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POSITIVE SOLUTIONS OF NONLINEAR SINGULAR

INTEGRAL EQUATIONS IN ORDERED BANACH SPACES

Yansheng Liu and Radu Precup

Abstract. By using a specially constructed cone and the fixed point theory
in cone for strict set contraction operators, this paper investigates the existence
of multiple positive solutions for a class of nonlinear singular integral equations
in ordered Banach spaces. Two examples are included to illustrate the main
result.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖ and P ⊂ E be a cone of E.
The purpose of this paper is to investigate the existence of multiple positive
solutions of the following nonlinear singular integral equation

x(t) =
∫ 1

0

K(t, s)f(s, x(s))ds, (1.1)

where K : [0, 1]× [0, 1] → R+ and f : (0, 1)× (P \ {θ}) → P are both contin-
uous; θ is the zero element of E. The main tool used here is the fixed point
theory in cone for strict set contraction operators. This technique (including
Krasnoselskii’s compression-expansion fixed point theorem) has been exten-
sively applied in the literature to scalar equations, when E = R, see [1], [4],
[5], [16] and [17] and references therein. Recently, in paper [11], the authors
used the Krasnoselskii’s compression-expansion fixed point theorem to discuss
nonlinear integral equations in Banach spaces and obtained the existence of
nonnegative solutions. On the other hand, the theory of singular boundary
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value problems has become an important area of investigation (see [2], [10],
[13] and [15] and references therein) in last twenty years. Most of such prob-
lems can be converted into nonlinear integral equations. Without doubt, it
is interesting to investigate directly the theory of singular integral equations,
especially, in abstract spaces.

The main features of this paper are as follows. First, the existence re-
sult obtained is about positive solution, not nonnegative solution as in [11].
Secondly, comparing with [11], the number of solutions is multiple. Finally,
the nonlinear term f(t, x) may be singular at t = 0, 1, and x = θ, that is,
lim

t→0+
‖f(t, ·)‖ = ∞, lim

t→1−
‖f(t, ·)‖ = ∞, and lim

x→θ,x∈P
‖f(·, x)‖ = +∞ (for

details, see our example). To our knowledge, no paper considered singular
integral equations in abstract spaces.

The organization of this paper is as follows. We shall introduce some
lemmas and notations in the rest of this section. The main result will be
stated and proved in Section 2. In Section 3, two examples are included to
illustrate the main result.

Basic facts about ordered Banach spaces can be found in [3], [9] and [12].
Here we just recall a few of them. The cone P in E induces a partial order on
E, i.e., x ≤ y if and only if y− x ∈ P . P is said to be normal if there exists a
positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. Without loss
of generality, we suppose in the present paper that N = 1. We consider the
integral equation (1.1) in C[J,E], with J = [0, 1]. Evidently, (C[J,E], ‖ · ‖C)
is a Banach space with norm ‖x‖C = max

t∈J
‖x(t)‖ for x ∈ C[J,E]. In what

follows, x ∈ C[J,E] is called a solution of the integral equation (1.1) if it
satisfies (1.1). The function x is a positive solution of (1.1) if, in addition,
x(t) > θ for t ∈ (0, 1). Let x : (0, 1] → E be continuous. The abstract
generalized integral

∫ 1

0
x(t)dt is called convergent if the limit lim

ε→0+

∫ 1

ε
x(t)dt

exits. The convergency or divergency of other kinds of generalized integrals
can be defined similarly.

For a bounded set V in a Banach space E, we denote by α(V ) the Ku-
ratowski measure of noncompactness (see [3], [9] and [12]). The operator
A : D → E (D ⊂ E) is said to be a k- set contraction if it is continuous,
bounded and there is a constant k ≥ 0 such that α(A(S)) ≤ kα(S) for any
bounded set S ⊂ D; a k- set contraction with k < 1 is called a strict set
contraction.

In the paper, we shall denote by α(·) and αC(·) the Kuratowski measure
of noncompactness of a bounded subset in E and in C[J,E], respectively.

For the application in the sequel, we first state the following lemmas which
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can be found in [9], pp13 and pp22.

Lemma 1.1. Let V ⊂ C[J,E] be bounded and equicontinuous on J. Then
α(V (t)) is continuous on J and αC(V ) = max

t∈J
α(V (t)), where

V (t) = {x(t)|x ∈ V }.
Lemma 1.2. Let P be a cone of the Banach space E and Pr,s = {x ∈ P :
r ≤ ‖x‖ ≤ s} with s > r > 0. Suppose that A : Pr,s → P is a strict set
contraction such that one of the following two conditions is satisfied:

(i) Ax 6≤ x for x ∈ P , ‖x‖ = r and Ax 6≥ x for x ∈ P , ‖x‖ = s.
(ii) Ax 6≥ x for x ∈ P , ‖x‖ = r and Ax 6≤ x for x ∈ P , ‖x‖ = s.

Then, A has a fixed point x ∈ P such that r < ‖x‖ < s.

For some applications of Lemma 1.2 and related topics see [6], [8], [14] and
[18].

2. Main results

To establish the existence of multiple positive solutions in C[J, P ] of the
integral equation (1.1), let us list the following assumptions:

(H1) There exists µ ∈ C[J,R+] with µ(t) > 0 for t ∈ (0, 1) such that

K(t, s) ≥ µ(t)K(τ, s),

for all t, s, τ ∈ J.
(H2) For any three positive numbers R, r and δ with R > r and δ < 1

4 ,
f(t, x) is uniformly continuous with respect to t on [δ, 1− δ]× Pr,R, and

∫ 1

0

fr,R(s)ds < +∞

where Pr,R = {x ∈ P : r ≤ ‖x‖ ≤ R} and fr,R(s) = sup{‖f(s, x)‖ : x ∈
P and ‖x‖ ∈ [rµ(s), R]} for all s ∈ (0, 1). In addition, there exists a positive
number l such that max

t∈J

∫ 1

0
K(t, s)fl,l(s)ds < l.

(H3) There exists a nonnegative number L with 2k0L < 1 such that

α(f(t,D)) ≤ Lα(D),

for all t ∈ (0, 1) and D ⊂ Pr,R, where k0 = max
t,s∈J×J

K(t, s) > 0.
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(H4) There exist ϕ∗ ∈ P ∗ with ‖ϕ∗‖ = 1 and ψR ∈ C[J,R+] (ψR(t) 6≡ 0)
for all R > 0 such that

ϕ∗(f(t, x)) ≥ ψR(t),

for t ∈ (0, 1), x ∈ PR \ {θ}, where P ∗ is the dual cone of P and PR =: {x ∈
P

∣∣ ‖x‖ < R}.
(H5) There exist ψ∗ ∈ P ∗ with ‖ψ∗‖ = 1 and [a, b] ⊂ (0, 1) such that

lim inf
‖x‖→+∞, x∈P

ψ∗(f(t, x))
‖x‖ = +∞

uniformly with respect to t ∈ [a, b].

Remark 2.1. Assumption (H4) indicates that f (t, x) may be singular at
t = 0, 1 and x = θ. Assumption (H5) shows that f is superlinear at ∞.

The following theorems are the main results of this paper.

Theorem 2.1. Let assumptions (H1)-(H5) be satisfied. Then (1.1) has at
least two positive solutions.

Corollary 2.1. Let assumptions (H1)-(H3) be satisfied. In addition, assume
either (H4) or (H5) holds. Then (1.1) has at least one positive solution.

Before proving the main result, we first give some preliminaries and lemmas.
Let

Q =: {x ∈ C[J, P ]
∣∣ x(t) ≥ µ(t)x(τ) for all t, τ ∈ J}.

From condition (H1), we have µ(t) ≤ 1 for t ∈ J , which means that Q is not
an empty set. On the other hand, it is easy to see that Q is a closed and
convex subset of C[J, P ]. Moreover, Q is a cone of the Banach space C[J,E].
Since the cone P is normal with normality constant N = 1, we have for x ∈ Q
that

‖x‖C ≥ ‖x(t)‖ ≥ µ(t)‖x‖C , for all t ∈ J. (2.1)

Obviously, x is a positive solution of (1.1) if x ∈ Q \ {θ} is a solution of (1.1).
For the sake of applying the fixed point theory in cone, define an operator

A on Q \ {θ} by

(Ax)(t) =:
∫ 1

0

K(t, s)f(s, x(s))ds. (2.2)

From (2.1), (2.2) and (H2), it is easy to see that A is well defined on Q \ {θ}.
Thus, we need to investigate only the existence of a fixed point of A in Q\{θ}.
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Lemma 2.1. Assume that conditions (H1) and (H2) hold. Then for any
R > r > 0, A : Qr,R → Q is continuous and bounded, where Qr,R = {x ∈ Q :
r ≤ ‖x‖ ≤ R}.

The proof of Lemma 2.1 is similar to that of Lemma 2.1.1 [9].

Lemma 2.2. Suppose hypotheses (H1)-(H4) hold. Then for any R > r > 0,
A : Qr,R → Q is a strict set contraction.

Proof. For any R > r > 0, assume S ⊂ Qr,R. It is easy to see that AS is
bounded and equicontinuous on J . Therefore, Lemma 1.1 guarantees that

αC(AS) = sup
t∈J

α((AS)(t)), (2.6)

where (AS)(t) = {(Ax)(t) : x ∈ S} for t ∈ J . For δ ∈ (0, 1
4 ), let

D(t) =:
{ ∫ 1−δ

δ

K(t, s)f(s, x(s))ds : x ∈ S
}

.

By (H2) we have for all x ∈ S and t ∈ J that

‖
∫ 1−δ

δ

K(t, s)f(s, x(s))ds−
∫ 1

0

K(t, s)f(s, x(s))ds‖

≤ k0

(∫ δ

0

fr,R(s)ds +
∫ 1

1−δ

fr,R(s)ds
)
,

which means

dH(D(t), (AS)(t)) → 0 as δ → 0 for each t ∈ J.

Here dH(·, ·) denotes the Pompeiu–Hausdorff metric. Thus, by the property
of the Kuratowski measure of noncompactness, one can see

α
(
(AS)(t)

)
= lim

δ→0+
α(D(t)), for all t ∈ J. (2.7)

Now we estimate α(D(t)). Note that

∫ 1−δ

δ

K(t, s)f(s, x(s))ds ∈ (1− 2δ)co
{
K(t, s)f(s, x(s)) : s ∈ [δ, 1− δ]

}
,
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where co{·} denotes the convex closure. By (H2), (H3), and Lemma 1.1, we
deduce

α(D(t)) = α
({ ∫ 1−δ

δ

K(t, s)f(s, x(s))ds : x ∈ S
})

≤ (1− 2δ)α
(
co

{
K(t, s)f(s, x(s)) : s ∈ [δ, 1− δ], x ∈ S

})

≤ k0 max
s∈[δ,1−δ]

α
(
f(s, S(I))

)

≤ k0Lα(S(I)) ≤ 2k0LαC(S),

(2.8)

where I = [δ, 1− δ], S(I) = {x(s) : x ∈ S, s ∈ I}. Therefore, from (2.6)-(2.8),
we have

αC(AS) ≤ 2k0LαC(S).

This together with 2k0L < 1 implies that A : Qr,R → Q is a strict set
contraction. The proof of Lemma 2.2 is thus completed. ¤
Proof of Theorem 2.1. First we choose

r1 = min
{ l

2
,

1
2

max
t∈J

∫ 1

0

K(t, s)ψl(s)
}

,

where ψl(s) is the same as in hypothesis (H4). Then 0 < r1 < l. We claim
that

Ax 6≤ x for x ∈ ∂Qr1 . (2.9)

Assume the contrary, i.e., there exists a x ∈ ∂Qr1 with Ax ≤ x. Then

x(t) ≥ (Ax)(t) =
∫ 1

0

K(t, s)f(s, x(s))ds, for all t ∈ J. (2.10)

Notice that ‖x‖C = r1 < l. Using condition (H4) and (2.10), we obtain

r1 ≥ ‖x(t)‖ ≥ ϕ∗(x(t))

≥ ϕ∗
( ∫ 1

0

K(t, s)f(s, x(s))ds
)

≥
∫ 1

0

K(t, s)ϕ∗
(
f(s, x(s))

)
ds

≥
∫ 1

0

K(t, s)ψl(s)ds,
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which is a contradiction with the choice of r1. This means that (2.9) holds.
Secondly, from hypothesis (H2) and the normality of cone, it follows that

Ax 6≥ x for x ∈ ∂Ql. (2.11)

Assume the contrary, i.e., Ax ≥ x for some x ∈ ∂Ql. Then, from x ∈ Q,
we have x (s) ≥ µ (s)x (τ) for all s, τ ∈ J. Consequently, µ (s) ‖x (τ)‖ ≤
‖x (s)‖ ≤ l for all s, τ ∈ J. It follows that µ (s) l ≤ ‖x (s)‖ ≤ l for every s ∈ J.
Now, if t0 ∈ J is such that l = ‖x (t0)‖ , then from x ≤ Ax we obtain

l ≤
∫ 1

0

K (t0, s) ‖f (s, x (s))‖ ds

≤
∫ 1

0

K (t0, s) fl,l (s) ds < l,

a contradiction. Thirdly, choose R̄ =
(

max
t∈J

∫ b

a

K(t, s)µ(s)ds
)−1

+ 1. Then,

by condition (H5), there exists M > 0 such that ψ∗
(
f(t, x)

) ≥ R̄‖x‖ for
t ∈ [a, b] and ‖x‖ ≥ M . Again let

R1 = max
{

l + 1,
M

min
t∈[a,b]

µ(t)

}
. (2.12)

We claim that
Ax 6≤ x for x ∈ ∂QR1 . (2.13)

If not, then there exists x ∈ ∂QR1 such that Ax ≤ x. Using condition (H5),
(2.1), and (2.12), we obtain

R1 ≥ ψ∗(x(t)) ≥ ψ∗
(
(Ax)(t)

)

≥
∫ 1

0

K(t, s)ψ∗
(
f(s, x(s))

)
ds

≥
∫ b

a

K(t, s)ψ∗
(
f(s, x(s))

)
ds

≥ R̄

∫ b

a

K(t, s)‖x(s)‖ds

≥ R̄

∫ b

a

K(t, s)µ(s)‖x‖cds

= R̄R1

∫ b

a

K(t, s)µ(s)ds > R1,
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which is a contradiction. Thus (2.13) holds. Finally, using (2.9), (2.11),
(2.13), and Lemma 1.2 twice, we obtain that the integral equation (1.1) has
two positive solutions x(t) and y(t) satisfying

r1 < ‖x‖C < l < ‖y‖C < R1.

This completes the proof of Theorem 2.1. ¤

3. Examples

Example 1. Consider the following finite system for scalar integral equa-
tions:

xn(t) =
∫ 1

0

K(t, s)
√

1− s

5

( 1

m
m∑

k=1

|xk|
+ xn+1 + x2

n+2

)
ds,

t ∈ (0, 1), n = 1, 2, · · · ,m.

(3.1)

Here xm+k = xk for k = 1, 2 and K(t, s) = max{1− t, 1− s}.

Theorem 3.1. The singular system (3.1) has at least two positive solutions(
x1(t), x2(t), · · · , xm(t)

)
and

(
y1(t), y2(t), · · · , ym(t)

)
with

0 <
m∑

n=1

|xn(t)| < 1 and
m∑

n=1

|yn(t)| ≥ 1− t for t ∈ (0, 1).

Proof. Let E = Rm with norm ‖x‖ =
m∑

n=1
|xn| for x ∈ E and P = {x =

(x1, x2, · · · , xm) : xn ≥ 0, n = 1, 2, · · · ,m}. Then P is a cone in E and
system (3.1) can be regarded as an equation of the form (1.1), where x =
(x1, x2, · · · , xm), f(t, x) =

(
f1(t, x), f2(t, x), · · · , fm(t, x)

)
and fn is defined

by

fn(t, x) =
√

1− t

5

( 1

m
m∑

k=1

|xk|
+ xn+1 + x2

n+2

)
.

First notice that

K(t, s) ≥ (1− t)K(τ, s), for all t, τ, s ∈ [0, 1].
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This means that condition (H1) is satisfied for µ(t) = 1− t.
Secondly, for each pair of positive numbers R and r with R ≥ r, we have

fr,R(s) ≤
√

1− s

5

( 1
(1− s)r

+ R + R2
)
.

Choosing l = 1, notice that
∫ 1

0

K(t, s)f1,1(s)ds ≤ 1
5

∫ t

0

(1− s)
√

1− s
( 1

1− s
+ 2

)
ds

+
1
5

∫ 1

t

(1− t)
√

1− s
( 1

1− s
+ 2

)
ds

< 1.

Thus (H2) is satisfied. Obviously, (H3) holds in this situation since Rm is
finite dimensional.

Finally, it is easy to see that (H4) and (H5) are satisfied if we choose
ψ∗ = ϕ∗ = (1, 1, · · · , 1). Now the conclusion follows from Theorem 2.1. ¤
Example 2. Consider the following singular boundary value problem of in-
finite system of scalar differential equations:





− x′′n(t) =
cos t√
t(1− t)

(
1 +

1
n

(tx2n + ln(1 + xn)) +
[t (1− t)]β arctan t

‖x‖β ln(2 + n)

)

t ∈ (0, 1)

xn(0) = xn(1) = 0, n = 1, 2, · · · ,
(3.2)

where ‖x‖ = sup
n≥1

|xn|, β ∈ (
0, 1

2

)
.

Theorem 3.2. The singular system (3.2) has at least one positive solution(
x1(t), x2(t), · · · , xn(t), · · · ).

Proof. Let E = l∞ with norm ‖x‖ = sup
n≥1

|xn| for x ∈ E and P = {x =

(x1, x2, · · · , xn, · · · ) : xn ≥ 0, n = 1, 2, · · · }. Then P is a cone in E and
system (3.2) can be translated into a singular integral equation of the form
(1.1), where x = (x1, x2, · · · , xn, · · · ),

K(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1

t(1− s), 0 ≤ t ≤ s ≤ 1,
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f(t, x) =
(
f1(t, x), f2(t, x), · · · , fn(t, x), · · · ), and fn is defined by

fn(t, x) =
cos t√
t(1− t)

(
1 +

1
n

(tx2n + ln(1 + xn)) +
[t (1− t)]β arctan t

‖x‖β ln(2 + n)

)
.

First it is easy to see that (H1) is satisfied if we choose µ(t) = t(1− t). Next
for each pair of positive numbers R and r with R ≥ r, we have

fr,R(t) ≤ cos t√
t(1− t)

(
1 + R + ln(1 + R) +

π

2rβ

)
.

Therefore, from

lim
l→+∞

1 + l + ln(1 + l) + π
2lβ

l
= 1

and ∫ 1

0

K (t, s)
cos s√
s(1− s)

ds ≤
∫ 1

0

√
s (1− s)ds

≤ 1
2

for all t ∈ [0, 1] , it follows that there exists a positive number l such that
condition (H2) holds. As regards (H3), as in [9], Example 2.1.2, by using
diagonal method, one can show that L = 0 in this situation.

Finally we see that condition (H4) is satisfied if we choose ϕ∗(x) = x1

and ψR(t) = min
{

1,
cos t√
(1− t)

}
. Now the conclusion follows from Corollary

2.1. ¤
Acknowledgment. The authors thank the referee for valuable remarks and
suggestions.
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Babeş–Bolyai University
Cluj, 400084,
Romania
E-mail address: r.precup@math.ubbcluj.ro


