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1 In_t_:éductio.n

The Banach. contraction principle was -generalized:by Perov
(see [3] and [5]) for contractive maps on spaces endowed with. -+
vector-valued metrics. Also, Granas [1] proved that ‘the property
of having a fixed point is invariant by homotopy for contractions
on complete metric spaces. This result was completed in:[4] byan
iterative procedure of discrete continuation along the fixed points -
curve. The goal of this paper is to extend this result to contractive
maps on spaces endowed with vector-valued metrics. '

Let X be a nonempty set. By a vector-valued metric on X we.
mean amap d: X x'X —R™ with the following properties:
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(i) d(z,y) < d(z,2) + d(2,y) Vz,u,2 € X.

Here, ifU,’U € Rm, U == -('u.l,uQ, ...,um) and v = (91,.'!)2, ...,vm) ’

by u < v we mean that u Sy fori=1,2.., m.

A set X endowed with a vector-valued metric d is said to be.
a generalized metric space. For the generalized metric spaces, the -
notions of a convergent sequence, Cauchy sequence, compieteness, ..
open subset and closed subset aré similar to those for tigual metric "

spaces.

Definition 1.1 Let (X,d) be a generalized metric space. A map
T:X > X is said to be contractive. if there erists a matriz A € -

Mpyxm (Ry) such that

(1.1) AR Cask— 00 .

and o
d(F(2),T(v)) < Ad(z,y) Yo,y € X.

The matriz A is said to be g Lipschitz matriz for T.

Recall that for a4 matrix. A I_e mem (R+) the-.proper_fy ...(‘1';-1)-is_ -

equivalent to the fact that 7 — A is nonsingular and

(1.2) A l=TtArat.

(see [5], Tl'rieorém.tl.'l.l), From (1.2) we see thé.t.,la <{I-A)71p

for every p € [0, 00)™.

Theorem 1.1 (Perov) Let (X,d) be a complete geﬁérnliéed met-
ric space and T : X — X be contractive with the Lipschitz matriz

A. Then T has a unigue fized point &* and for each x, € X oone

has - . . . ST
d(T* (@) j2") < AF (- ) d (o T(og))
foreq)e&-yk'em.' - et e

2 Main result | |

Theorem 21 Let C'X",jdj be a céﬁzjﬁléte_ genér&ﬁzé&‘ metric space .

Ravo Binore itk

withd: X x X = R™ and U be an open set of X. Let H
[0,1] = X and assume that the following conditions are, '?-@#_ﬂﬁﬁﬁfl-'
(a1) there is A € My, (R.4) such that A* — 0 as k — oo,

@) U-A)pe0) forwarype 0,00
(22) d(H (2,0), H (%)) < 4d(z,9)

Jor allz,y € U and A € [0,1]; e
(a2} H (2, X) # z for all x € OU and xefo,1]; A
* (a8) H is continuous in X, uniform‘l.y for z EU, i.e for
each & € (0,00)™ and X € [0,1], there is p'c (0,00) such that
d(H (z,7), H (z, 1)) < & whenever z € U and |\ -y <p.

In addition suppose that Hy := H '(.,0) has a fized point. Then,
for each A € [0,1], there ezists a unique ﬁ:‘.r:ed‘ poznt:x‘{)x)-;:,.af
Hy :="H (., A). Moreover, z()) depends continuously on A and
there exisis r € (0, 00]™, integers m,ny, Ny, ..., N1 and numbefrs.
0<AM <A <o € Ao < Am = 1 sueh that fm.' any o € X
satisfying d (zg,z (0)) < r, the sequences (m5=’°)‘“2,°* j= 1,2, ey 1.

CTLe=2g o
:1:_?',]‘,.1.1 = H_‘)\J. (:cj,k), k= 0, 1,
Ti41,0 = Tgimzy - = L 2, ym—1

are welf defined and' satisfy .
(23) dzjr, 5(\)) < A* (1 = A) " d(zj0, B, (z0)) (keN).

Proof. : : C - .

1) First we prove that for each A € [0, 1] , H) bas a fixed point.

Let — o

' A={xe[0,1); H(z,X) =z for some z € U}.

We have 0 &‘; A by the assumption that Hy has a fixed point. Henc.:e

Kis nonempty.:"'We will show that. A is both glosed and open in
[0;1] and so0, by the connectedness of [0,1], A = [0,1]. -
.- 'To.prove that A is closed, let Ax '€ A with Ay - X as k — oo:

Since A € A, there is 24 € U so that H (zx, \¢) = 4. Then, by
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weobta,m : P o o

' d(ﬂ?ks%) = d(H (“—‘k,)\k) H(wgs)\ )) < d(H (-’Ek,)\k) H(ﬂ?fm)\))
. +d(H(ﬂ?k:)\) H(fﬂg,)\)) +d(H($Js)\) H(mjs ;)

<d{H (:ck,Ak) H(wk, )\)) + Ad(a:k,:cg) +df H(mj,,\) H(:nj, ))

It follows that-
' d(“'kv‘”y) .

< (I A)‘ [d(H(:rk,Ak) H(:ck, ))+d(H($J,}\) H(EJ,AJ))]

This, by (a3), shows that () is a Cauchy sequence:: Then, since
X is complete, there isz.€ X W1th d(:ck,a:) - {] as k — oo.
Clearly, x € U Then | .

) ' d(a:k,I-I(a: /\))—-m! :c,H(:c )\))
and by (2. 2) and (a3), S
d(Ek,H(IB, A)) = d(H (‘Tks)\k) H(SB )\)) —> 0

Henced(m H(m )\))-0 tha,tst(x X) = z. By (a2), xEUand :

S0 A € A, ToprovethatAlsopenm[O ,letpcAandze U
such that H (z,4) = 2. Slnce U is open there exists p € (0, oo)m
such that

d (a:, <p 1mphes zel.:
Also, by (a3), there is n =15 (p) € (O,oo) such that .
(24) d(z H(z)\)=d(H(z,#) H{zA))<(I-4)p

for |\ — ,ul < 7. Notice (I —4)p € (0,00)™ according to (2.1).
Consequently, :
A H (5,0) < d (5 H (22) +d(H(z )\) H(z, )\))
o < (I-A)p+Ad(z, m)(p

whenever d(z,z) <.p and |A—p] < 7.. This shows that for |

[X=ul <.n, Hy sends B into itself, where B = {z ¢ X;
d(z,z) < p} Now.we may apply Theorem 1.1 to T'= H,. Conse—
quently, there is z ()\) € B C U a ﬁxed pomt of H x for ])\ ,u| < "
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This shows that u is an interior point of A and:hénce:A: is:o 'nan' e

[0, 1]. ‘Notice that for every z € B and |A —p| Loy we alsc

by Theorem 1.1, that the sequence {HE (.’B))k>g is well deﬁned_"en‘d S

| d(H,\ (w) -'B(A <A’“(I fi)"lci’(sc HA($)) (kGN)

2) The umqueness of ()\) it a slmple consequence of (2 2)
- 3): xl{A) is contmuous on [0 1] L SRR
Indeed : AR
d(m(A) me))-—d(ﬂ(we) », H(m(p) )

<A @O, N B ),N) +d(E @ ), H(m(m,p)) o

< Ad(z (A )5 $(#))+d(H($(M) A) H(w(#),u))
This, by (a3), implies. : -
d(z (3\), (#))<(I A)"l (H(fﬂ(#) 2, H(w(ﬂt)ut*r))—+0

as)\—uu
4y Obtentlon of v For any ,u e [0 1] and each i€ {1 2 }

denote :
' g (p) = inf{d; (fv,w(u))' z EX\U}

: Here d (dl,dg, m) Smce T (,u) el a.nd U is- open n (,u) >

0. We claun that

'(2.5) L dnf {rs () ; 4 € [0,1]} > 0.

To prove this, assume the contrary. . Then, there are y; € [0;1]
such ‘that r;{ug) — 088 k — co. Clearly, we may assume that
pix, — s for ‘some p € [0, 1]  Then, from the contmmty of z.(X), we
ha.ve :

(26) (@ () (s ))<n(u.)/2 fork>k1

* On the other hand, “since v‘, (i) = 0,

@D nE<n@/z ork2k
Let kg = max {kl,kg} By (2. 7) and the deﬁmtlon of Ti (pko) as
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mﬁmum, there is'z e X \ U with

@8 L e ) < ()2
Then, by (2 6} and (2.8), we obtain’ '

4 (2,2 () < di (2,0 (,uko))+di (@ (o) 2 (u)) < 2r; () /2 = (mf

a contradmtmn Thus (2.5) holds as claimed: Now we choose any
7; > 0 less than the infimum in (2.5), with the convention that r;
oo if the infimum equals infinity. Then take r = (ry, T2y ,?"m)z
5) Obtention of m and 0 < X < A2 <oy Amot < 1. Let
h = n(r), where r was fixed at the anterior step and 7 (r) is
chosen as in (2 4). Then, by what was shown at the end of step
1), for each hE [6,1], ..

(2.9) d(m,x(p)) < r and |)\ ,u] <h imply
. I (HA (fﬂ))k>g is well deﬁned and
dHE @), () & AT -4 de,Hy(z) (ke N)
Now we choose any partition 0 = Ag < Ay <o <A1 < )\ — 1
of [0, 1} such that Aj41 ~ A; < h, § =0,1,.. ,m——lm1 "
- 6) Finding of integers ny,ng, ..., Nm-1. From d (2, (0))
d(zo,z (0)) <'rand Xy = X <A, by (2.9), we have that (z; k)k>0

is well defined and satisfies (2.3). By (2:3), we ma choose n1 € N
such that d (z; m12 % (A1) £ 7. Now ’ f i

d(z2,0,z{M1)) = d(ml,ni:w()\i)) <r'and Az — AL <h T

and ‘we repeat the above argument in order to show that (.’Bg k) 520

is well defined ‘and satisfies (2.3). In general, at step 7 (1< 4
<'m~ 1) we choose n; € N stich that d(z;, nj,w()\J)) < Then B

Az 1,0, 8(X))) = d@jn;, (M) S and Ajr1— A <k,

by (2.9), imply that sequence (zj11, k)k>0 is well defined and sat-
isfies (2. 3) n ‘

The above proof ylelds the fo]lowmg algonthm for the approx-
imation of (1) under the assumptions of Theorem 2.1: *

; RADUPRECUPu S et L

Suppose we, know 7 and. h and we. w1sh= 0 ‘ !
tion Z; of z (1) with d (&1;2 (1)) < e'for Soitic &€ (Gfﬁb*). ' Then
we choose any partition 0 = Ay < Ay < Ay < A1 <A =1
of [0,1] with A1 = X; < by § =0, 1,. 1 any. element 20
with d (zo,z (0)) <r and we- fo]low the next B

Iterative procedure: ‘
Set ng := 0 and zpn, = Zo
For § := 1‘to m-—1do

mJ = Lj-1 hi—1

¥

While A* (I — A) " d(zj0, Hx(m50)) £ 7
Tjk+i = H)\j (fﬂj,k)
ki=k+1 S
nj =k
Set k:=0
- While 4% (I - A)‘ & (Tm,0, Hi (£m,0)) £
T+l = Hi (Tm,i) - '
o k=k+1
Finally take Z1 = om k.

Notice for m = 1, Theorem 2.1 reduces to Corollary 2 5 in [4]
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