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Shift λ-Invariant Operators

OCTAVIAN AGRATINI

ABSTRACT. The present note is devoted to a generalization of the notion of shift invariant operators that we call it
λ-invariant operators (λ ≥ 0). Some properties of this new class are presented. By using probabilistic methods, three
examples are delivered.
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1. INTRODUCTION

This research is mainly motivated by the work of G. A. Anastassiou and H. H. Gonska [6]. The
authors have introduced a general family of integral type operators. Sufficient conditions were
given for shift invariance and also the property of global smoothness preservation was studied.
Let (X, d) be a metric space of real valued functions defined on D, where D = R or D = R+.
An operator L which maps X into itself is called a shift invariant operator if and only if

Lfα = (Lf)α for any f ∈ X and α > 0,

where fα(·) = f(·+ α).
In this note we give a generalization of the notion of shift invariant operator. Some properties
of this class are presented and a general family of such operators in the space of integrable func-
tions L1(R) is introduced by using the convolution product of another operators with a scaling
type function. By resorting to probabilistic methods, we indicate some classical operators as
shift λ-invariant, where λ is calculated in each case.
We refer to the following operators: Szász-Mirakjan, Baskakov and Weierstrass. It is honest to
mention that the value of λ does not target the whole sequence, it depends on the rank of the
considered term.
The general results are concentrated in Section 2 and the applications are detailed in Section 3.
It is known that the shift invariant operators are useful in wavelet analysis. Along with the
paper [6], the subject was developed in other papers, among which we quote [3], [4], [5]. Until
now, we have built a generalization of the shift invariant operators and we proved that the new
class is consistent. The applications presented reinforce the significance of the construction.
The use of this class of operators could lead for generating wavelet bases type. In this direction,
the conditions for multiresolution analysis can be relaxed by using shift λ-invariant operators.
Thus, we can talk about quasi-wavelet functions that can serve to reconstruct certain signals.
We admit that this research direction is at an early stage.

Received: 25 March 2019; Accepted: 27 May 2019; Published Online: 4 June 2019
*Corresponding author: O. Agratini; agratini@math.ubbcluj.ro
DOI: 10.33205/cma.544094

103

https://dx.doi.org/10.33205/cma.544094


104 O. Agratini

2. RESULTS

Firstly, we present the following informal definition.

Definition 2.1. Let λ be a non negative number andX be a metric space of real valued functions defined
on R or R+. An operator L acting on X is called a shift λ-invariant operator if

(2.1) |(Lf)α − Lfα| ≤ λ, for any f ∈ X and α > 0.

Clearly, for λ = 0 we reobtain the notion of shift invariant operator.

Theorem 2.1. Let A,B operators acting on a compact metric space X of real valued functions defined
on R or R+.
i) If A is a shift λ-invariant and B is a shift invariant, then AB is a shift λ-invariant operator.
ii) If A is a shift invariant, linear and positive operator, and B is a shift λ-invariant, then AB is a shift
λµ-invariant operator, where µ = ‖A‖.
Call ‖A‖ = sup{‖Ag‖X : g ∈ X and ‖g‖X ≤ 1}.

Proof. i) We take g = Bf and, in concordance with the hypothesis, we can write successively

|(ABf)α −ABfα| = |(Ag)α −A(Bfα)| = |(Ag)α −Agα| ≤ λ,
which implies the first statement of the theorem.
ii) Since B is a shift λ-invariant operator, we get

(2.2) − λ ≤ (Bf)α −Bfα ≤ λ.
The operator A is linear and positive, consequently it is monotone, i.e., Au ≤ Av for any u, v
belong to X with the property u ≤ v.
A being a shift invariant operator too, relation (2.2) implies

|(ABf)α −ABfα| ≤ λAe0,
where e0(x) = 1, x ∈ R or x ∈ R+. Because of 0 < Ae0 ≤ ‖A‖, the result follows. �
Remark. Assuming Ae0 = e0, relation usually verified by linear and positive operators (so
called Markov type operators), we deduce that µ = 1 and Theorem 2.1 (ii) guarantees that AB
becomes a shift λ-invariant operator.
In what follows, starting from a sequence of shift λ-invariant operators and using a scaling
type function, we construct a sequence of integral type operators.
For each n ∈ N, let ln be a shift λn-operator which maps the space L1(R) into itself. Also, we
are fixing a function ψ ∈ L1(R) such that

‖ψ‖1 =

∫
R
|ψ(x)|dx 6= 0.

For any f ∈ L1(R), the convolution of lnf with ψ is a function named Lnf which belongs to
L1(R) and is defined by

(2.3) (Lnf)(x) = (lnf ∗ ψ)(x) =
∫
R
(lnf)(y)ψ(x− y)dy.

It is known that the convolution product ∗ enjoys the commutativity property. Let n ∈ N
arbitrarily be set. On the other hand, we have the following relations

(Lnf)α(x) =

∫
R
(lnf)(x+ α− u)ψ(u)du,

(Lnfα)(x) =

∫
R
(lnfα)(x− u)ψ(u)du,
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which allow us to write

|(Lnf)α(x)− (Lnfα)(x)| ≤
∫
R
|(lnf)(x+ α− u)− (lnfα)(x− u)||ψ(u)|du

=

∫
R
|((lnf)α − lnfα)(x− u)||ψ(u)|du

≤ λn‖ψ‖1.

We just ended the proof of the following result.

Theorem 2.2. Let Ln : L1(R) → L1(R), n ≥ 1, be operators defined by (2.3). Then, for each n ∈ N,
Ln is a shift λn‖ψ‖1-invariant operator.

We notice that if we substitute in (2.3) the function ψ by ‖ψ‖−11 ψ, then the operator Ln becomes
shift λn-invariant, n ∈ N.
As usual, we denote by CB(D) the Banach lattice of all bounded and continuous real functions
on D endowed with the sup-norm ‖ · ‖. Also C1

B(D) denotes the subspace of CB(D) consisting
of all functions which are continuously differentiable and bounded on D. We recall the defini-
tion of the first modulus of smoothness ω(f ; ·) associated to the bounded function f : I → R,
I ⊆ R,

(2.4) ω(f ; δ) = sup
x,y∈I
|x−y|≤δ

|f(x)− f(y)|, δ ≥ 0.

At this moment we need the following result.

Theorem 2.3. ([2, Theorem 7.3.4]) Let the random variable Y have distribution µ, E(Y ) := x0 and
V ar(Y ) := σ2. Consider f ∈ C1

B(R). Then

(2.5) |Ef(Y )− f(x0)| =
∣∣∣∣∫

R
fdµ− f(x0)

∣∣∣∣ ≤ (1.5625)ω
(
f ′;

σ

2

)
σ.

In the above E(Y ), V ar(Y ) represent the expected value and variance of Y , respectively.
We consider the random variables Xj , j ≥ 1, independent and identically distributed and we
introduce

(2.6) Xj,α = Xj + α, Sn,α =
1

n

n∑
j=1

Xj,α, n ≥ 1.

Clearly, Sn,0+α = Sn,α. If we use the notationsE(Xj,α) := x0,α and V ar(Xj,α) := σ2
α, by using

the properties of the expectation respectively the variance, we obtain

E(Sn,α) = x0,0 + α = x0,α, V ar(Sn,α) =
σ2
α

n
=
σ2
0

n
.

From (2.5) we deduce

|E[f(Sn,α)]− f(x0,α)| =
∣∣∣∣∫

R
f

(
t

n

)
dFn,α(t)− f(x0,α)

∣∣∣∣
≤ 1.5625ω

(
f ′;

σ0
2
√
n

)
σ0√
n
,(2.7)

where Fn,α is the distribution function of the random variable Sn,α.
It is known that by using probabilistic methods several classical positive and linear operators
have been obtained. Pioneers in this research field can be mentioned here W. Feller [7] and
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D.D. Stancu [9]. A recent and up-to-date approach to this study direction concerning Markov
semigroups and approximation processes can be found in [1].
As in [9], for each n ≥ 1, we choose

(2.8) (Lnf)(x) = E[f ◦ Sn,0(x)] =
∫ ∞
−∞

fdFSn,0(x),

where FSn,0 is the probability distribution of the variable Sn,0. Note that Lnf is a bounded
function and clearly satisfies ‖Lnf‖ ≤ ‖f‖.
Taking into account (2.6) and (2.7) we can write successively

|(Lnf)α(x)−(Lnfα)(x)| ≤ |E[f(Sn,α)]−f(x0,α)|+ |E[fα(Sn,0)]−fα(x0,0)|

≤ µ
(
ω

(
f ′;

σ0
2
√
n

)
+ ω

(
f ′α;

σ0
2
√
n

))
σ0√
n

= 2µω

(
f ′;

σ0
2
√
n

)
σ0√
n
,

where µ = 1.5625. Also, based on the definition (2.4), we used the identity ω(fα; ·) = ω(f ; ·) for
each α ≥ 0.
Finally, using that ω(f ′; ·) is a non-decreasing function, the above relations lead us to the fol-
lowing result.

Theorem 2.4. Let Sn and Ln be defined by (2.6) and (2.7) respectively, where f ∈ C1
B(R). Let I be an

interval such that sup
x∈I

σ0(x) = γ <∞. The following identity

(2.9) |(Lnf)α(x)− (Lnfα)(x)| ≤ 3.125ω

(
f ′;

γ

2
√
n

)
γ√
n
, x ∈ I,

holds.

In view of relation (2.1), the above theorem says that Ln operator, subject of certain conditions,
is a λn-invariant operator, where

λn = 3.125ω

(
f ′;

γ

2
√
n

)
γ√
n
.

Here λn’s expression is complicated, consequently it is practically unattractive. With the desire
to simplify it, we add an additional condition to function f . We require that f ′ satisfies a
Lipschitz condition with a constant M and exponent β, f ′ ∈ LipMβ, (M ≥ 0, 0 < β ≤ 1), that is

|f ′(x1)− f ′(x2)| ≤M |x1 − x2|β , (x1, x2) ∈ I × I.
The new requirement implies the continuity of f ′. On the other hand, equivalent to this prop-
erty is the inequality

(2.10) ω(f ′;h) ≤Mhβ , h ≥ 0,

see, e.g., [8, page 49].
Considering (2.9) and (2.10), the main result of this note will be read as follows.

Theorem 2.5. Let Sn and Ln be defined by (2.6) and (2.8) respectively, where f ∈ CB(R) is differen-
tiable on the domain such that f ′ ∈ LipMβ. Let I be an interval and sup

x∈I
σ0(x) = γ < ∞. Then, for

each n ∈ N, Ln is a λn-shift invariant operator, where

(2.11) λn =
3.125

2α
M

(
γ√
n

)β+1

.
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3. APPLICATIONS

In this section we present three examples of classical operators, both of discrete and continuous
type, which verify Theorem 2.4. We are able to indicate explicitly λn such that Ln may become
a shift λn-invariant operator. In the following N0 stands for {0} ∪ N.
Set

E2(R+) =

{
f ∈ C(R+) :

f(x)

1 + x2
is convergent as x→∞

}
,

representing a Banach lattice endowed with the norm

‖f‖∗ = sup
x≥0

(1 + x2)−1|f(x)|.

Example 3.1. Let Xj , j ≥ 1, be i.i. random variables having Poisson distribution, i.e., for each k ∈ N0

P (Xj = k) = e−x
xk

k!
, x ≥ 0,

which implies E(Xj) = x and V ar(Xj) = x. Formula (2.8) leads us to Szász-Mirakjan operators
defined for f ∈ E2(R+) as follows

(3.12) (Lnf)(x) ≡ (Mnf)(x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, n ≥ 1.

Further on, we consider f ∈ C1
B(R+) and I = [0, a], a > 0 fixed.

Consequently we get γ =
√
a. Relation (2.9) yields

|(Mnf)α(x)− (Mnfα)(x)| ≤ 3.125ω

(
f ′;

1

2

√
a

n

)√
a

n
, x ∈ [0, a].

Example 3.2. LetXj , j ≥ 1, be i.i. random variables following Pascal distribution, i.e., for each k ∈ N0

P (Xj = k) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
, x ≥ 0,

which implies E(Xj) = x and V ar(Xj) = x+ x2. Applying formula (2.8) we get Baskakov operators
defined for f ∈ E2(R+) as follows

(3.13) (Lnf)(x)≡(Vnf)(x)=
1

(1 + x)n

∞∑
k=0

(
n+k−1

k

)(
x

1 + x

)k
f

(
k

n

)
, n ≥ 1.

We take f ∈ C1
B(R+) and I = [0, a], a > 0 fixed. This time we have γ =

√
a(a+ 1) and (2.9) yields

|(Vnf)α(x)− (Vnfα)(x)| ≤ 3.125ω

(
f ′;

1

2

√
a2 + a

n

)√
a2 + a

n
, x ∈ [0, a].

Example 3.3. Assume Xj , j ≥ 1, are i.i. continuous Gaussian random variables having the normal
distribution N(x, σ). This means the probability density function is given by

µ(t) =
1√
2πσ

exp(−(t− x)2/(2σ2)), t ∈ R.

It is known that Sn,0 has a normal distribution too, with E(Sn,0) = x and V ar(Sn,0) = σ2/n. In this
case, (2.8) yields the operator

(Lnf)(x) =

√
n√

2πσ

∫
R
f(t) exp(−n(t− x)2/(2σ2))dt, f ∈ CB(R).
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For σ2 = 0.5 it reduces to genuine Weierstrass operator Wn.
For any f ∈ C1

B(R) and I ⊆ R we have γ = 2−1/2 and, in view of (2.9), we get

(3.14) |(Wnf)α(x)− (Wnfα)(x)| ≤ 3.125ω

(
f ′;

1

2
√
2n

)
1√
2n
, x ∈ I.

Remark. Taking into account the results (3.12), (3.13), (3.14), under the hypotheses of Theorem
2.5, we can state that the operators Szász-Mirakjan, Baskakov and Weierstrass of rank n are
shift C(τ/n)(β+1)/2-invariant operators, where C = 3.125M2−β and τ is defined as follows:
τ = a for the first operator, τ = a2 + a for the second operator and τ = 0.5 for the last operator.
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