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SOME FIXED POINT THEOREMS
IN TERMS OF TWO MEASURES OF NONCOMPACTNESS
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Abstract. In this paper several fixed point theorems of Sadovskii type are ob-
tained for operators on spaces endowed with two norms and two corresponding
measures of noncompactness. An application to Hammerstein integral equations
in a Banach space is included to illustrate the theory.
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1. INTRODUCTION

In recent years much work has been devoted to establish fixed point the-
orems in the terms of some abstract measure of noncompactness (see, e.g.
[1, 4, 5, 8, 20, 21]). In this paper we introduce a less restrictive notion of
abstract measure of noncompactness. We consider on a linear space endowed
with two norms, two corresponding such abstract measures of noncompactness.
In terms of these measures we give several fixed point theorems of Sadovskii
type. Similar results are given in a set with two metrics. An application
to Hammerstein integral equations in a Banach space illustrates our abstract
results.

2. PRELIMINARIES

2.1. Notations. Let (X, d) be a metric space. We will use the following nota-
tions:

P(X) := {Y | Y ⊂ X},
P (X) := {Y ⊂ X | Y is nonempty },
Pb(X) := {Y ∈ P (X) | Y is bounded },
Pcl(X) := {Y ∈ P (X) | Y is closed }.

If X is a linear space, then Pcv(X) := {Y ∈ P (X) | Y is convex }.
If f : X → X is an operator, then Ff := {x ∈ X | f(x) = x}.

2.2. Invariant subsets in terms of closure operators. Let X be a non-
empty set. An operator η : P (X)→ P (X) is called a closure operator if the
following conditions are satisfied:

(i) Y ⊂ η (Y ) for every Y ∈ P (X) ;
(ii) η (Y ) ⊂ η (Z) for every Y,Z ∈ P (X) with Y ⊂ Z;

(iii) η ◦ η = η.
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Our results are based on the following lemma (see [21, p. 21]).

Lemma 2.1 (General Invariant Subset Lemma). Let X be a nonempty set,
η : P (X) → P (X) a closure operator, Y ∈ Fη a set, y ∈ X a point and
f : Y → Y an operator. Then there exists a subset Y0 ⊂ Y such that:

(1) y ∈ Y0;
(2) Y0 ∈ Fη;
(3) Y0 ∈ I (f) ;
(4) η (f (Y0) ∪ {y}) = Y0.

2.3. Rectractible operators. Let X be a nonempty set and Y ⊂ X a non-
empty subset. An operator ρ : X → Y is said to be a set retraction if its
restriction to Y is the identity map of Y, i.e. ρ|Y = 1Y . In case that X is a
structured set (for instance, an ordered set, a topological space etc), we say
that a set retraction ρ is a retraction with respect to that structure (an ordered
set retraction, a topological retraction etc) if in addition ρ is a morphism
with respect to that structure (increasing, continuous etc). By definition, an
operator f : Y → X is retractible with respect to a retraction ρ : X → Y, if
Ff = Fρ◦f . For examples of retractible operators, see [6, 21, 22, 23].

For the radial retraction, we have the following result.

Lemma 2.2 (see [18]). Let X be a linear normed space and α : Pb (X)→ R+

be the Kuratowski measure of noncompactness on X, and ρ : X → BR (0) the
radial retraction. Then α (ρ (Y )) ≤ α (Y ) for every Y ∈ Pb (X).

2.4. Abstract measures of noncompactness. Let (X, d) be a metric space.
There are known several notions of abstract measures of noncompactness on
X (see, e.g. [1, 4, 5, 7, 20, 21]). In this paper we shall use a less restrictive
one.

Definition 2.3. A functional θ : Pb (X) → R+ is an abstract measure of
noncompactness on (X, d) if the following conditions are satisfied:

(i) θ (Y ) = 0, Y ∈ Pb (X) imply that Y is totally bounded;
(ii) θ (Y1) ≤ θ (Y2) for every Y1, Y2 ∈ Pb (X) with Y1 ⊂ Y2;

(iii) θ (Y ∪ {x}) = θ (Y ) for every Y ∈ Pb (X) and x ∈ X;
(iv) θ

(
Y = θ (Y )

)
for every Y ∈ Pb (X) .

If X is a normed linear space, then an additional axiom is added:

(v) θ (coY ) = θ (Y ) for every Y ∈ Pb (X) .

Remark 2.4. If θ is an abstract measure of noncompactness on a normed
linear space, then in Lemma 2.2 we can put θ instead of α.

3. MAIN RESULTS

3.1. Fixed point theorems in a linear space with two norms. Let X
be a linear space and ‖.‖1 , ‖.‖2 be two norms on X. Let θ1 and θ2 be two
abstract measures of noncompactness on (X, ‖.‖1) and (X, ‖.‖2) , respectively.
Our first result is the following fixed point theorem for a self operator.
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Theorem 3.1. Let Y ⊂ X and f : Y → Y. Assume that the following
conditions are satisfied:

(i) (X, ‖.‖1) is a Banach space;
(ii) there exists c1 > 0 such that ‖.‖2 ≤ c1 ‖.‖1 ;
(iii) Y ∈ Pb,cl,cv (X, ‖.‖1) ;
(iv) f is continuous with respect to ‖.‖1 ;
(v) there exists c2 > 0 such that θ1 (f (A)) ≤ c2θ2 (A) for every A ∈ I (f) ;
(vi) for each A ∈ I (f) with θ2 (A) 6= 0, one has θ2 (f (A)) < θ2 (A) .

Then Ff 6= ∅ and θ1 (Ff ) = 0, i.e. Ff is compact with respect to ‖.‖1 .

Proof. Denote by cli the topological closure operator on (X, ‖.‖i) , i = 1, 2.
Let y0 be any element of Y. By the General Invariant Subset Lemma for the
closure operator cl1co, there exists Y0 ⊂ Y such that

cl1co (f (Y0) ∪ {y0}) = Y0.

From (ii) and the axioms in Definition 2.3, we have that

θ2 (cl2cl1co (f (Y0) ∪ {y0})) = θ2 (cl2Y0) = θ2 (Y0)

= θ2 (cl2co (f (Y0) ∪ {y0}))
= θ2 (f (Y0) ∪ {y0})
= θ2 (f (Y0)) .

Hence θ2 (f (Y0)) = θ2 (Y0) , and in view of (vi), θ2 (Y0) = 0. Then by (iv),
θ1 (f (Y0)) = 0. Then θ1 (cl1co (f (Y0))) = 0, that is cl1co(f (Y0)) is compact
(also convex) in (X, ‖.‖1) . Being also an invariant set for f, we may apply
Schauder’s fixed point theorem and deduce that Ff 6= ∅. Since Ff ∈ I (f) and
f (Ff ) = Ff , from (vi) we have θ2 (Ff ) = 0, and then from (v), θ1 (Ff ) = 0. �

The following particular case appears to be useful in applications. Let E
be a Banach space and X = C ([a, b] ;E) . Consider on X the following two
norms:

‖.‖1 = ‖.‖∞ and ‖.‖2 = ‖.‖p
for some p ∈ [1,∞). In this case, Theorem 3.1 takes the following form:

Theorem 3.2. Assume that:

(i) Y ∈ Pb,cl,cv (X, ‖.‖∞) ;
(ii) f : Y → Y is continuous with respect to ‖.‖∞ ;
(iii) there exists c2 > 0 such that θ1 (f (A)) ≤ c2θ2 (A) for every A ∈ I (f) ;
(iv) for each A ∈ I (f) with θ2 (A) 6= 0, one has θ2 (f (A)) < θ2 (A) .

Then Ff 6= ∅ and θ1 (Ff ) = 0, i.e. Ff is compact with respect to ‖.‖∞ .

Remark 3.3. In Theorems 3.1 and 3.2 it is sufficient that θ1 satisfies the
axioms (i), (ii) and (iv) from Definition 2.3.
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3.2. The case of nonself operators. Let X be a linear space and ‖.‖1 and
‖.‖2 be two norms on X. Let ρ : X → BR (0; ‖.‖1) be the radial retraction.
Denote by αi the Kuratowski measure of compactness on (X, ‖.‖i) , i = 1, 2.
From Theorem 3.1 and Lemma 2.1 we have the following result:

Theorem 3.4. Let f : BR (0; ‖.‖1) → X be an operator and assume that
the following conditions are satisfied:

(i) (X, ‖.‖1) is a Banach space;
(ii) there exists c1 > 0 such that ‖.‖2 ≤ c1 ‖.‖1 ;

(iii) f is continuous with respect to ‖.‖1 ;
(iv) f (BR (0; ‖.‖1)) is bounded in (X, ‖.‖1) ;
(v) there exists c2 > 0 such that α1 (f (A)) ≤ c2α2 (A) for every A ⊂

BR (0; ‖.‖1) ;
(vi) for each A ⊂ BR (0; ‖.‖1) with α2 (A) 6= 0, one has α2 (ρ ◦ f (A))

< α2 (A) ;
(vii) f is retractible with respect to ρ.

Then Ff 6= ∅ and α1 (Ff ) = 0, i.e. Ff is compact with respect to ‖.‖1 .

Proof. This follows by applying Theorem 3.1 to the self operator ρ ◦ f :
BR (0; ‖.‖1)→ BR (0; ‖.‖1) . �

Remark 3.5. One can state a similar result on C ([a, b] ;E) , corresponding
to Theorem 3.2.

3.3. The case of a set with two metrics. Let X be a nonempty set, d1, d2
two metrics on X and θ1, θ2 two measures of noncompactness on (X, d1) and
(X, d2) , respectively.

Theorem 3.6. Let f : X → X and assume that the following conditions
are satisfied:

(i) (X, d1) is a complete metric space;
(ii) there exists c1 > 0 such that d2 ≤ c1d1;

(iii) Y ∈ Pcl1 (X) ∩ I (f) and θ1 (Y ) = 0 imply Ff ∩ Y 6= ∅;
(iv) f : (X, d1) → (X, d1) is bounded and there exists c2 > 0 such that

θ1 (f (A)) ≤ c2θ2 (A) for every A ∈ Pb (X, d1) ∩ I (f) ;
(v) θ2 (A) = 0 implies A ∈ Pb (X, d1) ;
(vi) for each A ∈ Pb (X, d2) ∩ I (f) with θ2 (A) 6= 0, one has θ2 (f (A)) <

θ2 (A) .

Then Ff 6= ∅ and θ1 (Ff ) = 0, i.e. Ff is compact with respect to d1.

Proof. The proof is similar to that of Theorem 3.1. �

Remark 3.7. For the condition (iii) in Theorem 3.6, see [8, 9, 10, 14, 20].
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4. APPLICATION TO INTEGRAL EQUATIONS IN BANACH SPACES

We present an application of Theorem 3.2 to the Hammerstein integral
equation

(4.1) u (t) =

∫ T

0
k (t, s) g (s, u (s)) ds, t ∈ [0, T ] ,

in a Banach space E with the norm |.| .

Theorem 4.1. Let k : [0, T ]2 → R, g1, g2 : [0, T ] × B → E, where B =
{u ∈ E : |u| ≤ R}, and g = g1 + g2. Assume that the following conditions are
satisfied:

(a) There exists q ∈ (1,∞) such that k (t, .) ∈ Lq [0, T ] for every t ∈ [0, T ] ,
and the map t 7→ k (t, .) is continuous from [0, T ] to Lq [0, T ] ;

(b) g1 is a Carathéodory function and there exists δ ∈ Lr [0, T ] with r ∈
( q
q−1 ,∞) such that

(4.2) |g1 (t, u)− g1 (t, v)| ≤ δ (t) |u− v|
for all u, v ∈ B, a.a. t ∈ [0, T ] , and

(4.3) λp :=

∫ T

0

(∫ T

0
[|k (t, s)| δ (s)]

p
p−1 ds

)p−1
dt < 1,

where p = qr
qr−q−r ;

(c) g2 is a Carathéodory function and for each A ⊂ B,
α (g2 (t, A)) = 0

for a.a. t ∈ [0, T ] , where α is the Kuratowski measure of noncompact-
ness on E;

(d) there exists δ0 ∈ L
q

q−1 [0, T ] and ψ : [0, R] → R+ continuous and
nondecreasing with ψ (τ) > τ for τ > 0, such that

(4.4) |g (t, u)| ≤ δ0 (t)ψ (|u|)
for all u ∈ B, a.a. t ∈ [0, T ] , and

max
t∈[0,T ]

∫ T

0
|k (t, s)| δ0 (s) ds ≤ R

ψ (R)
.

Then (4.1) has a solution in C ([0, T ] ;B) .

Proof. First note that from q ∈ (1,∞) and r ∈ (q′,∞), where q′ = q
q−1 , one

has qr > q+r, hence p ∈ (1,∞). Also note that Hölder’s inequality guarantees

that k (t, .) δ (.) ∈ L
p

p−1 for each t.
We shall apply Theorem 3.2. Hence X = C ([0, T ] ;E) , ‖.‖1 is the sup-norm

‖.‖∞ , and ‖.‖2 is the Lp-norm

‖u‖2 =

(∫ T

0
|u (t)|p dt

)1/p

,
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with p = qr
qr−q−r . We take Y := BR (0; ‖.‖1) , hence condition (i) of Theorem

3.2 holds. Let fi : BR (0; ‖.‖1)→ C ([0, T ] ;E) , i = 1, 2, be defined by

fi (u) (t) =

∫ T

0
k (t, s) gi (s, u (s)) ds (t ∈ [0, T ]) ,

and let f = f1 + f2. From (4.4) we have that g1, g2 are Lq
′
-Carathéodory.

Consequently, the operators f1, f2 are well defined and continuous with respect
to ‖.‖1 (see [15]). Using (d) we find that for each u ∈ BR (0; ‖.‖1) and every
t ∈ [0, T ] ,

|f (u) (t)| ≤
∫ T

0
|k (t, s)| |g (s, u (s))| ds

≤
∫ T

0
|k (t, s)| δ0 (s)ψ (|u (s)|) ds

≤ ψ (R) max
t∈[0,T ]

∫ T

0
|k (t, s)| δ0 (s) ds ≤ R.

Thus f (BR (0; ‖.‖1)) ⊂ BR (0; ‖.‖1) and so the condition (ii) is satisfied. Recall
that, in Theorem 3.2, by θ1, θ2 we have understood the Kuratowski measures
of noncompactness on C ([0, T ] ;E) with respect to the norms ‖.‖1 , ‖.‖2 . For
any set A ⊂ BR (0; ‖.‖1) , in view of (a), the set f2 (A) is equicontinuous and
thus, according to a result by Ambrosetti [2],

θ1 (f2 (A)) = max
t∈[0,T ]

α (f2 (A) (t)) .

On the other hand, for each countable set C ⊂ A, in view of a result by Heinz
[12] (see also [15]), we have

α (f2 (C) (t)) = α

(∫ T

0
k (t, s) g2 (s, C (s)) ds

)
≤ 2

∫ T

0
|k (t, s)|α (g2 (s, C (s))) ds.

Hence from (c), we deduce that α (f2 (C) (t)) = 0 for every t. Thus θ1 (f2 (C)) =
0 for each countable set C ⊂ A. This shows that f2 (A) is relatively compact
with respect to ‖.‖1 . Then, the comparison relation between the two norms
implies that f2 (A) is also relatively compact with respect to ‖.‖2 , hence

(4.5) θ1 (f2 (A)) = θ2 (f2 (A)) = 0.
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Next, for any u, v ∈ BR (0; ‖.‖1) , we have

|f1 (u) (t)− f1 (v) (t)|

≤
∫ T

0
|k (t, s)| |g1 (s, u (s))− g1 (s, v (s))|ds

≤
∫ T

0
|k (t, s)| δ (s) |u (s)− v (s)| ds

≤ ‖u− v‖2
(∫ T

0
[|k (t, s)| δ (s)]

p
p−1 ds

) p−1
p

.

(4.6)

Taking the supremum with respect to t, we deduce that

‖f1 (u)− f1 (v)‖1 ≤ ‖u− v‖2 max
t∈[0,T ]

(∫ T

0
[|k (t, s)| δ (s)]

p
p−1 ds

) p−1
p

.

It follows that θ1 (f1 (A)) ≤ c2θ2 (A) for every A ⊂ BR (0; ‖.‖1) , where

c2 := max
t∈[0,T ]

(∫ T

0
[|k (t, s)| δ (s)]

p
p−1 ds

) p−1
p

.

Then, using (4.5), we obtain θ1 (f (A)) ≤ c2θ2 (A), that is condition (iii) holds.
Finally, if we take the Lp-norm in (4.6) we obtain

‖f1 (u)− f1 (v)‖2 ≤ λ ‖u− v‖2 .
Then θ2 (f1 (A)) ≤ λθ2 (A) for every A ⊂ BR (0; ‖.‖1) , and consequently

θ2 (f (A)) ≤ λθ2 (A) ,

whence (iv) follows. Now the conclusion follows from Theorem 3.2. �

Remark 4.2. In fact, the operator f is the sum of the completely continuous
operator f2 and the operator f1 which is condensing (even a set-contraction)
with respect the Lp-norm. Note that the condensing condition (4.3) corre-
sponding to the Lp-norm is in general better (less restrictive) than the similar
condition

max
t∈[0,T ]

∫ T

0
[|k (t, s)| δ (s)]

p
p−1 ds < 1

guaranteeing the condensing property with respect to the sup-norm.

For other applications of Darbo type and Sadovskii type fixed point theo-
rems to integral equations see: [2, 3, 11, 12, 13], [16]-[19].
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Str. M. Kogălniceanu 1

400084 Cluj-Napoca, Romania

E-mail: r.precup@math.ubbcluj.ro

E-mail: iarus@math.ubbcluj.ro

View publication stats

https://www.researchgate.net/publication/280923137

