Nontrivial solvability of Hammerstein integral equations in Hilbert spaces

RADU PRECUP

(CLUJ-NAPOCA)

ABSTRACT. In this note some well-known existence and multiplicity results of nontrivial solutions for scalar Hammerstein equations [1], [3] are extended to equations in Hilbert spaces. The tools are a mountain pass theorem on closed convex subsets of a Hilbert space due to Guo-Sun-Qi [1] and a new technique of checking the Palais-Smale compactness condition which was first presented in [4]. The results complement those established in [4].

KEY WORDS: Hammerstein integral equation, compactness, critical point theory.

2000 AMS Subject Classification Code: 47J30, 58E05

1 Preliminaries

1.1 A mountain pass theorem

Let X be a real Hilbert space, $D \subset X$ closed convex and $E \in C^1(X; \mathbf{R})$. Let U be an open subset in D, $x_0 \in U$ and $x_1 \in D^{ri} \setminus \overline{U}$. Here D^{ri} is the set of all relatively algebraic interior points of D. Denote

$$\Phi = \{ \phi \in C([0,1]; D) : \phi(0) = x_0, \ \phi(1) = x_1 \},$$

$$c=\inf_{\phi\in\Phi}\max_{t\in\left[0,1\right]}E\left(\phi\left(t\right)\right),$$

$$\mathcal{K}_{c} = \{x \in D : E(x) = c, E'(x) = 0\}.$$

We say that E satisfies the Palais-Smale (P-S) condition on D, if

$$\begin{cases} \{x_n\} \subset D, \ E(x_n) \to \mu \in \mathbb{R}, \ E'(x_n) \to 0 \\ \text{imply that } \{x_n\} \text{ has a convergent subsequence.} \end{cases}$$

The following result is due to Guo-Sun-Qi [1] and represents a variant on closed convex sets of the mountain pass theorem of Ambrosetti-Rabinowitz [5].

Theorem 1.1 (Guo-Sun-Qi) Assume that E satisfies the (P-S) condition on D and

(1.1)
$$\max \{E(x_0), E(x_1)\} \leq \inf_{x \in \partial U} E(x)$$

where ∂U is the boundary of U with respect to D. Also suppose that

$$(1.2) (I - E')(D) \subset D.$$

Then $K_c \setminus \{x_0, x_1\} \neq \emptyset$.

1.2 Abstract Hammerstein equations

Here we discuss the abstract Hammerstein equation

$$(1.3) y = KF(y), y \in Y,$$

where Y is a real Banach space, $F:Y\to Y^*$ and $K:Y^*\to Y$ is linear.

Suppose that K splits into

(1.4)
$$\begin{cases} K = AA^* \text{ with } A: X \to Y \text{ and } A^*: Y^* \to X, \\ \text{where } X \text{ is a real Hilbert space.} \end{cases}$$

Then (1.3) can be converted to an equation on X, namely

$$(1.5) x = A^*FA(x), x \in X.$$

Indeed, if y solves (1.3), then $x = A^*F(y)$ is a solution of (1.5) and, conversely, if x solves (1.5), then y = A(x) is a solution of (1.3).

If in addition, we suppose

(1.6)
$$F = G' \text{ for some } G \in C^1(Y; \mathbf{R})$$

and that

(1.7)

A is linear bounded, one-to-one and A^* is the adjoint of A, then (1.5) is equivalent with the critical point problem

$$E'(x) = 0, \ x \in X$$

for the energy functional

$$E: X \to \mathbf{R}, \ E(x) = \frac{1}{2} |x|_X^2 - GA(x).$$

It is easy to prove that $E \in C^1(X; \mathbf{R})$ and

$$E'(x) = x - A^*FA(x), \ x \in X.$$

Sufficient conditions for (1.4) and (1.7) can be found in Krasnoselskii [2] (see also [3]).

2 Main results

Our first result is concerning with the nontrivial solvability of abstract Hammerstein equations in wedges. Recall that by a wedge of Y, one means a nonempty closed convex subset $P \subset Y$ such that $\lambda y \in P$ for all $y \in P$ and $\lambda \in \mathbf{R}_+$.

Theorem 2.1 Assume (1.4), (1.6) and (1.7). In addition suppose that $P \subset Y$ is a wedge and there exists $y_1 \in P \setminus \{0\}$ and $r \in (0, |A^{-1}(y_1)|_X)$ such that the following conditions are satisfied:

(2.1)
$$G(0) = 0 \text{ and } G(y_1) \ge |A^{-1}(y_1)|_X^2/2;$$

(2.2)
$$G(y) \le r^2/2 \text{ for } y \in P \text{ with } |A^{-1}(y)|_X = r;$$

$$(2.3) KF(P) \subset P;$$

(2.4)
$$\begin{cases} if \ y_n \in P, \ \frac{1}{2} \left| A^{-1} \left(y_n \right) \right|_X^2 - G \left(y_n \right) \to \mu \in \mathbf{R}, \ y_n - KF \left(y_n \right) \to 0 \\ in \ Y, \ then \ \{y_n\} \ has \ a \ subsequence \ convergent \ in \ Y. \end{cases}$$

Then (1.3) has at least one solution $y \in P \setminus \{0, y_1\}$.

Proof. We shall apply Theorem 1.1. Here $D=A^{-1}\left(P\right)$, $x_{1}=A^{-1}\left(y_{1}\right)$ and

$$U = \{ x \in D : \, |x|_X < r \} \, .$$

It is clear that $x_0 = 0 \in U$, $x_1 \in D^{ri} \setminus U$ and (1.1) holds by (2.1) and (2.2). To check (1.2), let $x \in A^{-1}(P)$. Then $A(x) \in P$. Also,

$$(I - E')(x) = A^*FA(x).$$

Let $x' = A^*FA(x)$. Then, using (2.3), we obtain

$$A(x') = KFA(x) \in KF(P) \subset P$$
.

This shows that $A(x') \in P$, that is $x' \in D$. Thus (1.2) holds.

Next we show that E satisfies the (P-S) condition on D. For this, let $\{x_n\} \subset D$ be any sequence such that

$$(2.5) E(x_n) \to \mu \in \mathbf{R}, \ E'(x_n) \to 0.$$

Let $y_n = A(x_n)$. From (2.5), it follows that

$$y_n \in P, \ \frac{1}{2} |A^{-1}(y_n)|_X^2 - G(y_n) \to \mu, \ y_n - KF(y_n) \to 0.$$

Now (2.4) guarantees that $\{y_n\}$ has a subsequence convergent in Y. Then, from

$$E'(x_n) = x_n - A^*FA(x_n) = x_n - A^*F(y_n) \to 0$$

(in Y) and the continuity of A^* and F, it follows that the corresponding subsequence of $\{x_n\}$ converges in X. Thus all the assumptions of Theorem 1.1 are satisfied.

For an example of application of Theorem 2.1, let us consider the Hammerstein integral equation

$$(2.6) y(t) = \int_{J} k(t, s) f(s, y(s)) ds, \text{ a.e. } t \in J.$$

Here J is a compact real interval, k is a real function, while y and f take values in a real Hilbert space H with the inner product (.,.).

We use the following notion. A function $\psi: J \times D \to Y$, where $D \subset X$ and X, Y are two Banach spaces, is said to be (q,p)-Carathéodory $(1 \le q \le \infty, \ 1 \le p < \infty)$ if $\psi(.,x)$ is strongly measurable for each $x \in D$, $\psi(t,.)$ is continuous for a.e. $t \in J$ and

$$|\psi(t,x)|_{Y} \leq \psi_{0}(t) + \alpha |x|_{X}^{p}$$

for a.e. $t \in J$ and all $x \in D$, where $\psi_0 \in L^q(J; \mathbf{R}_+)$, $\alpha \in \mathbf{R}_+$. Our assumptions are as follows:

(a1) $k \in L^p(J \times J; \mathbf{R}_+)$ $(2 and the map <math>K : L^q(J; H) \to L^p(J; H)$ given by

$$K\left(z
ight) \left(t
ight) =\int_{J}k\left(t,s
ight) z\left(s
ight) ds$$

(1/p+1/q=1) is well defined and satisfies (1.4), (1.7) with $X=L^{2}\left(J;H\right)$ and $Y=L^{p}\left(J;H\right) .$

(a2) $f: J \times H \to H$ is (q, p-1)-Carathéodory and there exists $g: J \times H \to \mathbf{R}$ (∞, p) -Carathéodory such that g(t, 0) = 0 and

$$(2.7) g(t, x + y) - g(t, x) = (f(t, x), y) + \omega(t, x, y)$$

for a.e. $t \in J$ and all $x, y \in H$, where

(2.8)
$$\omega(t, x, y) / |y| \to 0 \text{ as } y \to 0$$

uniformly for $x \in H$ and a.e. $t \in J$.

- (a3) $C \subset H$ is a wedge, $f(t,C) \subset C$ for a.e. $t \in J$, and there exists $x_0 \in H$ with $A(x_0)(t) \in C \setminus \{0\}$ for a.e. $t \in J$.
- (a4) the following inequality is satisfied

$$\lim_{x \to 0, x \in C} g(t, x) / |x|^2 \le 0$$

uniformly for a.e. $t \in J$.

(a5) there exist $\alpha > 2, \ \rho > 0, \ m \geq 0$ and $\gamma \in L^1(J;(0,\infty))$ such that

$$(2.10) g(t,x) \ge \gamma(t) |x|^{\alpha}$$

$$(2.11) (f(t,x),x) - \alpha g(t,x) > -m$$

for a.e. $t \in J$ and all $x \in C$ with $|x| > \rho$.

(a6) there exists $w: J \times \mathbf{R}_+ \to \mathbf{R}_+$ (q, p-1)-Carathéodory with

$$(2.12) \beta(f(t,M)) \le w(t,\beta(M))$$

for every bounded set $M \subset C$, a.e. $t \in J$, such that $\varphi \equiv 0$ is the unique solution in $L^p(J; \mathbf{R}_+)$ of the inequality

(2.13)
$$\varphi(t) \le \int_{J} k(t,s) w(s,\varphi(s)) ds, \text{ a.e. } t \in J.$$

The main result is the following theorem.

Theorem 2.2 If (a1)-(a6) hold, then (2.6) has at least one solution $y \in L^p(J; H) \setminus \{0\}$ with $y(t) \in C$ for a.e. $t \in J$.

Proof. Let $X=L^{2}\left(J;H\right),\ Y=L^{p}\left(J;H\right).$ We shall denote by $(.,.)_{2}$ the usual inner-product of $L^{2}\left(J;H\right)$ and by $\left|.\right|_{p}$ the norm of $L^{p}\left(J;H\right)$.

Let $F: L^{p}(J; H) \to L^{q}(J; H)$ be given by

$$F(y)(t) = f(t, y(t)),$$

and let $G: L^p(J; H) \to \mathbf{R}$,

$$G(y) = \int_{J} g(t, y(t)) dt.$$

Since f is (q, p-1)-Carathéodory and g is (∞, p) -Carathéodory, we have

$$(2.14) |f(t,x)| \le f_0(t) + a|x|^{p-1}, x \in H, \text{ a.e. } t \in J,$$

for some $f_0 \in L^q(J; \mathbf{R}_+)$, $a \in \mathbf{R}_+$, and

(2.15)
$$|g(t,x)| \le b(1+|x|^p), x \in H, \text{ a.e. } t \in J,$$

where $b \in \mathbf{R}_+$. Consequently, the maps F and G are well defined. Also, from (2.7) and (2.8), we have (1.6), while g(t,0) = 0 implies G(0) = 0.

Define $P = \{y \in L^p(J; H) : y(t) \in C \text{ a.e. } t \in J\}$. From (a3) and $k \ge 0$, we easily see that (2.3) holds.

From (2.9), we have that for each $\varepsilon > 0$ there exists $\delta > 0$ with $g(t,x) \leq \varepsilon |x|^2$ for a.e. $t \in J$ and all $x \in C$ satisfying $|x| < \delta$. Furthermore, from (2.15), it follows that

$$g(t,x) \le b(|x|^{-p}+1)|x|^p \le b(\delta^{-p}+1)|x|^p$$

for $|x| \ge \delta$. Hence, if we let $c(\varepsilon) = b(\delta^{-p} + 1)$, then

(2.16)
$$g(t,x) \le \varepsilon |x|^2 + c(\varepsilon) |x|^p$$

for a.e. $t \in J$ and all $x \in C$. Consequently, for every $x \in D$, we have

$$\begin{split} E\left(x\right) &= \frac{1}{2} \left| x \right|_{2}^{2} - G\left(A\left(x\right)\right) = \frac{1}{2} \left| x \right|_{2}^{2} - \int_{J} g\left(t, A\left(x\right)\left(t\right)\right) dt \\ &\geq \frac{1}{2} \left| x \right|_{2}^{2} - \varepsilon \left| A\left(x\right) \right|_{2}^{2} - c\left(\varepsilon\right) \left| A\left(x\right) \right|_{p}^{p} \\ &\geq \frac{1}{2} \left| x \right|_{2}^{2} - \varepsilon \left| A \right| \left| A^{*} \right| \left| x \right|_{2}^{2} - \overline{c}\left(\varepsilon\right) \left| x \right|_{2}^{p} \end{split}$$

$$(2.17) \qquad = \left(1/2 - \varepsilon |A| |A^*| - \overline{c}(\varepsilon) |x|_2^{p-2}\right) |x|_2^2.$$

Here we have used

$$\left|A\left(x\right)\right|_{p} \leq c_{0} \left|x\right|_{2}$$

(since A is linear bounded) and

$$|A(x)|_2^2 = (A^*A(x), x) \le |A^*| |A| |x|_2^2$$
.

Now, if we choose $\varepsilon > 0$ such that $1/2 - \varepsilon |A| |A^*| > 0$, and any r > 0 small enough that

$$1/2 - \varepsilon |A| |A^*| - \overline{c}(\varepsilon) r^{p-2} \ge 0$$

(recall p > 2), then from (2.17) we have $E(x) \ge 0$ for all $x \in D$ with $|x|_2 = r$. Hence (2.2) holds.

Now we look for a function y_1 satisfying (2.1) in the form $y_1(t) = \lambda A(x_0)(t)$ for some $\lambda > 0$. Looking x_0 as an element of $L^2(J; D)$, from (a5), we obtain

$$E(\lambda x_0) = (\lambda^2/2) |x_0|_2^2 - \int_J g(t, \lambda A(x_0)(t)) dt$$

$$\leq \left(\lambda^{2}/2\right)\left|x_{0}\right|_{2}^{2}-\lambda^{\alpha}\int_{\lambda\left|A\left(x_{0}\right)\left(t\right)\right|\geq\rho}\gamma\left(t\right)\left|A\left(x_{0}\right)\left(t\right)\right|^{\alpha}dt$$

$$(2.19) - \int_{\lambda |A(x_0)(t)| < \rho} g(t, \lambda A(x_0)(t)) dt.$$

Let $\lambda_0 > 0$ be such that the measure of the set $\{t: \lambda_0 | A(x_0)(t)| \ge \rho\}$ is positive (such an λ_0 exists since $A(x_0)(t) \ne 0$ for a.e. $t \in J$). Then

$$\eta := \int_{\lambda_0 |A(x_0)(t)| \ge \rho} \gamma(t) |A(x_0)(t)|^{\alpha} dt > 0.$$

Since for $\lambda \geq \lambda_0 > 0$,

$$\int_{\lambda\left|A\left(x_{0}\right)\left(t\right)\right|\geq\rho}\gamma\left(t\right)\left|A\left(x_{0}\right)\left(t\right)\right|^{\alpha}dt\geq\eta$$

and the last integral in (2.19) is bounded by (2.15), we have that

$$E(\lambda x_0) \le (\lambda^2/2) |x_0|_2^2 - \eta \lambda^{\alpha} + M$$

for all $\lambda \geq \lambda_0$. Since $\alpha > 2$, $E(\lambda x_0) \to -\infty$ as $\lambda \to \infty$. Thus we may chose $\lambda > \max\{\lambda_0, r/|x_0|_2\}$ such that $E(\lambda x_0) < 0$. Therefore (2.1) is fulfilled.

Finally we prove that the (P-S) condition on D is satisfied. For this, let $\{x_n\}$ be any sequence of D with:

$$E(x_n) = |x_n|_2^2/2 - G(y_n)$$
 bounded

and

(2.21)
$$E'(x_n) = x_n - A^*F(y_n) =: z_n \to 0 \text{ as } n \to \infty$$

where $y_n = A(x_n)$. We have

$$(x_n, z_n)_2 = |x_n|_2^2 - \int_J (f(t, y_n(t)), y_n(t)) dt$$

$$(2.22) = |x_n|_2^2 - \alpha \int_I g(t, y_n(t)) dt$$

$$-\int_{J}\left[\left(f\left(t,y_{n}\left(t\right)\right),y_{n}\left(t\right)\right)-\alpha g\left(t,y_{n}\left(t\right)\right)\right]dt.$$

From (2.14), (2.15) and (2.11), it follows that there exists $c_1 \geq 0$ such that

(2.23)
$$\int_{J} \left[\left(f\left(t, y_{n}\left(t \right) \right), y_{n}\left(t \right) \right) - \alpha g\left(t, y_{n}\left(t \right) \right) \right] dt \geq -c_{1}$$

for all $n \in \mathbb{N}$. Now from (2.20)-(2.23) we obtain that

$$(\alpha/2 - 1) |x_n|_2^2 \le \alpha E(x_n) - (x_n, z_n)_2 + c_1 \le |x_n|_2 + c_1$$

for some constant c. Since $\alpha > 2$, this implies that $\{x_n\}$ is bounded in $L^2(J; H)$. Next the existence of a convergent subsequence of $\{x_n\}$ can be proved as in [4, Theorem 4.1] using (a6) and a compactness criterium in $L^p(J; H)$ (see [4, Theorem 2.5]). Now the conclusion follows from Theorem 2.1.

Remark 2.1 Theorems 2.1 and 2.2 yield multiplicity results for (1.3) and (2.6) in case that their assumptions hold for different wedges P such that each two of them have in common only the origin. The most usual case is that where P is a cone, i.e. $P \cap (-P) = \{0\}$ and the hypotheses of Theorems 2.1 and 2.2 are fulfilled both by P and -P.

Remark 2.2 In the scalar case when $H = \mathbf{R}$, we have

$$g(t,x) = \int_0^x f(t,s) ds$$

and (a6) trivially holds with $w \equiv 0$. Also, a sufficient condition for (a5) (see [3, Theorem 9.2]) is

(a5') there exist $\alpha > 2$ and $\rho > 0$ such that

$$f(t,x) x \ge \alpha g(t,x) > 0$$

for a.e. $t \in J$ and all $x \in C$ with $|x| \ge \rho$.

References

- [1] D. Guo, J. Sun, G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations 1 (1988), 351-358.
- [2] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral equations, Pergamon Press, Oxford, 1964.
- [3] R. Precup, Nonlinear Integral Equations (Romanian), Babes-Bolyai Univ., Cluj, 1993.
- [4] R. Precup, On the Palais-Smale condition for Hammerstein integral equations in Hilbert spaces, to appear.
- [5] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, 1986.

Facultatea de Matematică și Informatică Universitatea "Babeș-Bolyai" Str. M. Kogălniceanu, nr. 1 3400 Cluj-Napoca ROMANIA E-mail: r.precup@math.ubbcluj.ro