On the Method of Upper and Lower Solutions

RADU PRECUP

(CLUJ-NAPOCA)

ABSTRACT. Some results concerning the method of upper and lower solutions for nonlinear integral equations of Hammerstein type are presented.

KEY WORDS: Nonlinear integral equation, Hammerstein equation, Upper and lower solutions.

2001 AMS Subject Classification Code: 47H30, 47J25

1. One of the most useful methods for solving nonlinear equations is the method of upper and lower solutions. It consists in localizing solutions in an order interval $[u_0, v_0]$, where u_0 is a lower solution, v_0 is an upper solution, and $u_0 \leq v_0$. Thus a basic problem is to find comparable lower and upper solutions. In this paper we present such type of results for the abstract Hammerstein equation in \mathbb{R}^n

(0.1)
$$u(x) = AN_f(u)(x) \text{ a.e. on } \Omega.$$

Here N_f is Nemytskii's superposition operator associated to a given function $f: \Omega \times \mathbf{R}^n \to \mathbf{R}^n$ ($\Omega \subset \mathbf{R}^N$ bounded open), and A is a bounded linear operator from $L^q(\Omega; \mathbf{R}^n)$ to $L^p(\Omega; \mathbf{R})$.

2. To obtain lower and upper solutions we need information about f and A, in particular, about the spectrum of A.

Theorem 1. Let $p,q \in [1,\infty)$, $A: L^q(\Omega; \mathbf{R}^n) \to L^p(\Omega; \mathbf{R}^n)$ an increasing linear operator and $f: \Omega \times \mathbf{R}^n \to \mathbf{R}^n$ a (p,q)-Carathéodory function. Assume that there are $c \in \mathbf{R}_+$ and $g \in L^q(\Omega; \mathbf{R}^n_+)$ such that

$$(0.2) f(x,z) \le cz + g(x)$$

for a.e. $x \in \Omega$ and all $z \ge 0$. Then any solution $v_0 \ge 0$ of the

$$(0.3) (I-cA)(v) = A(q)$$

(if there is one) is an upper solution of the equation $u = AN_f(u)$.

$$(0.4) -f(x,-z) \leq cz + g(x)$$

for a.e. $x \in \Omega$ and all $z \ge 0$, then $u_0 = -v_0$ is a lower solution.

Proof. Assume $v_0 \ge 0$ solves (0.3). Then, from (0.2) we have

$$f\left(x,v_{0}\left(x\right)\right)\leq c\,v_{0}\left(x\right)+g\left(x\right)$$

and since A is increasing,

$$AN_{f}(v_{0}) \leq cA(v_{0}) + A(g) = v_{0}.$$

Hence v_0 is a upper solution. We leave to the reader to check that $-v_0$ is a lower solution.

In what follows we present two much applicable results involving spectral properties of A.

First we establish an abstract Poincaré inequality.

Lemma 2. Let X be a Hilbert space and $A: X \to X$ be a positive self-adjoint operator. Then

$$(0.5) |A(u)|^2 \le |A|(A(u), u), u \in X.$$

Proof. Since A is positive, for all $u, v \in X$ and $t \in \mathbb{R}$, we have

$$(A(u+tv),u+tv)\geq 0,$$

that is

$$(A(v), v) t^{2} + 2(A(u), v) t + (A(u), u) \ge 0.$$

Consequently

$$(A(u),v)^{2} \leq (A(v),v)(A(u),u).$$

For v = A(u) this inequality becomes

$$(0.6) |A(u)|^{4} \leq (A^{2}(u), A(u)) (A(u), u).$$

On the other hand,

$$(0.7) (A^2(u), A(u)) \le |A| |A(u)|^2.$$

Now (0.6) and (0.7) yield (0.5).

Our next result is an abstract weak maximum principle in $L^2(\Omega; \mathbf{R}^n)$. For a function $u: \Omega \to \mathbf{R}^n$, we let u^+, u^- be the functions defined by

$$u_i^+(x) = \max\{0, u_i(x)\}, \ u_i^-(x) = \max\{0, -u_i(x)\},$$

i=1,2,...,n. Clearly, $u=u^+-u^-,\ u^+\geq 0$ and $u^-\geq 0$. Also, for a function u one has $u\geq 0$, if and only if $u^-=0$.

Lemma 3. Let $A: L^2(\Omega; \mathbf{R}^n) \to L^2(\Omega; \mathbf{R}^n)$ be a positive self-adjoint operator. Assume the following conditions are satisfied:

$$(0.8) A(u) \ge 0 for u \ge 0; A(u) \ne 0 for u \ne 0$$

and

(0.9)

$$(A(u^+), A(u^-))_2 = (A(u^+), u^-)_2 = 0, \quad u \in L^2(\Omega; \mathbf{R}^n).$$

Then for any constant $c < |A|^{-1}$,

$$(0.10) (I-cA)^{-1}(u) \ge 0 for all u > 0.$$

Proof. Let $\sigma(A)$ be the spectrum of A, that is

$$\sigma(A) = \mathbf{R} \setminus \{\lambda \in \mathbf{R} : A - \lambda I \text{ is bijective}\}$$
.

It is known that

$$\sigma(A) \subset [-|A|, |A|]$$

(see Brezis [1], p 94). Since $c < |A|^{-1}$ the operator I - cA is invertible. Let $u \ge 0$ and let $v = (I - cA)^{-1}(u)$. Clearly

$$(0.11) v - cA(v) = u.$$

We have to show that $v \ge 0$, equivalently $v^- = 0$. Assume the contrary, i.e., $v^- \ne 0$. Then (0.8) guarantees that $A(v^-) \ge 0$ and $A(v^-) \ne 0$. If we multiply (0.11) by $A(v^-)$, and we use (0.9), we obtain

$$-(A(v^{-}), v^{-})_{2} + c(A(v^{-}), A(v^{-}))_{2} = (A(v^{-}), u)_{2}.$$

Since both u and $A(v^{-})$ are positive $(A(v^{-}), u)_{2} \geq 0$. Therefore

$$c \ge \frac{(A(v^-), v^-)_2}{|A(v^-)|_2^2}.$$

This together with (0.5) implies $c \ge |A|^{-1}$, a contradiction. Thus $v^- = 0$.

Theorem 4. Let $A: L^2(\Omega; \mathbf{R}^n) \to L^2(\Omega; \mathbf{R}^n)$ be a positive self-adjoint operator such that (0.8) and (0.9) hold. Let $f: \Omega \times \mathbf{R}^n \to \mathbf{R}^n$ be a map satisfying the Carathéodory conditions, such that for each $m \in (0, \infty)$ there is a constant $a_m \in \mathbf{R}_+$ with

 $f(x,z) + a_m z$ increasing in z on [-m,m]

for a.e. $x \in \Omega$. Assume that

(0.12)
$$f(x,z) \le cz + c', \ f(x,-z) \ge -cz - c'$$

for a.e. $x \in \Omega$, all $z \in \mathbf{R}^n$ with $z \ge 0$, and some $c \in \mathbf{R}_+$ with

 $c < |A|^{-1}$ and $c' \in \mathbf{R}^n_+$. In addition assume that the solution of the equation

$$u-cA\left(u\right) =A\left(c^{\prime}\right)$$

belongs to $L^{\infty}(\Omega; \mathbf{R}^n)$. Then the equation $u = AN_f(u)$ has at least one solution in $L^2(\Omega; \mathbf{R}^n)$. Moreover, if the set $S_+(S_-)$ of all solutions $u \geq 0$ (respectively, $u \leq 0$) is nonempty, then it has a maximal (respectively, minimal) element.

Proof. Since $c < |A|^{-1}$, the operator I - cA is bijective and so the equation (0.3) has a unique solution v_0 for each g. Here g = c'. By Lemma 3, $v_0 \ge 0$. Now, (0.12) guarantees both (0.2), (0.4). Thus, by Theorem 1, v_0 is an upper solution and $u_0 = -v_0$ is a lower solution. Since v_0 belongs to $L^{\infty}(\Omega; \mathbb{R}^n)$, there is $m \in (0, \infty)$ with $v_0 \le m$. Then the function f_m given by

$$f_m(x,z) = f(x,z) + a_m z$$

is increasing in z on [-m,m]. Also the equation $u=AN_{f}\left(u\right)$ is equivalent to

$$u = (I + a_m A)^{-1} A N_{f_m} (u).$$

Let

$$T_m = (I + a_m A)^{-1} A N_{f_m}.$$

Clearly,

$$u_0 \leq T_m(u_0), \quad T_m(v_0) \leq v_0$$

and T_m is continuous and increasing on $[u_0, v_0]$. Let u^*, v^* be the minimal, respectively maximal solution in $[u_0, v_0]$. We have

$$-v_0 \le u^* \le v^* \le v_0.$$

We now show that if $w \in L^{2}(\Omega; \mathbf{R}^{n})$, $w \geq 0$, solves $w = AN_{f}(w)$ then $w \leq v_{0}$. Indeed, from

$$w = AN_f(w) \le A(cw + c') = cA(w) + A(c')$$

and

(0.13)
$$v_0 = cA(v_0) + A(c'),$$

by subtraction we obtain

$$v_0-w\geq cA\left(v_0-w\right).$$

Then by the maximum principle, Lemma 3, $v_0 - w \ge 0$. Hence v^* is maximal in \mathcal{S}_+ . Similarly, if $w \in L^2(\Omega)$, $w \le 0$ and $w = AN_f(w)$, then $-v_0 \le w$. Hence u^* is minimal in \mathcal{S}_- .

The last theorem is an existence and localization result of a nonnegative non-zero solution.

Theorem 5. Let $A: L^2(\Omega; \mathbf{R}^n) \to L^2(\Omega; \mathbf{R}^n)$ be a completely continuous positive self-adjoint operator such that (0.8) and (0.9) hold. Let $f: \mathbf{R}^n_+ \to \mathbf{R}^n$ be a continuous map such that f(0) = 6 and for each $m \in (0, \infty)$, there is a constant $a_m \in \mathbf{R}_+$ with

$$f_m(z) := f(z) + a_m z$$
 increasing on $[0, m]$,

Assume that

$$f(z) \le cz + c'$$

for all $z \in \mathbf{R}^n_+$, and some $c \in \mathbf{R}_+$ with $c < |A|^{-1}$, $c' \in (0, \infty)^n$,

$$(0.14) f(z) \ge |A|^{-1} z$$

for all $z \in \mathbb{R}^n_+$ with $|z| \le \varepsilon_0$, where $\varepsilon_0 > 0$. In addition assume that the solutions of the equations

$$u - cA(u) = A(c')$$
 and $u - |A|^{-1}A(u) = 0$

belong to $L^{\infty}(\Omega; \mathbf{R}^n)$. Then the equation $u = AN_f(u)$ has a maximal solution u in $L^2(\Omega; \mathbf{R}^n_+)$ and $u \neq 0$.

Proof. As above, the unique solution v_0 of the equation u-cA(u)=A(c') belongs to $L^{\infty}(\Omega; \mathbf{R}^n_+)$ and is an upper solution of the equation $u=AN_f(u)$. Since f(0)=0 the null function is a solution, and so a lower solution. Now we apply the Monotone Iteration Principle (see Deimling [2] and Precup [3]) to deduce the existence of a maximal fixed point v^* in $[0, v_0]$ of the operator

$$T_m = (I + a_m A)^{-1} A N_{f_m},$$

where $m \in (0, \infty)$ satisfies $v_0(x) \leq m$, a.e. $x \in \Omega$. As in the proof of Theorem 4 we can show that v^* is maximal in the set of all nonnegative solutions. To show that $v^* \neq 0$, we prove that v^* is the maximal fixed point of T_m in an order subinterval $[u_0, v_0] \subset [0, v_0]$ with $u_0 \neq 0$.

Since A is completely continuous and positive, there exists a u_1 with $|u_1|_2=1$ such that

$$|A|=\left(A\left(u_{1}\right),u_{1}\right)_{2}.$$

Then, according to (0.9), we have

$$|A| = (A(u_1^+ - u_1^-), u_1^+ - u_1^-)_2$$

$$= (A(u_1^+), u_1^+)_2 + (A(u_1^-), u_1^-)_2$$

$$= (A(u_1^+ + u_1^-), u_1^+ + u_1^-)_2.$$

Hence we may assume that $u_1 \geq 0$. For any fixed $v \in L^2(\Omega; \mathbb{R}^n)$ we consider the function

$$g(t) = \frac{(A(u_1 + tv), u_1 + tv)_2}{|u_1 + tv|_2^2},$$

which can be defined on a neighborhood of t = 0. This function attains its maximum |A| at t = 0, so g'(0) = 0. Notice

$$g'(0) = 2[(A(u_1), v)_2 - |A|(u_1, v)_2].$$

Hence

$$u_1 = |A|^{-1} A \left(u_1 \right)$$

(i.e., |A| is the largest eigenvalue of A and u_1 is an eigenfunction). Also, by hypothesis u_1 belongs to $L^{\infty}(\Omega; \mathbb{R}^n)$. Let $u_0 = \varepsilon |u_1|_{\infty}^{-1} u_1$, where $0 < \varepsilon \le \varepsilon_0$. Clearly

 $u_0 \ge 0$, $u_0 \ne 0$, $|u_0(x)| \le \varepsilon$ a.e. on Ω , $u_0 = |A|^{-1} A(u_0)$.

Using (0.14), we deduce

 $u_0 = |A|^{-1} A(u_0) = A(|A|^{-1} u_0)$ $\leq AN_f(u_0).$

Thus u_0 is a lower solution of $u = AN_f(u)$. Also, from

$$v_0 = cA(v_0) + A(c'), \quad u_0 = |A|^{-1}A(u_0),$$

we have

$$v_0 - u_0 = cA(v_0 - u_0) + (c - |A|^{-1})A(u_0) + A(c')$$
.

Now we choose $\varepsilon > 0$ small enough so that

$$(c-|A|^{-1})u_0(x)+c'\geq 0$$
 a.e. on Ω .

Then

$$v_0 - u_0 - cA(v_0 - u_0) \ge 0$$

and by the maximum principle, $v_0 - u_0 \ge 0$. Next we apply the Monotone Iteration Principle to deduce the existence of a maximal fixed point in $[u_0, v_0]$ of T_m . Clearly it is equal to v^* .

Example 6. Let n=1. The operator $A=(-\Delta)^{-1}$ has all the properties required by Theorems 4-5. Moreover, in this case u^* , v^* are, respectively, the minimal and maximal solutions in the set of all solutions in $L^2(\Omega)$. Indeed, if $w \in L^2(\Omega)$ is any solution and we let f_w be defined by

$$f_{w}\left(x,z
ight)=f\left(x,z
ight) ext{ if } w\left(x
ight)>0, \ \ f_{w}\left(x,z
ight)=0 ext{ if } w\left(x
ight)\leq0,$$

then

$$-\Delta w^{+}=f_{w}\left(x,w^{+}\right)\leq c\,w^{+}\left(x
ight)+c^{\prime}$$
 a.e. on Ω .

Hence

$$w^{+} \leq cA\left(w^{+}\right) + A\left(c'\right).$$

This together with (0.13) implies

$$v_0 - w^+ \ge cA (v_0 - w^+).$$

Thus $w^+ \le v_0$. Similarly $-v_0 \le -w^-$. Therefore $-v_0 \le w \le v_0$.

References

- [1] Brezis H.: Analyse fonctionnelle, Masson, Paris, 1983.
- [2] Deimling K.: Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [3] Precup R.: Methods in Nonlinear Integral Equations, Kluwer, Dordrecht-Boston-London, 2002.

Faculty of Mathematics and Computer Science Babes-Bolyai University
Str. M. Kogălniceanu, nr. 1
3400 Cluj-Napoca
Romania
E-mail: r.precup@math.ubbcluj.ro