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1. One of the most useful methods for solving nonlinear equa-
tions is the method of upper and lower solutions. It consists in
localizing solutions in an order interval [ug, v, where ug is a lower
solution, vp is an upper solution, and 1y < vg. Thus a basic prob- -
lem is to find comparable lower and upper solutions. In this paper
we present such type of results for the abstract Hammerstein equa-
tion in R™ B 3 :

(0.1) - u(z) = ANy (u) (a:) a.e. on §1.

Here N; is Nemytskii’s superposition operator associated to a
given function f: Q2 x R" - R™ (Q ¢ RY bounded open), and
A is a bounded linear operator from L9 (f; R") to IP{;R).

2. To obtain lower and upper sohitions we need informaticn
about f and A, in particular, about the spectrum of A.
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Theorem 1. et p, g €[1,00), 47 L¢ (@, R) = LR
an increasing linear operator and fF:@xR* R a (p;q
Carathéodory function, Assume that there are ¢ € By and g

Le (Q; Ri) such that .
(02 f(@2) < ezt g(z)

Jor a.e. 2 € O and all » 2 0. Then any solution vy >.0 of th
equation: o o E T

©3)  F-cayw)=4(y)

(if there is one) is an upper solution of the equation u = AN t (u)

If in addition W

{0.4) —f{@,~2)<ecz+ g(z)

forae ze and all z > 0, then Uy = —vy 5 a lower solutioh'._'
.- Proof. Assume v9 >0 solves (0.3).: Then, from (0.2) we ha
 fewe) Sen@) 4

and since A is increasing, e

ANy (v0) < eA (v0) + 4 (9) = wp..

Hence Yp isa upper solution. We leave to.the reader to check that
—~pis a lower solution. o S , .
In what follows we present two much applicable results involv--
ing spectral properties of A.- S 2
First we establish an abstract Poincaré inequality, o
Lemma 2. Let X be a Hilbert space and A : X — X pe
positive self-adjoint operator. Then

(0.5) AW <141 (A(),v), e x.
Proof. Since 4 is positive, for all “vEX and t € R, we '

have _ T :
o (A-(u-f-tv),-u-{—tv) =0,
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that is . o
| (A (v),0) 2 +2 (A (w),0)t + (A (u),u) 2 0.
Consequently ~ -~ . .. -
A <(AE), ) A o
For v= A (u) this iﬁequé,litjr Seébﬁes_ _ ) _
(0.6) AW < (42 (), 4 () (A ) u).
On the qth_:e:_; hand, '. R
O (A0, A@) < A4 WP,
Now (0.6) and (0.7) yield (05). '
2Ry For o Tonciion o1 ?‘itf B, Ve let ut u be the
functions defined by T

6 () = max {0, (2)}, up (@) = max {0, —u; (2)},

i=1,2,...,n. Clearly, u=ut ——uf‘, ut >0 and u~ > 0. Also,
for a function - one has u >0, if and only if v~ = 0.

Lemma 3. Let 4: L? (;R*) - L? (; R™) beo positive self-
adjoint operator. Assume the following conditions are sa,tzsﬁed: .

(68  A{w)>0 for u20; A(uy#0 for u#0
and . . ' o .. | | |
“"9&4 (), A(u7)), = (4 () ,u7), =0, ueL?(%R7).
Then for any constant ¢ < |A[“1 :

(0.10) (I~ ecA)™! (u)_>_ 0 for.all uz 0
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Pr_qoﬂ Let o (A) be the spectrum of A, that is
o{A) =R\ {) €ER:A-Alis bijective} .

It is known that _
7 (4) C [~ |4], |4]

(see Brezis [1], p.94). Since ¢ < JAI™! the operator I — ¢4 ig

invertible. Let u > 0 and let v = (f - cA)“1 (u). Clearly

(0-11) T iy cA (’U) =

We have to show that v > 0, equivalently v~ = 0. Assume th
contrary, ie., v~ # 0. Then (0.8) guarantees that A{v™) >0 an

AWT) # 0. If we multiply (0.11) by A(t_i‘) , and we use (0.9),

we obtain

) A0, 4G, = (40 )

Since both u and A (v™) are positive (A(v7) ,u)2 2 0. Therefore::

. _c> (A('v'“),'u“)z ¥ .
T lA@)R

This together wi_th (05) i}n_plies ¢ 2 (A7 a 66ntrédiction. Thus
v o=, ' ' :

Theorem 4. Let 4 : 12(q; R™) — I? (S5 R™) e a positive
self-adjoint operator such that (0.8) and (0.9) hold. Let f:Q x
R*5 R”™ pe a map satisfying the Carathéodory condstions, such

that for each m ¢ (0,00) there is a constant am € Ry with
f(2,2) + amz increasing in 2 on [~m,m)]
Jor a.e. x €Q. Assume that o .

(0.12) . f(:ﬂ,Z) < Cz—_!—c', f (m,_—z) > —€z— el

foraexzeQ, all z ¢ R® with z > 0, and some ¢ € B, with
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e<|Al™ and d € RY. In oddition assume that the solution of
the equation

u—cAf)=A() - .. B
belqhgs to L™ (4 R"). Then the equation u = ANy (u) has at
least one solution in L2{Q;R™). Moreover, if the sei Sy (S-) of
all solutions u > 0 (respectively, u < 0) 18 nonempty, then it-has
a maxzimal (respectively, minimal) element. L o

Proof. Since ¢ < JA|™!, the operator I — ¢4 is bijective .
and so the equation (0.3) has'a unique solution vy for each g..
Here g =¢'. By Lemma 3, vy > 0. ‘Now, (0.12) guaranteesboth
(0.2), (0.4). ‘Thus, by Theorem 1, vy is an upper solution and

g = —vg is a lower solution. Since vy belongs to L% (Q; R™),

by
fm (7, 2) = f (2, 2) + amz2

is increasing in 2z on. [~m,m]. Also the equation v = ANj (u) is

equivalent to .

u=(I+and)™" ANy, (u).

| T = (I+amd) " ANy,,.
Clearly, | T

g ST (w0), T (vo) < o

. - . to - . - * *
and Tj, is continuous and increasing on [ug, vo] . Let u*,v* be

the minimal, respectively maximal solution in [ug,vg].” We have < -

Ty < ut < vt L,

We now show that if w € L2($;R"), w > 0, solves w = ANy (w) |

then w < vp. Indeed, from
. w=ANjw) < Acw+c) =cA(w)+ A (<) -

and

(0.13) vo = cA (w) + A(), -

there is m € {0,00) ‘with vg < m. Then the function fp, giver}:
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by subtraction we obtain -
vg—w > A (v — w).
'I_‘hen. by the maximum 'pﬁm':iple, Lemma 3, w—w>0. H
v" s maximal in S.. Similarly, if w'€ L2 (), w < 0 and:
ANj (w), then —vy < w. Hence u* is minimal in 5.,

The Tast theorem ‘is an '_e}'tisfence‘ and localization  resuls,;
nonnegative non-zero sohition. -

Theorem 5. Let A : L2 (R - 12 (0 R*) be a compl
continuous positive self-adjoint operator such that (0.8) and
hold. Let f : R%}— R" be a continuous map such that f(0)
and Jor each € (0,00), . there is a constant am € Ry with

L ImE) = F(2) + ez increasing on [0,m],
Assume ihai . .

f(2) €ez+¢ _

for all z € RY, and some c € Ry with ¢ < |A]™), ¢ ¢ (0, 60)"
and o B

(0.19) CF@ziA

Jor all z ER} with |z} < &, -zbhere €0 > 0. In addition assum

_ _that the solutions of the eguations ‘

u~cA (u) = A() @nd u~ 47 A ('u,) =0

- belong to L°°_'.(Q; R""’) Then the equation u = ANy (u) h'c"zs:_a,._
mazimel solution u in L2 (2 Ri) and u # 0.

Proof. As above, the unique_soluti_on_ vy of the equation u —

cA (u) = A(c)) belongs to L™ (%R%) and is an upper solution -
of the equation u = AN 7 (u). Since f (0) = 0 the null function is
a solution, and so a lower solution, Now we apply the Monotone -
Iteration Principle (see Deimling [2] and Precup [3]) to deduce the

existence of a maximal fixed point v* in [0,v0] of the operator

T~ (I + o A) ANy,
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where 'm € (0,00) satisfies vg(z) < m, a.e. £ €.0Q. Asin the’

proof of Theorem 4 we can show that .v* is maximal in the set

i xti ‘ “that v* # 0, we prove
{ all nonnegative solutions. To show tl}_a.t v* # 0, we
::)hat__ v*is thiamaximal fixed point of Ty in-an order spbmte_r,\fgl
[0, v0] C [0, vo] with ug 75 0. g hr
Since' A is completely continuous and positive, there e}usts a
uy with juily =1 such thai.:. : .
| Al = (A1), ur)y.
Then, according to (0.9), we have: S
Al = (4 (af —u)ouf ~up)y
= (A ) (AQ) 6,
= (Al +up) uf+u)y.
Hence we ma.yia.Ssmné‘that uy > 0. For any fixed v € L? ((;R™)
we consider the fun'ct_;ion B S
oo (Auy ) uy ), e
which can be defined on a néighborhood of ¢t = 0. This function
attains its maximum |A| at ¢ =0, so g’ (0} = 0. Notice | :

S g =2{(A ) ,v), = 14l (w,0),].
H_encei i STl L
e = ]AI—IA(ul) ‘

. . ‘e a Y en_ X
i.e., |A| is the largest eigenvalue of A and wu; is an elg.
gtmc,tilml).' Also, by hypothesis u; belongs to L= (Q;R"™). Let-
Uy =& |u1!;o1 u3, where 0 < e < gg. Clearly. :

w20, w0, |o@l<e ae om0 w=lATAMW).

Using (0.14), we deduce




~ then -
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E
i

141744 (wo) = 4 (|4 wg)

| < AN (u). e
Thus ug is a lower solution of U = AN (u). .AI§0, f:c_im
= cA) +A(), =4 A(u),

we have

.

'uou— Up = cA (yo' ~ug) + (c—— IA]"I) A (.ua) +A (<)

Now we choose & > 0 small enough so that

| (c - ]Al;l) uo(z)+¢ >0 ae. on Q.
" Then - ‘ D

. . UO"HO—CA(UO—UO)EO,-
and by the maximum Pprinciple, vg — ug > 0, Next we apply th

Monotone Tteration Principle to deduce the existence of a maxim
fixed point in fug, vp] of T.,. Clearly it is equal to v*.

... Example 6. Let n-= 1. The operator 4 = (—A)™! has all

* the properties required by Theorems 4-5. Moreover, in this case
u®, v* are, respectively, the minimal and maskimal solutions in thé"
set of all solutions in L?(Q). Indeed, if w e L2 () is any solution .
and we let f,, be defined by - '

fo(%,2) = f (2,2) if w (@) >0, fu (s, z) =0if w(z) <o,

—Awt = fwl@sw%) Scw'(z)+¢ ae. .onl Q.
Hence - S
whSed(wt) +a(d).
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This together with {0.13) implies
vo —wt ZcA(vg —~w+).

Thus wt < vg. Similarly —wvg < —w™. Therefore —vy < w < vp.
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