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ABSTRACT. In this note some well-known existence and multiplicity
results of nontrivial solutions for scalar Hammerstein equations [1], {3]
are extended to equations in Hilbert spaces. The tools are a mountain
pass theorem on closed convex subsets of a Hilbert space due to Guo-

", Sun-Qi [1] and a new technique of checking the Palais-Smale compactness

condition which was first presented in [4]. The results complement those
established in [4].
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1 Preliminaries
1.1 A mountain pass theorem

Let X be a real Hilbert space, D C X closed convex and
B e C'{X;R). Let U be an open subset in D, 2y € U and

xy € D™\U. Here D™ is the set of all relatively algebraic interior
poiuts of D. Denote

d={peC(0,1];D): ¢(0) =z, p(1) =21},
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: = inf E (¢ (1)),
€= g0 e (9 (1))
Ke = {.’I:ED: E(:[;) =, El(’L) :O}
We say that E satisfies the Palais-Smale (P-S) condition on D,
if

{zn} C D, E(zy) »pneR, E (zp) — 0
imply that {x,} has a convergent subsequence.

The following result is due to Guo-Sun-Qi [1] and represents a
variant on closed convex sets of the mountain pass theorem of
Ambrosetti-Rabinowitz [5).

Theorem 1.1 (Guo-Sun-Qi) Assume that E satisfies the (P-
S) condition on D and

(1.1) max {E (z9), E (1)} < zie%fé]E (z)

where OU s the boundary of U with respect to D. Also suppose
that

(1.2) ({ - £ (D) c D,
Then Ko\ {mo, 21} #0.

1.2 Abstract Hammerstein equations

Here we discuss the abstract Hammerstein equation

(1.3) y=KI'(y), yev,
where 'Y is a real Banach space, F': Y -5 Y* and K:YV* - YV
is linear,

Suppose that K splits into

(1.4) K=AA" with A: X 5 Y and A*: V* - X,
B where X is a real Hilbert space.
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Then (1.3) can be converted to an equation on X, namely
(1.5) .’L'VzA*FA(SL'), z € X.
[udeed, if y solves (1.3), then z = A*F (y) is a solution of (1.5)
and, conversely, if & solves (1.5), then y = A () is a solution of
(1.3).
I in addition, we suppose
(1.6) F =G" for some G € C*(Y;R)
and that

(1.7)
A is linear bounded, one-to-one and A* is the adjoint of A,

then (1.5) is equivalent with the critical point problem

E'(2)=0, ze X

for the energy functional

E:X >R, E(m)=%]z|§(—G’A(x)

It is easy to prove that E € C' (X;R) and
E'(z)=2—AFA(z), € X.
—
Sufficient conditions for (1.4) and (1.7) can be found in Kras-

uoselskii [2] (see also [3]).

2 Main results

Our first result is concerning with the nontrivial solvability
of abstract Hammerstein equations in wedges. Recall that by a
" wedge of Y, one means a nonempty closed convex subset P ¢ YV
such that Ay € P forall y€ P and ) € R..
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Theorem 2.1 Assume (1.4), (1.6) and (1.7). In addition sup-
- pose that P C Y is a wedge and there exists y; € P\ {0} and
r € (0, [A‘i (y1) X) such that the following conditions are satis-

fied:
(2.1) G(0) =0 and G(y) >[4~ ()% /2;

(22) = G(y) <r*/2 for y€ P with |A™ W)y =r;
(2.3) , KF(P)c P;

(2.4) -

. N . 2 y
‘I,f:l/nEP,%'A l(?/n)‘x—G(yn)—),ueRayn“KF(yn)“)0
inY, then {y,} has a subséquence convergent in Y.

Then (1.3) has at least one solution y € P\ {0,1y1} .

Proof. We shall apply Theorem 1.1. Here D = A~ (P)
xy = A" (yy) and

U={z€eD: |z|y <r}.
It is clear that zo =0 € U, z; € D"™\U and (1.1) holds by (2.1)
and (2.2). To check (1.2), let z € A~1(P). Then A(z) € P.
Also, .
- (I-E') (z) = A'FA ().
Let 2’ = A*FA(z). Then, using (2.3), we obtain
A(z') =KFA(z) e KF(P) C P.

This shows that A(z') € P, that is #’ € D. Thus (1.2) holds.

Next we show that E satisfies the (P-S) condition on D. For
this, let {x,} C D be any sequence such that

(2.5) . E(zn) 2 peR, E (z,) = 0.
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Let yn = A(z,). From (2.5), it follows that

i'_G(yn)—)Ua yn—KF(yn)_%O'

1 L
Yn € Pa :?: IA l(yn)

Now (2.4) guarantees that {y,} has a subsequence convergent in
Y. Then, from

E' (2n) = 2n — A*F A (23) = 2, — A*F () = 0 ‘

(in Y) and the continuity of A* and F, it follows that the cor-
responding subsequence of {z,} converges in X. Thus all the
assumptions of Theorem 1.1 are satisfied.

For an example of application of Theorem 2.1, let us consider
the Hammerstein integral equation

(2.6) ‘mn:ﬁkm@fwwg»@,muel

Here J is a compact real interval, k is a real function, while
y and f take values in a real Hilbert space H with the inner
product (.,.).

We use the following notion. A function 9 : Jx D — Y, where
D C X and X, Y are two Banach spaces, is said to be (g,p) -
- Carathéodory (1 < ¢ < 00, 1 < p < 00) if P (., x) is strongly
measurable for each = € D, 4 (¢,.) is continuous for a.e. ¢t € J
and

¥ (& 2)ly <t (t) + alaly

for a.e. t € J and all £ € D, where 1/)0'6 L(J;Ry), a €R,.
Our assumptions are as follows:

(al) k € LP(Jx J;Ry) 2 < p < o0) and the map K :
L9(J;H) — LP (J; H) given by

K@nn=£kmgdg@

(1/p+1/q =1) is well defined and satisfies (1.4), (1.7) with
X =L*(J;H) and Y = L? (J; H).
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(a2)

(a3)

(ad)

(a5)

(a6)

f:JxH—His (¢p— 1)-Caré,\théodory‘a;hd there exists
9:J xH — R (oo,p)-Carathéodory such that g (t,0) = 0
and ,

(27) g(t,m+y)—g(t,x) = (f (t,x),y)-l—w(t,m,y)

for a.e. t € J and all z, y € H, where

(2.8) w(t,z,y)/lyl >0 asy—0

uniformly for z € H and a.e. ¢t € J.

C C H is a wedge, f(t,C) C C for a.e. t € J, and there
exists zp € H with A(zo) (t) € C'\ {0} for a.e. t € J.
.

the following inequality is satisfied

(2.9) limsup g (t,2) /|z* <0
z—0,zeC

uniformly for a.e. t € J.

there exist o > 2, p > 0, m > 0 and v € L' (J;(0,0))
such that

(2100 9(t,2) > () |z
(2.11) (f (t,2) ,2) — ag (t,2) > —m

for a.e. t€J and all € C with |z > p.
there exists w : J xRy = R4 (g,p — 1)-Carathéodory with

(2.12) B(f (¢t M)) <wl(t,B(M))

for every bounded set M C C, a.e. t € J, such that =0
is the unique solution in L? (J;R,) of the inequality

(2.13) w(t) < /;k(t,s)w (s,0(8))ds, ae. teJ
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The main result is the following theorem.

Theorem 2.2 If (a1)-(a6) hold, then (2. 6) has at least one solu-
tion y € L' (J; H)\ {0} with y(t) € C for a.e. t€ J.

Proof. Let X = L?(J;H), Y = LP (J; H). We shall denote
by (.,.), the usual inner-product of L2 (J; H) and by |, the
uorm of LP (J; H).

Let F:LP(J; H) — L9 (J; H) be given by

Fy) () =f(ty (),
and let G : LP (J;H) = R,

G(y) = /Jg(t,y(t))dt.

Since f is (¢,p — 1)-Carathéodory and g is (oo, p)-Carathéodory,
we have

214 f )< fo®)+alzP, zeH, aetel
2

for some fo € L1(J;Ry), a € Ry, and
(2.15) lg(t,2)] <b(L+2ff), z€H, aeted
where be R, Consequently, the maps F' and G are well defined.
Also, from (2.7) and (2.8), we have (1.6), while g (¢,0) = 0 implies
G (0) = 0.

Define P={ye LP(J;H): y(t) € C ae. te J}. From (a3)
and k >0, we easily see that (2.3) holds.

From (2.9), we have that for each € > 0 there exists ¢ > 0

with g (t,2) < el|z|® for ae. ¢t € J and all z € C satisfying
" || < 4. Furthermore, from (2.15), it follows that

9(t2) <b (1™ +1) |2l < b (577 +1) |aff
for |z| > 6. Hence, if we let ¢c(e) =b(67P +1), then

(2.16) 9(t,2) <elaf’ +c(e) [=ff
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for a.e. t € J and all x € C. Consequently, for every z € D, we

have

E (x)

(2.17)

= 3l -G = 3l - [t A @) ar

v

Sl ~ 14 @3~ (o)A@

v

L, 2 ‘ 2 .
5 2l — Al A7 |zl — 2 (e) |l

= (1/2-elAllA ~ (@) o) |23
N

Here we have used

(2.18)

1A (2)lp < colxly

(since A is linear bounded) and

|A(z)]; = (A*A(z),2) < |A*||A}|z]3.

Now, if we choose € > 0 such that 1/2 — ¢ | A IA*l >0, and any
> () small enough that

1/2 — ¢ |A||A*| =2 (e) P2 > 0

(recall p > 2), then from (2.17) we have E (z) > 0 for all z € D
with |z|, = r. Hence (2.2) holds. ’
Now we look for a function y; satisfying (2.1) in the form

u, (1) = AA (z0) (¢) for some A > 0. Looking zy as an element of
L*(J; D), from (a5), we obtain

< (X%/2) |zol3 - /\a/

B (o) = (32/2) ool = [ 9(t,3 (a0) ()t

7 (2) 1A (z0) (B)]* dt
A A(zo)(t)]2p
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(2.19) 9 (t, A A (o) (8)) dt.

-/>\IA(wo)(t)|<P

Let dg > 0 be such that the measure of the set
At Xo|A(zo) (¢)] > p} is positive (such an )¢ exists since
A(zo) (t) # 0 for a.e. t € J). Then

= / 7 () |4 (20) (£)|° dt > 0.
. A()IA(LTO)(t)IZP

Since for A > Ag > 0,

/ T4 () (07 de 2 7
A A(zo) (1) [ 20

and the last integral in (2.19) is bounded by (2.15), we have that
E (Azo) < (A\?/2) |zol5 — nA® + M

for all A > Xg. Since a > 2, E(Azg) — — —00 as A — oo. Thus
we may chose A > max {)\O,r/[:rol2} such that E (Azo) < 0.
Therefore (2.1) is fulfilled.

Finally we pi~ove that the (P-S) condition on D is satisfied.
For this, let {z,} be any sequence of D with:

- (2.20) E (z,) = |Zn|2 /2 — G (ys) bounded
and ’
(2.21) E' (#n) = 2 — A*F (yp) =t 20 = 0 as n — oo

where y,, = A (z,). We have

(m 2n)y = |2 — /J (f (bt (8)) 3 (8)) dt

(2.22) = Jonl? - a./‘;g (8, ym (2)) dit
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- /] [ (t,9m () ,3m (8)) — g (&, ym (8))] .

From (2.14), (2.15) and (2.11), it follows that there exists ¢; > 0
- such that

(223) /] [(f (t’ Yn (t)) »Yn (t)) —ag (t’yn (t))] dt > —C1
for all n € N. Now from (2.20)-(2.23) we obtain that

(/2 1) [wnlg S @E (Tn) = (@n, 2n)g + 1 < |Zn |y + ¢

for some constant c¢. Since a > 2, this implies that {z,} is
bounded in L? (J; H). Next the existence of a convergent subse-
quence of {z,} can be proved as in [4, Theorem 4.1] using (a6)
and a compactness criterium in L (J; H) (see [4, Theorem 2.5)).
Now the conclusion follows from Theorem 2.1. [ :

Remark 2.1 Theorems 2.1 and 2.2 yield multiplicity results for
(1.8) and (2.6) in case that their assumptions hold for different
wedges Posuch that each two of them have in common only the
origin. The most usual case is that where P is a cone, i.e. PN
(=P) = {0} and the hypotheses of Theorems 2.1 and 2.2 are
fulfilled both by P and —P. {

| Remark 2.2 In the scalar case when H = R, we have

g(t,a:)=/0zf(t,s)ds

and (a6) trivially holds with w = 0. Also, a sufficient condition
for (a5) (see [, Theorem 9.2]) is
(a5) there exist a > 2 and p >0 such that

ftz)z > ag(t,z) >0

forae te.J andall € C with |z| > p.
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