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Remarks on Some Newton and Chebyshev-type

Methods for Approximation Eigenvalues and

Eigenvectors of Matrices

I. Pǎvǎloiu E. Cǎtinaş

1 Introduction

It is well known that the Newton and the Chebyshev methods for non-
linear systems require solving of a linear system at each iteration step.
In this note we shall study two modified methods which avoid solving
of linear systems by using the Schultz method to approximate inverses
of Fréchet derivatives. At the same time we shall use the particulari-
ties of nonlinear systems arising from eigenproblems, since the Fréchet
derivatives of order higher than two are the null multilinear operators.
Some numerical examples will be provided in the end of this note.

Denote V = Kn and let A = (aij) ∈ Kn×n, where K = R or C. We
recall that the scalar λ ∈ K is an eigenvalue of A if there exists v ∈ V ,
v 6= 0 such that

Av − λv = 0. (1)

The vector v is called the eigenvector corresponding to the eigenvalue
λ. Since for an eigenvalue λ the eigenpair (v, λ) is not uniquely de-
termined, it is necessary to impose a supplementary condition. Differ-
ent Newton-type methods were studied in papers [1]-[4], [6], [9]-[11],
[16]-[18], [20], [21]. It is worth mentioning that the Rayleigh quotient
method is equivalent with a certain Newton method (”the scaled New-
ton method” [10]).

We shall consider a ”norming” function G : V → K, G (0) 6= 1 and,
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besides (1), the equation

G (v)− 1 = 0.

The function G may be chosen in different ways (see [16] and [3]):

I G (v) = 1
2 ‖v‖2

2 ,

II G (v) = 1
2n ‖v‖2

2 .

We shall consider in the theoretical results hereafter the choice II.
Let X = V ×K(= Kn+1) and for x =

(
v
λ

) ∈ X take

‖x‖ = max {‖v‖ , |λ|} ,

where the norm on V is one of usual norms.
Consider the system

F (x) = 0 (here 0 ∈ Kn+1) (2)

with the mapping F given by

F (x) =
(

Av − λv
Gv − 1

)
, x =

(v

λ

)
∈ X.

Denoting v =
(
x(1), x(2), ..., x(n)

)
and λ = x(n+1) then the system

(2) can be written explicitly

F1 (x) =
(
a11 − x(n+1)

)
x(1) + a12x

(2) + · · ·+ a1nx(n) = 0

...

Fn (x) = an1x
(1) + an2x

(2) + · · ·+
(
ann − x(n+1)

)
x(n) = 0

Fn+1 (x) = 1
2n

(
x(1)

)2
+ 1

2n

(
x(2)

)2
+ · · ·+ 1

2n

(
x(n)

)2
− 1 = 0.

It can be easily seen that the Fréchet derivatives of F are given by
the following relations:

F ′ (x0) h =
(

A− λ0I −v0
1
nvt

0 0

)(
u
α

)
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F ′′ (x0) hk =
( −αw − βu

1
nwtu

)

for all x0 =
(

v0

λ0

)
, h =

(
u
α

)
, k =

(
w
β

)
∈ X.

Since the Fréchet derivative of order 2 does not depend on x0 it is
obvious that the derivatives of order higher than 2 an the null multi-
linear operators, so for any fixed x0 ∈ X

F (x) = F (x0) + F ′ (x0) (x− x0) + 1
2F ′′ (x0) (x− x0)

2 ∀x ∈ X. (3)

It is easy to verify that when we use the max norm on V and G is
given by the choice II

∥∥F ′′ (x)
∥∥
∞ = 2, ∀x ∈ X.

The following result concerning the invertibility of F ′ at a solution
hold.

Lemma 1 Let x∗ = (v∗, λ∗) be an eigenpair of a given matrix A ∈
Kn×n. Then the eigenvalue λ∗ is simple if and only if the Jacobian
F ′ (x∗) is nonsingular.

Proof. The corresponding result for the choice I of G was proved
by Yamamoto [21], for which

F ′ (x0) =
(

A− λ0I −v0

−vt
0 0

)
.

The stated affirmation follows immediately observing that the two ma-
trices differ by a nonzero factor in the last row. ¤

2 Some Newton and Chebyshev-type methods

We shall study first the convergence of the sequences (xk)k≥0 ⊂ X and
(Γk) ⊂ L (X)

(
= K(n+1)×(n+1)

)
generated by the following Newton-

type process applied to the nonlinear system (2), initially proposed by
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Ul’m [19] and studied by Diaconu and Pǎvǎloiu [7]:

xk+1 = xk − ΓkF (xk) (4)
Γk+1 = Γk

(
2I − F ′ (xk+1) Γk

)
, k = 0, 1, ..

x0 ∈ X and Γ0 ∈ L (X) being given.
We shall need the following preliminary result.

Lemma 2 [4] If the sequences (δk)k≥0 and (ρk)k≥0 of real positive
numbers satisfy

δk+1 ≤ (δk + 2ρk)
2 (5)

ρk+1 ≤ ρkδk + ρ2
k, k = 0, 1, ..

with max (δ0, ρ0) ≤ 1
9d for some d ∈ (0, 1), then the following inequali-

ties are true:
max {δk, ρk} ≤ 1

9d2k
, k = 0, 1, ..

Denoting B̄r (x0) = {x ∈ X : ‖x− x0‖ ≤ r} we can state the fol-
lowing result.

Theorem 3 Assume that the operator F and the elements x0 ∈ X,
Γ0 ∈ L (X) and r > 0 satisfy the following conditions

a) there exists F ′ (x0)
−1 and

∥∥∥F ′ (x0)
−1

∥∥∥ ≤ β0;

b) q = 2β0r < 1;

c) denoting δ0 = ‖I − F ′ (x0) Γ0‖, ρ0 = 100
81 β2 ‖F (x0)‖ and β = β0

1−q ,
suppose

max {δ0, ρ0} ≤ 1
9d for some d ∈ (0, 1) ;

d) d
10(1−q) ≤ r.

Then the sequences (xk)k≥0, (Γk)k≥0 generated by (4) converge and
(xk)k≥0 ⊂ B̄r (x0). Denoting x∗ = lim

k→∞
xk and Γ∗ = lim

k→∞
Γk, then x∗

6



Remarks on Some Newton and Chebyshev-type Methods for . . .

is a solution of the nonlinear system (2) and Γ∗ = F ′ (x∗)−1. Moreover,
the following estimations hold:

‖x∗ − xk‖ ≤ d2k

10β
(
1− d2k

) , k = 0, 1, ..

‖Γ∗ − Γk‖ ≤ d2k

3
(
1− d2k

) , k = 0, 1, .. .

Proof. It can be easily seen that in our hypotheses the derivatives
F ′ (x) are invertible for all x ∈ B̄r (x0).

Using the inequality
∥∥∥I − F ′ (x0)

−1 F ′ (x)
∥∥∥ ≤ 2β0r = q < 1,

and applying the Banach lemma we get
∥∥∥F ′ (x)−1

∥∥∥ ≤ β0

1−q = β.

Taking into account b) and c) it follows that

‖Γ0‖ ≤
∥∥∥F ′ (x0)

−1
∥∥∥

(∥∥F ′ (x0) Γ0 − I
∥∥ + 1

)

≤ β0 (1 + δ0) ≤ 10
9 β0 ≤ 10

9 β,

which together with relation (4) imply

‖x1 − x0‖ ≤ ‖Γ0‖ ‖F (x0)‖ <
d

10β (1− d)
≤ r,

i.e. x1 ∈ B̄r (x0).
Denote ρ1 = 100

81 β2 ‖F (x1)‖ and δ1 = ‖I − F ′ (x1) Γ1‖. If we take
x = x1 in (3) then an elementary reasoning shows that

ρ1 ≤ ρ2
0 + δ0ρ0

δ1 ≤ (δ0 + 2ρ0)
2 ,

whence, by lemma 2 it follows that max {ρ1, δ1} ≤ 1
9d2.

It can be easily proved by induction that the following relations
hold for k = 0, 1, ..
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• xk ∈ B̄r (x0) ;

• δk := ‖I − F ′ (xk) Γk‖ ≤ 1
9d2k

;

• ρk := 100
81 β2 ‖F (xk)‖ ≤ 1

9d2k
;

• ‖xk+1 − xk‖ ≤ d2k

10β .

From the above properties it results that the sequence (xk)k≥0 is
a Cauchy one and therefore there exists x∗ ∈ B̄r (x0) such that x∗ =
lim

k→∞
xk. The last inequality above implies that for all m ∈ N

‖xk+m − xk‖ ≤
k+m−1∑

i=k

‖xi+1 − xi‖ ≤ d2k

10β
(
1− d2k

) , k = 0, 1, ..

which leads to the first estimation from the enounce.
The convergence of the sequence (Γk)k≥0 is infered from the in-

equalities

‖Γk+1 − Γk‖ =
∥∥I − F ′ (xk+1) Γk

∥∥
≤

∥∥I − F ′ (xk) Γk

∥∥ +
∥∥F ′ (xk)− F ′ (xk+1)

∥∥ ‖Γk‖
≤ δk + 2 ‖Γk‖2 ‖F (xk)‖
≤ δk + 2ρk ≤ 1

3d2k
, k = 0, 1, .. ,

which lead to the second stated estimation. ¤
As we can see, the Newton-type method (4) has the r-convergence

order at least 2. The conditions from the above theorem assure that
the eigenvalue λ∗ = limk→∞ x

(n+1)
k is simple, according to lemma 1.

We shall consider now the following sequences given by the
Chebyshev-type method, initially proposed by Diaconu [8]

Ck = Bk

(
2I − F ′ (xk) Bk

)

xk+1 = xk − CkF (xk)− 1
2CkF

′′ (xk) (CkF (xk))
2 (6)

Bk+1 = Bk

[
3I − 3F ′ (xk+1) Bk +

(
F ′ (xk+1) Bk

)2
]
, k = 0, 1, .. ,
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where x0 ∈ X and B0 ∈ L (X) are given.
For the study of the above method we need the following auxilliary

result.

Lemma 4 [3] If the sequences of real positive numbers (δk)k≥0 and
(ρk)k≥0 satisfy

δk+1 ≤
(
δk + 2ρk + 2ρ2

k

)3

ρk+1 ≤ ρkδ
2
k + ρ2

kδ
2
k + 2 ρ3

k + ρ4
k, k = 0, 1, .. ,

where max { δ0, ρ0} ≤ 1
7d for some 0 < d < 1, then the following

relation holds:

max { δk, ρk} ≤ 1
7d3k

, k = 0, 1, .. .

As for the previous method, we shall consider the elements x0 ∈ X
and the ball B̄r (x0).

Theorem 5 Assume that the operator F and the elements x0 ∈ X,
B0 ∈ L (X) satisfy:

a) there exists F ′ (x0)
−1 and

∥∥∥F ′ (x0)
−1

∥∥∥ ≤ β0;

b) q = 2β0r < 1;

c) denoting β = β0

1−q , a = 64
49β, δ0 = ‖I − F ′ (x0) B0‖ and ρ0 =

a2 ‖F (x0)‖, suppose

max {δ0, ρ0} ≤ 1
7d for some d ∈ (0, 1);

d) 8d
49a(1−d2)

≤ r.

Then the sequences (xk)k≥0, (Bk)k≥0, (Ck)k≥0 converge and
(xk)k≥0 ⊂ B̄r (x0). Denoting x∗ = limxk, B∗ = limBk, C∗ = lim Ck,
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I.Pǎvǎloiu, E.Cǎtinaş

then F (x∗) = 0 and B∗ = C∗ = F ′ (x∗)−1. Moreover, the following
estimations hold:

‖x∗ − xk‖ ≤ 8 d3k

49a
(
1− d2·3k

) ;

∥∥∥F ′ (x∗)−1 −Bk

∥∥∥ ≤ 1656 ad3k

2401
(
1− d2·3k

) , k = 0, 1, .. .

Proof. From a), b) and the Banach lemma it easily follows that for
any x ∈ B̄r (x0) the Jacobian of F is invertible and

∥∥∥F ′ (x)−1
∥∥∥ ≤ β0

1−q = β.

For the norms of B0 and C0, taking into account the hypotheses,
we get

‖B0‖ ≤
∥∥∥B0 − F ′ (x0)

−1
∥∥∥ +

∥∥∥F ′ (x0)
−1

∥∥∥
≤

∥∥∥F ′ (x0)
−1

∥∥∥
(
1 +

∥∥I − F ′ (x0) B0

∥∥)

≤ β0 (1 + δ0) ≤ 8
7β0 < 8

7β

and

‖C0‖ ≤ ‖B0‖+
∥∥I − F ′ (x0) B0

∥∥ · ‖B0‖
≤ ‖B0‖ (1 + δ0) ≤ 64

49β = a,

so max {‖B0‖ , ‖C0‖} ≤ a.
From (6) we have that

‖x1 − x0‖ ≤ a
(
1 + a2 ‖F (x0)‖

) ‖F (x0)‖
≤ a (1 + ρ0) ‖F (x0)‖
< 8

7a2 ‖F (x0)‖
≤ ρ0

a2 · 8
7a = 8d

49a ,

whence, taking into account d) it follows that x1 ∈ B̄r (x0).
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Further, by the identity (3) and by (6) one obtains

‖F (x1)‖ ≤ ‖I − F ′ (x0) C0‖
(
1 + 1

2 ‖F ′′ (x0)‖ ‖C0‖2 ‖F ′ (x0)‖
)
‖F (x0)‖+

+ 1
2 ‖F ′′ (x0)‖2 ‖C0‖4 ‖F (x0)‖3 + 1

8 ‖F ′′ (x0)‖3 ‖C0‖6 ‖F (x0)‖4 ,

whence

a2 ‖F (x1)‖ ≤ a2 ‖F (x0)‖ ·
∥∥I − F ′ (x0) C0

∥∥ (
1 + a2 ‖F (x0)‖

)
+

+ 2
(
a2 ‖F (x0)‖

)3 +
(
a2 ‖F (x0)‖

)4 .

Denoting ρ1 = a2 ‖F (x1)‖ and taking into account the inequality

∥∥I − F ′ (x0) C0

∥∥ ≤ ∥∥I − F ′ (x0) B0

∥∥2 = δ2
0

it follows
ρ1 ≤ ρ0δ

2
0 + ρ2

0δ
2
0 + 2ρ3

0 + ρ4
0.

From the third relation of (6) we get

∥∥I − F ′ (x1) B1

∥∥ =
∥∥∥
(
I − F ′ (x1) B0

)3
∥∥∥

≤ ∥∥I − F ′ (x1) B0

∥∥3

≤ (∥∥I − F ′ (x0) B0

∥∥ + 2 ‖B0‖ ‖x1 − x0‖
)3

≤ (
δ0 + 2ρ0 + 2ρ2

0

)3 ,

i.e.,
δ1 ≤

(
δ0 + 2ρ0 + 2ρ2

0

)3 .

By lemma 4 the above inequalities imply that max {ρ1, δ1} ≤ 1
7d3.

Assume now that the following properties hold:

• x0, x1, .., xk ∈ B̄r (x0) ;

• ρi := a2 ‖F (xi)‖ ≤ 1
7d3i

and δi := ‖I − F ′ (xi) Bi‖ ≤ 1
7d3i

, i =
0, .., k.
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It easily follows that max {‖Bk‖ , ‖Ck‖} ≤ a and

‖xk+1 − xk‖ ≤ a
(
1 + a2 ‖F (xk)‖

) ‖F (xk)‖
≤ a (1 + ρk) ‖F (xk)‖
≤ 8ρk

7a ≤ 8d3

49a .

From the above formula it follows that xk+1 ∈ B̄r (x0):

‖xk+1 − x0‖ ≤ 8d
49a

k∑

i=0

d3i−1 ≤ 8d

49a (1− d2)
≤ r.

Denoting ρk+1 = a2 ‖F (xk+1)‖ and δk+1 = ‖I − F ′ (xk+1) Bk+1‖, the
following relations are obtained in the same manner as for ρ1 and δ1:

ρk+1 ≤ ρkδ
2
k + ρ2

kδ
2
k + 2ρ3

k + ρ4
k

δk+1 ≤
(
δk + 2ρk + 2ρ2

k

)3 ,

whence, by lemma 4, we get that max {ρk+1, δk+1} ≤ 1
7d3k+1

and the
induction is proved.

We will show now that (xk)k≥0 is a Cauchy sequence. Indeed,

‖xk+m − xk‖ ≤ 8d3k

49a

k+m−1∑

i=k

d3i ≤ 8d3k

49a
(
1− d2·3k

) ,

for all k,m ∈ N, which implies that (xk)k≥0 converges. Denoting x∗ =
lim

k→∞
xk we obtain

‖x∗ − xk‖ ≤ 8d3k

49a
(
1− d2·3k

) , k = 0, 1, .. .

The convergence of (Bk)k≥0 is obtained from the third relation of
(6):

‖Bk+1 −Bk‖ ≤ ‖Bk‖ ·
∥∥2I − F ′ (xk+1) Bk

∥∥ · ∥∥I − F ′ (xk+1) Bk

∥∥
≤ a

(
1 + δk + 2ρk + 2ρ2

k

) (
ρk + 2ρk + 2ρ2

k

)

≤ a1656
2401d3k

.
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Denoting B∗ = limBk it easily follows that B∗ = F ′ (x∗)−1 and that

∥∥∥F ′ (x∗)−1 −Bk

∥∥∥ ≤ 1656ad3k

2401
(
1− d2·3k

) , k = 0, 1, .. .

The proof is completed. ¤

3 Numerical examples

We shall consider two test matrices1 in order to study the behavior of
the considered methods. The programs were written in Matlab2 and
were run on a PC.

Pores1 matrix. This matrix arise from oil reservoir simulation.
It is real, unsymmetric, of dimension 30 and has 20 real eigenvalues.
We have chosen to study the largest eigenvalue λ∗ = −1.8363e + 1.
The initial approximation was taken λ0 = λ∗ + 0.5; for the initial
vector v0 we perturbed the solution v∗ (computed by Matlab and then
properly scaled to fulfill the norming equation) with random vectors
having the components uniformly distributed on (-ε,ε), ε = 0.2. The
initial matrices Γ0 and B0 were taken in each case as the inverse of
F ′(x0) computed by Matlab. The following results are typical for the
runs made (we have considered here the same vector ε for the four
initial approximations).

Choice I Choice II
k ‖x∗ − xk‖ ‖F (xk)‖ ‖x∗ − xk‖ ‖F (xk)‖
0 7.8042e-01 5.5828e+06 7.8042e-01 5.5828e+06
1 1.4111e-01 3.9355e-01 2.3565e-02 3.0227e-01
2 1.8788e-02 5.1300e-02 4.6685e-05 9.6691e-04
3 3.7663e-04 6.3248e-04 5.7799e-10 9.0156e-09
4 1.4161e-07 2.1373e-07
5 4.5991e-10 5.0482e-10

1These matrices are available from MatrixMarket at the following address:
http://math.nist.gov/MatrixMarket/.

2MATLAB is a registered trademark of the MathWorks, Inc.

13
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Table 1. Newton-type method for Pores1.

Choice I Choice II
k ‖x∗ − xk‖ ‖F (xk)‖ ‖x∗ − xk‖ ‖F (xk)‖
0 7.8042e-01 5.5828e+06 7.8042e-01 5.5828e+06
1 5.6679e-02 1.0406e-01 1.5461e-03 1.2236e-02
2 2.8973e-06 4.0907e-06 5.6407e-10 5.5530e-09
3 4.5959e-10 6.5014e-10

Table 2. Chebyshev-type method for Pores1.

Fidap002 matrix. This real symmetric matrix of dimension n =
441 arise from finite element modeling. Its eigenvalues are all simple
and range from −7 ·108 to 3 ·106. We have chosen to study the smallest
eigenvalue, which is well separated. The initial approximation was
taken λ0 = λ∗+ 103 = −6.9996 · 108 + 1000; for the initial vector v0 we
perturbed the solution v∗ with random vectors having the components
uniformly distributed on (-ε,ε), ε = 0.1. The following results are
typical for the runs made (we have considered a common vector ε).

Choice I Choice II
k ‖x∗ − xk‖ ‖F (xk)‖ ‖x∗ − xk‖ ‖F (xk)‖
0 1.0000e+3 8.5068e+8 1.0000e+3 8.5068e+8
1 2.3611e+2 1.5730e+3 3.3415e+0 1.2195e+3
2 2.5528e+2 8.8353e+2 8.4714e-3 1.0600e+0
3 4.3758e+1 8.2481e+1 5.9605e-7 4.1725e-6
4 1.3141e+0 2.0458e+0
5 9.9051e-4 1.4631e-3
6 5.9605e-7 1.0662e-7

Table 3. Newton-type method for Fidap002.
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Choice I Choice II
k ‖x∗ − xk‖ ‖F (xk)‖ ‖x∗ − xk‖ ‖F (xk)‖
0 1.0000e+3 8.5068e+8 1.0000e+3 8.5068e+8
1 3.9756e+2 9.4690e+2 8.5282e-1 2.5509e+1
2 4.6275e-1 6.5442e-1 7.1526e-7 5.0390e-6
3 4.7684e-7 3.1597e-7

Table 4. Chebyshev-type method for Fidap002.

If ε was increased to 0.15 then the Newton-type method with choice
I has not converged for some of the initial approximations, even if
we took λ∗ for λ0. The Newton-type method with choice II and the
Chebyshev-type method converged as above. The explanation seem to
reside in the fact that the eigenvector v∗ has a larger norm with choice
II than with choice I, the relative error of v∗+ε with the second choice
being much smaller than of v∗ + ε with the first choice.
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