \in \{1, 2\}$, there exists $M_i(n) > 0$ such that
(2.2) $\frac{G_i(t,s)}{G_i(s,s)} \ge M_i(n)$ for $\frac{1}{n} \le t \le \frac{3}{4}$ and $0 \le s \le 1$.

In what follows by ||v||, where $v \in C[0,1]$, we mean the norm $||v|| = \max_{t \in [0,1]} |v(t)|$. Also we make the following notations:

$$(f_i)_0(x_j) := \lim_{x_i \to 0} \frac{f_i(x_1, x_2)}{x_i}, \quad (f_i)_\infty(x_j) := \lim_{x_i \to \infty} \frac{f_i(x_1, x_2)}{x_i}$$

for $i, j \in \{1, 2\}$ with i + j = 3.

The main result of this paper is the following existence theorem.

Theorem 2.2. Assume that conditions (A1)-(A3) hold. In addition assume that $g \in C^1([0,1], [-\theta,1]), g' > 0, g(0) \le 0$ and g(1) > 0. Then problem (1.1)-(1.2) has at least one positive solution $u := (u_1, u_2)$ in each of the following four cases:

(2.3)
$$\begin{cases} (f_1)_0(x_2) = 0 & \text{uniformly for all } x_2 \ge 0, \\ (f_1)_{\infty}(x_2) = \infty & \text{uniformly for all } x_2 \ge 0, \\ (f_2)_0(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_{\infty}(x_1) = \infty & \text{uniformly for all } x_1 \ge 0; \end{cases}$$

(2.4)
$$\begin{cases} (f_1)_0(x_2) = \infty & \text{uniformly for all } x_2 \ge 0, \\ (f_1)_\infty(x_2) = 0 & \text{uniformly for all } x_2 \ge 0, \text{ if } f_1 \text{ is unbounded}, \\ (f_2)_0(x_1) = \infty & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \text{ if } f_2 \text{ is unbounded}; \end{cases}$$

(2.5)
$$\begin{cases} (f_1)_0(x_2) = \infty & \text{uniformly for all } x_2 \ge 0, \\ (f_1)_\infty(x_2) = 0 & \text{uniformly for all } x_2 \ge 0, \text{ if } f_1 \text{ is unbounded}, \\ (f_2)_0(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = \infty & \text{uniformly for all } x_1 \ge 0; \end{cases}$$
$$\begin{cases} (f_1)_0(x_2) = 0 & \text{uniformly for all } x_2 \ge 0, \\ (f_1)_\infty(x_2) = \infty & \text{uniformly for all } x_2 \ge 0, \\ (f_2)_0(x_1) = \infty & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \\ (f_2)_\infty(x_1) = 0 & \text{uniformly for all } x_1 \ge 0, \end{cases}$$

Proof. First note that $u = (u_1, u_2) \in C([0, 1], \mathbb{R}^2_+)$ is a solution of (1.1)-(1.2) if and only if u solves the operator system

$$u_{i}(t) = \int_{0}^{1} G_{i}(t,s)a_{i}(s)f_{i}(u_{1}(g(s)), u_{2}(g(s)))ds := N_{i}u(t), \ i = 1, 2.$$

Let K_i be the cone in C[0,1] given by

$$K_i = \{ v \in C[0,1] : v \ge 0, \min_{a \le t \le b} v(t) \ge M_i \|v\| \},\$$

where $a = \frac{1}{n}$, $b = \min \left\{ g(1), \frac{3}{4} \right\}$ and M_i stands for $M_i(n)$ given by Lemma 2.1. Then, for $u \in K = K_1 \times K_2$, using (2.1) and (2.2) we obtain

$$\begin{split} \min_{a \le t \le b} N_i u \,(t) &= \min_{a \le t \le b} \int_0^1 G_i(t,s) a_i(s) f_i(u \,(g \,(s))) ds \\ &\ge M_i \int_0^1 G_i(s,s) a_i(s) f_i(u \,(g \,(s))) ds \\ &\ge M_i \int_0^1 G_i(t',s) a_i(s) f_i(u \,(g \,(s))) ds = M_i N_i u \,(t') \end{split}$$

for every $t' \in [0, 1]$. Consequently

$$\min_{a\leq t\leq b}N_{i}u\left(t\right)\geq M_{i}\left\|N_{i}u\right\|.$$

Therefore, $N_i(K) \subset K_i$, for i = 1, 2. Moreover, it is easy to see that $N_i : K \to K_i$ is completely continuous. Hence $N : K_{r,R} \to K$, $N = (N_1, N_2)$ is well defined and compact for every $r, R \in \mathbb{R}^2_+$ with 0 < r < R.

Assume now that (2.3) holds. We will prove that N satisfies condition (c4) from Remark 1.1. The first relation from (2.3) guarantees that there exists $H_1 > 0$ so that $f_1(u_1, u_2) \le \eta u_1$, for $0 < u_1 \le H_1$ and $u_2 \ge 0$, where $\eta > 0$ may be chosen conveniently. We choose $0 < r_1 \le H_1$. Suppose that $N_1(u) \succ u_1$ for $||u_1|| = r_1$. From $||u_1|| = r_1 \le H_1$, we have that $0 < u_1 \le H_1$, so

$$(2.7) ||N_1u|| \leq \int_0^1 G_1(s,s)a_1(s)f_1(u(g(s)))ds \\ \leq \eta \int_0^1 G_1(s,s)a_1(s)u_1(g(s))ds \\ = \eta \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y))\frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))}u_1(y)dy \\ \leq \eta r_1 \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y))\frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))}dy, ext{ }$$

using that $u_1(y) \le ||u_1|| = r_1$. We choose $\eta > 0$ so that

(2.8)
$$\eta r_1 \int_{g(0)}^{g(1)} G_1(g^{-1}(y), g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy \le M_1 r_1$$

From $u_1 \in K_1$ we obtain $r_1 M_1 = ||u_1|| M_1 \le \min_{a \le t \le b} u_1(t)$, so (2.7) and (2.8) imply

$$\|N_1u\| \le \min_{a \le t \le b} u_1(t),$$

and from $N_1 u \leq ||N_1 u||$ it follows

$$N_1u(t) \le \min_{a \le t \le b} u_1(t), \text{ for } t \in [0,1],$$

so $N_1u(t) \leq \min_{a \leq t \leq b} u_1(t) \leq u_1(t)$, for $t \in [a, b]$, a contradiction with the assumption $N_1u \succ u_1$. So $N_1u \not\succeq u_1$ if $||u_1|| = r_1$. From (2.3) we have that there exists $\overline{H}_2 > 0$ so that $f_1(u_1, u_2) \geq \mu u_1$, for $u_1 \geq \overline{H}_2$ and $u_2 \geq 0$, where $\mu > 0$ may be chosen conveniently. Let $R_1 := \max\left\{2H_1, \frac{\overline{H}_2}{M_1}\right\}$. We suppose that $N_1(u) \prec u_1$ if $||u_1|| = R_1$. Using the hypothesis g(1) > 0, g(0) < 0, g' > 0, we obtain for $a \leq t_0 \leq b, u_1 \in K_1$, $||u_1|| = R_1$, that

$$\min_{a \le t \le b} u_1(t) \ge M_1 \, \|u_1\| \ge H_2,$$

so

$$\begin{split} N_1 u(t_0) &= \int_{g(0)}^{g(1)} G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\geq \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\geq \mu \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} u_1(y) dy \\ &\geq \mu M_1 \left[\int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy \right] \|u_1\| \\ &\geq \|u_1\| \geq u_1(t), \quad \text{for } t \in [0, 1], \end{split}$$

if we choose $\mu > 0$ so that

$$\mu M_1\left[\int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy\right] \ge 1.$$

Here we used the inclusion $[a, b] \subset [g(0), g(1)]$ which is true for the above chosen b and some n with a = 1/n < b. So $N_1(u)(t_0) \ge u_1(t_0)$, a contradiction with the assumption $N_1(u) \prec u_1$ if $||u_1|| = R_1$. So, we obtain $N_1(u) \not\prec u_1$ if $||u_1|| = R_1$.

Similarly, from (2.3) we obtain that

$$N_2(u) \not\succ u_2$$
 if $||u_2|| = r_2$ and $N_2(u) \not\prec u_2$ if $||u_2|| = R_2$.

Thus condition (c4) from Remark 1.1 holds.

Assume now that (2.4) holds. We will prove that N satisfies condition (c1) from Remark 1.1. From (2.4) we have that there exists $H_1 > 0$ so that $f_1(u) \ge \overline{\eta}u_1$, for $0 < u_1 \le H_1$ and all $u_2 \ge 0$, where $\overline{\eta}$ may be chosen conveniently. We choose M_1 from the definition of cone K_1 . We also choose r_1 so that $0 < r_1 \le H_1$. We suppose that $N_1(u) \prec u_1$ if $||u_1|| = r_1$. Then, for $a \le t_0 \le b$, $u_1 \in K_1$ and $||u_1|| = r_1 \le H_1$, we have

$$\begin{split} N_1(u)(t_0) &= \int_{g(0)}^{g(1)} G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\geq \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\geq \bar{\eta} \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} u_1(y) dy \\ &\geq \left[\bar{\eta} M_1 \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy \right] \|u_1\| \geq \|u_1\|, \end{split}$$

if we choose $\ \bar{\eta} > 0$ so that

$$\bar{\eta}M_1 \int_a^b G_1(t_0, g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy \ge 1.$$

We obtain $N_1(u)(t_0) \ge ||u_1|| \ge u_1(t)$, for all $t \in [0,1]$, and we have that $N_1(u)(t_0) \ge u_1(t_0)$, a contradiction with the assumption that we made. It follows that $N_1(u) \not\prec u_1$ if $||u_1|| = r_1$.

Part 1. We assume that f_1 is unbounded. From (2.4) we have that there exists $Q_1 > 0$ so that $f_1(u) \le \lambda u_1$, for $u_1 \ge Q_1$, for all $u_2 \ge 0$, where $\lambda > 0$ may be chosen conveniently. There exists $H_2 = (H'_2, H''_2)$ with $H'_2 > \max\{Q_1, r_1\}$ so that $f_1(u) \le f_1(H_2)$, for $0 < u \le H_2$ (we may do this because f_1 is unbounded). We choose $R_1 := H'_2$ and we suppose that $N_1(u) \succ u_1$ if $||u_1|| = R_1$. Then, for all u_2 with $||u_2|| \le H''_2$, we have:

$$\begin{split} N_1(u)(t) &= \int_{g(0)}^{g(1)} G_1(t,g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\leq \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \\ &\leq \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(H_2) dy \\ &\leq \lambda H_2' \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy < \frac{H_2'}{2} = \frac{R_1}{2}, \end{split}$$

if we choose $\lambda > 0$ so that

$$\lambda \int_{g(0)}^{g(1)} G_1(g^{-1}(y), g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy < \frac{1}{2}.$$

So $N_1(u)(t) \leq \frac{R_1}{2}$, for all $t \in [0,1]$. But, by our assumption, $N_1(u) \succ u_1$, we obtain $||N_1(u)|| \geq ||u_1|| = R_1$, so $R_1 \leq \frac{R_1}{2}$, a contradiction. It follows that $N_1(u) \neq u_1$, for $||u_1|| = R_1$.

Part 2. We assume that f_1 is bounded, so $\sup_{u \in (0,\infty)^2} f_1(u) = M' < \infty$. We choose R_1 so

that

$$R_1 > 2M'\left(\int_{g(0)}^{g(1)} G_1(g^{-1}(y), g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy\right).$$

We suppose that $N_1(u) \succ u_1$ for $||u_1|| = R_1$, so

$$\begin{split} N_1(u)(t) &= \int_{g(0)}^{g(1)} G_1(t,g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} f_1(u(y)) dy \leq \\ &\leq M^{'} \int_{g(0)}^{g(1)} G_1(g^{-1}(y),g^{-1}(y)) \frac{a_1(g^{-1}(y))}{g'(g^{-1}(y))} dy < \frac{R_1}{2}. \end{split}$$

It follows that $||N_1u|| \leq \frac{R_1}{2}$. But, from the assumption that we made, we obtain $||N_1u|| \geq ||u_1|| = R_1$, a contradiction. It follows that $N_1(u) \neq u_1$ if $||u_1|| = R_1$. Similarly, we obtain, for f_2 , that $N_2(u) \neq u_2$ if $||u_2|| = r_2$ and $N_2(u) \neq u_2$ if $||u_2|| = R_2$, so condition (c1) from Remark 1.1 holds.

Assume now that (2.5) holds. Using the same arguments for f_1 , like in the case (2.4), we obtain:

$$N_1(u) \not\prec u_1$$
 if $||u_1|| = r_1$ and $N_1(u) \not\succ u_1$ if $||u_1|| = R_1$.

Using the same arguments for f_2 , like in the case (2.3), we obtain:

 $N_2(u) \not\succ u_2$ if $||u_2|| = r_2$ and $N_2(u) \not\prec u_2$ if $||u_2|| = R_2$.

It follows that condition (c2) from Remark 1.1 is satisfied.

Assume now that (2.6) holds. Using the same arguments for f_1 , like in the case (2.3), we obtain:

$$N_1(u) \not\succ u_1$$
 if $||u_1|| = r_1$ and $N_1(u) \not\prec u_1$ if $||u_1|| = R_1$.

Using the same arguments for f_2 , like in the case (2.4), we obtain:

$$N_2(u) \not\prec u_2$$
 if $||u_2|| = r_2$ and $N_2(u) \not\succ u_2$ if $||u_2|| = R_2$.

Thus condition (c3) from Remark 1.1 holds.

Remark 2.2. (1) An example of functions like in (2.3):

$$\begin{aligned} f_1(x_1, x_2) &= \frac{x_1^p(x_2+1)}{x_1+x_2+1}, \\ f_2(x_1, x_2) &= x_1^p \left[\frac{1}{(x_2+1)^q} + 1 \right] + x_1^r \left[\frac{1}{(x_2+1)^s} + 1 \right], \end{aligned}$$

where r > 1; p > 2; q, s > 0.

Indeed,

$$\left|\frac{f_1(x_1, x_2)}{x_1}\right| = \frac{x_1^{p-1}(x_2+1)}{x_1 + x_2 + 1} = \frac{x_1^{p-1}}{1 + \frac{x_1}{x_2 + 1}} \le x_1^{p-1} \to 0$$

as $x_1 \rightarrow 0$, for p > 2, so $(f_1)_0(x_2) = 0$ uniformly for all $x_2 \ge 0$, and

$$\left|\frac{f_1(x_1, x_2)}{x_1}\right| = \frac{x_1^{p-1}}{1 + \frac{x_1}{x_2 + 1}} \ge \frac{x_1^{p-1}}{1 + x_1} \to \infty$$

as $x_1 \to \infty$, for p > 2, so $(f_1)_{\infty}(x_2) = \infty$ uniformly for all $x_2 \ge 0$. Also

$$\left| \frac{f_2(x_1, x_2)}{x_1} \right| = x_1^{p-1} \left[\frac{1}{(x_2 + 1)^q} + 1 \right] + x_1^{r-1} \left[\frac{1}{(x_2 + 1)^s} + 1 \right]$$

 $\leq 2 x_1^{p-1} + 2x_1^{r-1} \to 0$

as $x_1 \rightarrow 0$, for r, p > 1, so $(f_2)_0(x_2) = 0$ uniformly for all $x_2 \ge 0$, and

$$\left| \frac{f_2(x_1, x_2)}{x_1} \right| = x_1^{p-1} \left[\frac{1}{(x_2+1)^q} + 1 \right] + x_1^{r-1} \left[\frac{1}{(x_2+1)^s} + 1 \right]$$

$$\geq x_1^{p-1} + x_1^{r-1} \to \infty$$

as $x_1 \to \infty$, for r, p > 1, so $(f_2)_{\infty}(x_2) = \infty$ uniformly for all $x_2 \ge 0$.

(2) An example of functions like in (2.4):

$$f_1(x_1, x_2) = x_1^p \left[\frac{1}{(x_2 + 1)^q} + 1 \right] + x_1^r \left[\frac{1}{(x_2 + 1)^s} + 1 \right],$$

$$f_2(x_1, x_2) = x_1^p \left[\frac{qx_2}{x_2 + 1} + 1 \right] + x_1^r \left[\frac{sx_2}{x_2 + 1} + 1 \right],$$

where 0 < r, p < 1; q, s > 0.

Indeed, f_1 and f_2 are unbounded and one has

$$\left| \frac{f_1(x_1, x_2)}{x_1} \right| = x_1^{p-1} \left[\frac{1}{(x_2+1)^q} + 1 \right] + x_1^{r-1} \left[\frac{1}{(x_2+1)^s} + 1 \right]$$
$$\ge x_1^{p-1} + x_1^{r-1} \to \infty$$

Sorin Budişan and Radu Precup

as $x_1 \to 0$, for 0 < r, p < 1, so $(f_1)_0(x_2) = \infty$ uniformly for all $x_2 \ge 0$, and $\left| \frac{f_1(x_1, x_2)}{x_1} \right| = x_1^{p-1} \left[\frac{1}{(x_2 + 1)^q} + 1 \right] + x_1^{r-1} \left[\frac{1}{(x_2 + 1)^s} + 1 \right]$ $\le 2 x_1^{p-1} + 2x_1^{r-1} \to 0$

as $x_1 \to \infty$, for 0 < r, p < 1, so $(f_1)_{\infty}(x_2) = 0$ uniformly for all $x_2 \ge 0$. Also

$$\begin{array}{lcl} \frac{f_2\left(x_1, x_2\right)}{x_1} &=& x_1^{p-1} \left\lfloor \frac{qx_2}{x_2+1} + 1 \right\rfloor + x_1^{r-1} \left\lfloor \frac{sx_2}{x_2+1} + 1 \right\rfloor \\ &\geq& x_1^{p-1} + x_1^{r-1} \to \infty \end{array}$$

as $x_1 \rightarrow 0$, for 0 < r, p < 1, so $(f_2)_0(x_2) = \infty$ uniformly for all $x_2 \ge 0$, and

$$\frac{f_2(x_1, x_2)}{x_1} \bigg| = x_1^{p-1} \left[\frac{qx_2}{x_2 + 1} + 1 \right] + x_1^{r-1} \left[\frac{sx_2}{x_2 + 1} + 1 \right]$$
$$\leq (q+1)x_1^{p-1} + (s+1)x_1^{r-1} \to 0$$

as $x_1 \to \infty$, for 0 < r, p < 1, so $(f_2)_{\infty}(x_2) = 0$ uniformly for all $x_2 \ge 0$.

Acknowledgement. The author Radu Precup thanks CNCSIS–UEFISCSU for the support of this research under Grant PN II IDEI PCCE code 55/2008.

REFERENCES

- [1] Budişan, S., Positive solutions of functional differential equations, Carpathian J. Math. 22 (2006), No. 1-2, 13-19
- [2] Erbe, L. H. and Wang, H.,On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743–748
- [3] Erbe, L. H., Hu, S. and Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640–648
- [4] Krasnoselskii, M. A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964
- [5] Precup, R., A vector version of Krasnoselskii's fixed point theorem in cones and positive periodic solutions of nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141–151
- [6] Precup, R., Positive solutions of nonlinear systems via the vector version of Krasnoselskii's fixed point theorem in cones, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 129–138
- [7] Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in *Proceedings of the International Conference on Boundary Value Problems*, Santiago de Compostela, Spain, September 16-19, 2008 (Cabada, A., Liz, E. and Nieto, J. J., Eds.), AIP Conference Proceedings, 1124, 2009, 284–293
- [8] Precup, R., Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl. 352 (2009), 48–56
- [9] Tang, X. and Zou, X., On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments, Proc. Amer. Math. Soc. 134 (2006), 2967–2974
- [10] Torres, P. J., Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643–662
- [11] Wang, H., Positive periodic solutions of functional differential equations, J. Differential Equations 202 (2004), 354–366

"BABEŞ-BOLYAI" UNIVERSITY DEPARTMENT OF MATHEMATICS 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: sorinbudisan@yahoo.com *E-mail address*: r.precup@math.ubbcluj.ro