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SOME EXISTENCE RESULTS FOR
DIFFERENTIAL EQUATIONS WITH
BOTH RETARDED AND ADVANCED ARGUMENTS

RADU PRECUP

Abstract. Existence, uniqueness and monotone approximation of solutions to the
Cauchy problem for differential equations with both advanced and retarded arguments are

obtained.
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1. Introduction

In this paper we study the existence of solutions to the Cauchy problem
2() = f(t2(0), 2(6(0), 2(b(1), 0<t<T
c(t) = a(t), —A <1<,

(1)

where 0 < T < oo and
o i [0.7]—[-AT] (0<A<c0), 8(t)<ton[0,7)

¢ ¢ [0.T]—[-AT+B] (0<B<®),
a : [-4,00 —R,
f o [0,T] x R —R

are continuous functions.
By a solution of (1) we mean a function z € G1[0, T)N C[-A,T + B].
In (1), the argument é(t) is retarded if ¢(t) < t, while ¥(t) is advanced if

h(t) > 1.
In the study of (1), two cases are possible:
Case I: B=0;

(lase II: B > 0. This case can be reduced to Case Iif one considers continuous

extensions of the functions f, ¢ and ¥ as follows

Fi0TxR—R, where 7' =T + B,
3 (0,7 — [-A,T] with §(t) <t on 0,77,
7 : 0,7~ 1~4T.
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Then we may extend (1) to the following prohlem on [0, T]

{ o) = F (e, (50) 2 (30) ), 0t <

T
(2)
x(t) = a(t), —Agtgl;

which is in Case 1. Clearly the solutions of (2) depend on the choosen extensions of

f, ¢, and ¥.

Our tools will be Banach contraction principle, Schauder fixed point theorem,
Leray-Schauder continuation principle, the technique of a priori bounds and the mono-
tone iterative (lower and upper solutions) method.

The literature in differential equations with modified arguments, especially of
retarded type, is now very extensive. We refer the reader to the following monographs:
D. Bainov-D.P. Mishev (1], L.E. Elsgolts-S.B. Norkin [2], K. Gopalsamy (3], J. Hale
[4], V. Kolmanovskii-A. Myshkis [5], Y. Kuang [6], V. Lakshmikantham-L. Wen-B
Zhang [7], V. Muregan [8], and to our papers [9], [10]. The case of equations Wlth
advanced argument and with both retarded and advanced arguments has been less

studied. So our results complement in this respect the existing literature.

2. Results

Let 0 <T<oo and 0 A <00 Our basic assumptions arc as follows.

(h1) ¢ € C([0, 7] ; [=A4,T)) and ¢(t) <t on [0,T7;
(h2) f!’EC([ T}; [=A,T]);

(h3) a € C[-- A, 0];

(hd) f € C([0, T] x B9).

The first existence result is of the same type like Theorem 15.2.2 in LA. Rus [11].
TrporEM 1. Assume (h1)—(h4) hold. In addition suppose

(h5) there exist o, 8,7 € Ry such that
(3) \F(t,z, v, 2) — F(t,8,5,2)| S oo — |+ Bly — gl+7lz -2
for all (1,2, Y, z) € [0,T] x R3, and

_1_6—14'1‘{0-4-1?)
)

(4) 1<y

where

(5) M = max (0, max_(¥(t) — t)) .

te[0,T]



o
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Then we may extend (1) to the following problem on [0, T

@) { x'(t) = fu(fl 2(t),z (g(t)) oz (J(t'))) L 0<gt

T
x(t) = a(t), ~Agt<0,

N

which is in Case 1. Clearly the solutions of (2) depend on the choosen extensions of
f. ¢ and 3.

Our tools will be Banach contraction principle, Schauder fixed point theorem,
Leray-Schauder continuation principle, the technique of a priori bounds and the mono-
tone iterative (lower and upper solutions) method.

The literature in differential equations with modified arguments, especially of
retarded type, is now very extensive. We refer the reader to the following monographs:
D. Bainov-D.P. Mishev [1], L.E. Elsgolts-S.B. Norkin [2], K. Gopalsamy [3], J. Hale
[4], V. Kolmanovskii-A. Myshkis [5], Y. Kuang [6], V. Lakshmikantham-L. Wen-B.
Zhang [7], V. Muresan [8], and to our papers [9], [10]. The case of equations with
advanced argument and with both retarded and advanced arguments has been less

studied. So our results complement in this respect the existing literature.

2. Results

Let 0 <T <oo and 0< A < co. Our basic assumptions arve as follows.

(h1) ¢ € C([0,T]; [-A,T]) and &(t) < t on [0,T7;
(h2) v eC([0,T]; [-A4,T]);

(h3) a € C[—A,0];

(h4) f € C([0,7] x R3).

The first existence result is of the same type like Theorem 15.2.2 in [.A. Rus [11].
THEOREM 1. Assume (h1l)—(hd) hold. [n addition suppose

(hb5) there exist oo, 3,7 € Ry such that

(3) |tz y2) = f(L, 2,0, 2)| < ale— 2]+ By —y[+ 7]z - 2]

for all (t,z.y,z) € [0, 7] x R3, and

I 1 M(ats)
1y ),

(4) <3

where

(5) M = max (0, tIEIE_ORI%E] ((t) — t)) ;
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Then (1) has a unique solution x € C'[0, T) N C[—A, Tl

Proof. Clearly (1) is equivalent with the integral equation

/ f(s,2(s),8(¢(s)), E((s)))ds (0<t < 1),
where F(t) = 2(t) for t € [0,T] and Z(¢) = a(t) if te [—4,0). Let
K={zeC0,T]: 2(0) = a(0)}
and N : ' — I be given by
6) N =a(0)+ f Fls.2(s), F(B()), B((s))d s (0 <t <T),

We show that N is a contraction on i with respect to the norm ”T”

= Il].d.‘{ [z(t)le™ if 7> 0 is sufficiently large. Indeed, one has
te[0

N(z)(t) — N(»)(t)] <

t
/ l=(s)=y(s)}d S+ﬁ/ [#(8(s)) = G(6(s)] ds+~// [((5)) = F((s))| d s <
0
< e — y”q f (Q‘e”s + Be?s) 4 -),e'?%b(S)) ds g
)

< lle =yl t [cr +6+ 7e"f*”(”-~ﬂ] e”ds
< (a +:3 +ye™) 7 e — g, e,
It follows that
1V (z) = N()ll, < (a+ B+ 3e"™) gtz — ]|, .
Hence, N is a contraction if we choose an 7 >0 with
(a+B+7ve"™) gt <1

or equivalently
vy = o= F)g Y,

Such an 7 exists provided that

v <sup(u—a—fe y~aM
u>0
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An elementary calculus shows that the supremum in the above formula equals
M~-le—1=M(at+8) and is attained for u=a+ 5+ 1/M.
Now the conclusion follows from Banach contraction theorem. |

Remark 1. If o(t) <t on [0,7] (no advanced arguments), then M = 0
and (4) becomes 7y < co. Thus, in this case no restriction on 7 is required. The
inequality (4) also shows that 7y 1s supposed to be very small if M is very large.

[ the next result, more generally, f is assumed to salisfy a growth condition,

instead of the Lipschitz condition (3).
TaEoREM 2. Assume (h1l)—(h4) hold. In addition, suppose

(h6) there exist a, f#, v, 0 €Ry such thal
[F(t, 2,y 2)| S alel+Blul+ vl +6

for all (t,z,y,2) € [0,T] x R3, and (4) be satisfied.
Then (1) has at least one solution x € o, 71N C[-A, T}

Proof. Similar estimates like those in the proof of Theorem 1 yield

V@, < 1a(0)]+ 6T + (o + 8 + e )~ max (Jlel, .0)
where 6 = 1[najcﬂ]|a(t)ie“”. Since by (4) there exists an 7 > 0 with
te[~A,

(a+p8+ ')-'e”M) ! <1, wemay findan R>10 such that
|a(0)] + 6T + (¢ + f+7e™)n 'R R.

Then
N(Kg) C Kg, where Kg = {r € K : llzll, < R}

On the other hand, by Arzela-Ascoli theorem, N is completely continuous. Now the
conclusion follows from Schander fixed point theorem. O
The next result is a generalization of Theorem 2.

THEOREM 3. Assume (h1)—(h4) hold. In addition suppose

(L7) there exists a function p: R2 — Ry nondecreasing in each variable with
(7) p(Az, Ay, Az) < Ap(e, v, 2)
forall .y, z €Ry, A2 1, such that

£t 2,0, 2)] < eIl ol 12D
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on [0,T]x R® and there exist >0, R >0 with
(8) u < |a(0)| + 9 p (v, u,e™u ):>U<R

where M is given by (5).
Then (1) has a solution.
Proof. We shall use Leray-Schauder fixed point theorem. Let «# be any solution

to

t
(9) z(t) = a(0) + /\/n f(s,z(s). Z(a(s)), z(h(s)))d s
for A €(0,1). With the above notations, we have

()] < Ja(0)] + / p(le(s)], [F@N], (s ds = la(0)] +
+ [ (e, e (o] e, [E(w(a)) M) d s <

< ra(on+/fp(”_yuﬂens,max (||$||n,3) e max (Ilwiln,ﬂ) e,,Meqs) s 2
0
< [a(0)] + 77 *emp (Jlell, ,max ([l2ll, ,6) ,max (|lall, ,0) &™) .

It follows that

el < la(0) + 57 (||’L||,j , max (HT“,? .6’) , max (||:c“q ,,9) e”M) :

Now suppose that 5 and R are like in (h7). Then
llzll, € max, (R, ())

Thus, the solutions are bounded independently on A and Leray-Schauder fixed point
theorem applies. O
Remark 2. Notice (h6) implies (h7). Take p(z,y,2) = az+ By +yz+6 and

observe that (1) guarantees (8).
In the next theorem no subhomogenity condition of type (7) is required. It
can be considered as a typical result for functional differential equations with both

retarded and advanced arguments.

THEOREM 4. Let ¢ € C([0,T];[-A,T]) and o € C([0,T);[0,T]) with
(10) : a(t) <t <(t) on [0,T].

Assume a € C([—A,0];Ry) is nondecreasing and f € C ([0,T] x R; Ry).
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In addition suppose that the following condition 1s satisfied:
(h8) there exisls a continuous function [ : H‘i — (0,00) and « € L'[0,T] such that

A, y, 2) is nondecreasing in y and nonincreasing in z,

St ey, 2) € oft)B(. 9, 2)

i i du
a(t)dt < / B
/l) ) a(0) Blu, u,u)

Then (1) has a nonnegative and nondecreasing solution z € CHo, TINC[-A, T].

on [0,T] x R} and

Proof. We use the Leray-Schauder continuation principle. Let be any solution

to (10). Then
0 < 2'(1) = AL, 2(1), B(6(1), F(¥(1)), 0<t<T.
Using (10) and the monotonicity properties of f, we obtain
#(1) < a()a(t), 2(1), 2(1),0< L T

It follows that

#(T) d 7 ’(f 4
dibg / a(t)dt.
\A(m (w,u,u) / B (a z (1), z (1)) Ja (1)

Hence z(T) < R, where R isso that

7 R
du

tdt = e

fo «t) /‘;(rj'; Blu, u, u)

Thus the solutions of (10) are bounded independently on A and the Leray-Schauder
O

continuation principle applies.
The next result is based on the monotone iterative method.

TuporeMm 5. Let ¢€C([0,7]);[—A,T]), v €C([0,T];[- A, T1),a € C([-4,0]; Ry)
and f € C([0,T] x R} ;Ry). Suppose that [(1, ©,y,z) is nondecreasing in T, Y,z
and that there exisis a function w € C[0,T] with

T

M\

0 +‘/O.‘f(.s,w(S).ﬁ(ﬁf)(S]),iﬁ ((s))ds, 0<t

Lel
Us(t) = a(0), Vo(t) = w(t), Ung1 = N(Uy) and Vpp1 = N(Va),
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(te

(11)

(12)

[0,F)) 5 =By Ly g o Then

on [0,7]. Also, the following limits exisi

z(t) = lim Un(1), Z(t) = lim V, (1)

n—eo

uniformly on [0, T]. Moreover, z,% are the minimal and mazimal solutions of (1)

i W salisfying @ < w on [0,7).

Proof. From a(0) < w it follows that a(0) N(a(0)) € N(w) € wand 0 <

<
N(a(0)) < N(w),ie. Uy < U Vi < Vo and 0 Ul < V{. Further, (11) and (12)

follow successively. Now, since

and

{Unn21}y=N{Us :n20))

N 1s completely continuous, the sequence (Un)nzo contains a convergent sub-

sequence. By the monotonicity, the entire sequence (Un)nzo converges. Similarly,

(Va)nzo s convergent. O
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