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a b s t r a c t

In this paper we study the convergence of a Newton–Steffensen type method for solving
nonlinear equations in R, introduced by Sharma [J.R. Sharma, A composite third order
Newton–Steffensen method for solving nonlinear equations, Appl. Math. Comput. 169
(2005), 242–246].

Under simplified assumptions regarding the smoothness of the nonlinear function, we
show that the q-convergence order of the iterations is 3. The efficiency index of themethod
is 3√3, and is larger than I2 =

√
2, which corresponds to the Newton method or the Stef-

fensen method.
Moreover, we show that if the nonlinear function maintains the same monotony and

convexity on an interval containing the solution, and the initial approximation satisfies the
Fourier condition, then the iterations converge monotonically to the solution.

We also obtain a posteriori formulas for controlling the errors.
The numerical examples confirm the theoretical results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the equation

f (x) = 0 (1)

f : [a, b] → R, a < b, and another equivalent equation:

x − g(x) = 0 (2)

g : [a, b] → [a, b].
The Steffensen type methods are interpolatory methods (see, e.g., [1,2]), with the nodes controlled at each step by the

auxiliary function g [3–12]. The method generates a sequence {xn}n≥0 which approximates a solution x∗ of (1):

xn+1 = xn −
f (xn)

[xn, g(xn); f ]
, n = 0, 1, . . . , x0 ∈ [a, b]. (3)

In the papers [9,10] it is studied the convergence of the Steffensen method when g is given by

g(x) = x − λf (x)

λ ∈ R. The parameter λ is determined such that the sequences {xn}n≥0 and {g(xn)}n≥0 approximate bilaterally the solution,
and the convergence order of these methods is 2.
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In [11] Sharma introduces a Steffensen type method of order three, with g given by

g(x) = x −
f (x)
f ′(x)

, (4)

which we shall call as the Newton–Steffensen (N–S) method. Since it requires 3 function evaluations at each iteration step,
its efficiency index is I3 =

3√3, and is larger than I2 =
√
2, which corresponds to the Newton method or the Steffensen

method (see, e.g., [9,1,13]), and therefore the method is worth to be considered.
In this paper we shall show in Section 2 that the convergence order 3 can be obtained under some weaker smoothness

assumptions on f than in [11,14]. Moreover, in Section 3 we shall study the convergence of the (N–S) method in hypotheses
regarding themonotony and convexity of f on [a, b]. Under some simple assumptions on f , including the Fourier conditions,
we shall show that the (N–S) method leads to monotonic sequences which approximate the solution. In Section 4 we
illustrate the theory by some numerical examples, which confirm the theoretical results.

2. Local convergence of the method

Consider the following hypotheses.
(α) Eq. (1) has a solution x∗

∈]a, b[.
(β) f ∈ C2

[a, b].
(γ ) f ′ (x) ≠ 0 on [a, b].

Sharma proved the following result.

Theorem 1 ([11]). If f satisfies (α)–(γ ) and moreover, there exists f ′′′ (x∗), then the (N–S) method has the q-convergence order
at least 3, with the asymptotic constant given by the relation:xn+1 − x∗

 =


f ′′ (x∗)

2f ′ (x∗)

2 xn − x∗
3 + o

xn − x∗
4 , as n → ∞. (5)

Of course the fact that the sequence is well defined must be implicitly assumed.
We show that the requirement that f is three times differentiable can be dropped.
In [14], the authors studied the semilocal and local convergence of the (N–S) iterates in the setting of Banach spaces.

Local convergence with order 3 was established under the assumption of Lipschitz continuity of f ′′. We show here that even
the Lipschitz continuity may be relaxed, and we consider the following assumption:
(β ′) f ∈ C1

[a, b], and ∃f ′′(x), ∀x ∈ (a, b), which is continuous at x∗.

Theorem 2. If f satisfies (α), (β ′), (γ ), the (N–S) method is well defined and converges to x∗, then the method has the
q-convergence order at least 3, with the same asymptotic constant given in (5).

Proof. From the Newton identity and (α) we have

f (x∗) = f (xn) + [xn, g(xn); f ](x∗
− xn) + [x∗, xn, g(xn); f ](x∗

− xn)(x∗
− g(xn)) = 0

whence, by (3) we get

x∗
− xn+1 = −

[x∗, xn, g(xn); f ]
[xn, g(xn); f ]

(x∗
− xn)(x∗

− g(xn)), n = 0, 1, . . . (6)

By (α), (β) and the Taylor formula we obtain

f (x∗) = f (xn) + f ′(xn)(x∗
− xn) +

f ′′(ξn)

2
(x∗

− xn)2 = 0, (7)

where ξn belongs to the open interval determined by xn and x∗.

Taking into account that g(xn) = xn −
f (xn)
f ′(xn)

, by (7) we infer

x∗
− g(xn) = −

f ′′(ξn)

2f ′(xn)
(x∗

− xn)2, n = 0, 1, . . . , (8)

which together with (6) attracts

x∗
− xn+1 =

f ′′(ξn)[x∗, xn, g(xn); f ]
2f ′(xn)[xn, g(xn); f ]

(x∗
− xn)3, n = 0, 1, . . . , (9)

which shows that the (N–S) method has q-order 3. The mean value theorem for divided differences ensures that
[x∗, xn, g(xn); f ] →

1
2 f

′′(x∗) and [xn, g(xn); f ] → f ′(x∗), as n → ∞, so we are led to the same asymptotic constant as
in (5). �
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3. Monotone convergence of the method

As it is well known, when f ∈ C2
[a, b] preserves its monotonicity and convexity on [a, b], if the initial approximation

x0 ∈ [a, b] verifies the Fourier condition, then the Newton method yields a monotone sequence which converges to the
solution x∗

∈ [a, b]. We shall show that under same such hypotheses, we obtain the same conclusions, but for a method
with superior efficiency index.

We assume that the initial approximation x0 verifies the Fourier condition (see [1]):

(δ) f ′′(x0)f (x0) > 0, x0 ∈ [a, b].

We obtain the following results.

Theorem 3. If f and x0 verify (α), (β ′), (δ) and, moreover,

i1. f ′(x) > 0, ∀x ∈ [a, b];
ii1. f ′′(x) > 0, ∀x ∈ [a, b],

then the elements of {xn}n≥0 and {g(xn)}n≥0 generated by the (N–S) method remain in [a, b], converge to x∗ and obey

xn > g(xn) > xn+1 > x∗, n = 0, 1, . . . (10)

Proof. From (β) and i1 it follows that x∗
∈]a, b[ is a unique solution. Conditions (α), (γ ), i1 and ii1 imply that x0 > x∗. Let

xn ∈ [a, b] such that xn > x∗. From i1 we get that f (xn) > 0 and g(xn) = xn −
f (xn)
f ′(xn)

< xn. Conditions i1, ii1 and (8) imply
x∗ < g(xn).

Using the mean value formulas for divided differences and taking into account i1, ii1 and (6), it follows that x∗ < xn+1.

We notice that relation (3) can be written as

xn+1 = g(xn) −
f (g(xn))

[xn, g(xn); f ]
, n = 0, 1, . . . , (11)

whence, since f (g(xn)) > 0 by i1 it follows xn+1 < g(xn).
It is obvious that the elements of {xn}n≥0 and {g(xn)}n≥0 belong to ]x∗, x0] ⊂ [a, b]. It remains to show the convergence

to the solution. Indeed, if ℓ = lim xn then by (10) lim g(xn) = g(ℓ) = ℓ, whence f (ℓ) = 0 i.e., ℓ = x∗. �

Theorem 4. The statements of Theorem 3 hold true if assumptions i1, ii1 are replaced by

i2. f ′(x) < 0, ∀x ∈ [a, b];
ii2. f ′′(x) < 0, ∀x ∈ [a, b].

Proof. The result can be obtained as a consequence of Theorem 3, if instead of (1) we consider the equation h(x) = 0, with
h = −f . �

Theorem 5. If f and x0 verify (α), (β ′), (δ) and, moreover

i3. f ′(x) > 0, ∀x ∈ [a, b];
ii3. f ′′(x) < 0, ∀x ∈ [a, b],

then the elements of {xn}n≥0 and {g(xn)}n≥0 generated by the (N–S) method remain in [a, b], converge to x∗ and obey

xn < g(xn) < xn+1 < x∗, n = 0, 1, . . . (12)

Proof. Hypotheses (β) and i3 ensure that x∗
∈ [a, b] is a unique solution. Assumptions (α), (γ ), i3 and ii3 lead to f (x0) < 0

or x0 < x∗. Let xn < x∗ for some xn ∈ [a, b]. By i3 we get f (xn) < 0 and g(xn) = xn −
f (xn)
f ′(xn)

> xn. By (8), i3 and ii3 it follows
g(xn) < x∗. Relation (3) implies xn+1 > xn and by (6) we get xn+1 < x∗. By (11) we get xn+1 > g(xn). �

Theorem 6. The same conclusions hold if in Theorem 5 i3 and ii3 are replaced respectively by

i4. f ′(x) < 0, ∀x ∈ [a, b];
ii4. f ′′(x) > 0, ∀x ∈ [a, b].

Proof. This result can be obtained from Theorem 5 by taking −f instead of f . �

Remark 1. The hypotheses of Theorems 3–6 ensure the fact that the elements of {xn}n≥0 and {g(xn)}n≥0 remain in [a, b].
Since the hypotheses of Theorem 2 are also verified, it follows that the iterations converge with q-order 3.
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Table 1
Numerical results for solving x2 − x sin x + ex+1

− 3 = 0, x ∈ [0, 1].

n xn g(xn) f (xn)

0 1.000000000000000e+0 4.320688774181047e−1 4.5e+00
1 2.300692760447372e−1 1.070409169425782e−1 4.2e−01
2 9.915547164564892e−2 9.860719010016147e−2 1.6e−03
3 9.860703883247032e−2 9.860703879072202e−2 1.3e−10
4 9.860703879072187e−2 9.860703879072202e−2 −4.4e−16

Table 2
Numerical results for solving x2 + cos x − xex = 0, x ∈ [0, 1].

n xn g(xn) f (xn)

0 1.000000000000000e+0 7.246446975670946e−1 −1.2e+00
1 6.607648584752154e−1 6.395167806664399e−1 −5.3e−02
2 6.391602133769920e−1 6.391540963613613e−1 −1.5e−05
3 6.391540963320078e−1 6.391540963320076e−1 −6.7e−16

Remark 2. From relation

f (xn+1) = f (xn) + [xn, g(xn); f ](xn+1 − xn) + [xn+1, xn, g(xn); f ](xn+1 − xn)(xn+1 − g(xn)),

taking into account (3) we get

x∗
− xn+1 = −

[xn+1, xn, g(xn); f ]
[x∗, xn+1; f ]

(xn+1 − xn)(xn+1 − g(xn))

whence it follows that in the assumptions of Theorems 3–6 we havex∗
− xn+1

 = O(|xn+1 − xn|2).

This formula can be useful for a posteriori control of the error.

4. Numerical examples

We consider four numerical examples, and we compute the iterations using double precision in Matlab.

Example 1. Consider the equation

f (x) = x2 − x sin x + ex+1
− 3 = 0, x ∈ [0, 1].

One can verify that f (0) = e− 3 < 0, f (1) = 1+ e2 − sin 1− 3 = e2 − sin 1− 2 > 0, f ′(x) = 2x− sin x− x cos x+ ex+1 >
2x+ ex+1

−2 > 0, for all x ∈ [0, 1]. Also, f ′′(x) = 2−2 cos x+ x sin x+ ex+1
= 4 sin2 x

2 + x sin x+ ex+1 > 0 for all x ∈ [0, 1].
Therefore the assumptions of Theorem 3 apply for x0 = 1.

We have g(x) = x −
x2−x sin x+ex+1

−3
2x−sin x−x cos x+ex+1 =

x2−x2 cos x+(x−1)ex+1
+3

2x−sin x−x cos x+ex+1 .
The obtained numerical results are shown in Table 1. The values of f (xn) are rounded to two decimals, since we are

interested only in the magnitude of these values.
It can be seen that the (N–S) method generates decreasing iterates for {xn}n≥0.

Example 2. Consider the following equation

f (x) = x2 + cos x − xex = 0, x ∈ [0, 1].

We have: f (0) = 1 > 0, f (1) = −e + 1 + cos 1 < 0, f ′(x) = 2x − sin x − ex − xex, f ′′(x) = 2 − cos x − 2ex − xex <
0, f ′′′(x) = sin x − (3 + x)ex, which imply that f ′(x) < 0, f ′′(x) < 0, x ∈ [0, 1].

If x0 = 1, the assumptions of Theorem 4 are verified.
We obtain the results presented in Table 2. As expected, the (N–S) iterates are decreasing.

Example 3. Consider

f (x) = sin x + 2x − 2, x ∈


0,

π

2


.

We have f (0) = −2 < 0, f


π
2


= π − 1 > 0, f ′(x) = cos x + 2 > 0, x ∈


0, π

2


, while f ′′(x) = − sin x < 0, x ∈


0, π

2


.

Taking x0 = 0, hypothesis of Theorem 5 apply.
The obtained results are presented in Table 3. The (N–S) iterates are increasing.
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Table 3
Numerical results for solving sin x + 2x − 2 = 0, x ∈


0, π

2


.

n xn g(xn) f (xn)

0 0.000000000000000e+0 6.666666666666666e−1 −2.0e+00
1 6.831640060745233e−1 6.840365700507293e−1 −2.4e−03
2 6.840366566692261e−1 6.840366566778295e−1 −2.4e−11
3 6.840366566778295e−1 6.840366566778295e−1 0.0e+00

Table 4
Numerical results for solving 3e−x

− x + 1 = 0, x ∈ [1, 2].

n xn g(xn) f (xn)

0 1.000000000000000e+0 1.524633113581329e+0 1.1e+00
1 1.593748766088184e+0 1.603527625548530e+0 1.6e−02
2 1.603545706091483e+0 1.603545739535836e+0 5.4e−08
3 1.603545739535836e+0 1.603545739535836e+0 −2.2e−16

Example 4. Consider

f (x) = 3e−x
− x + 1, x ∈ [1, 2].

We have f (1) =
3
e > 0, f (2) =

3
e2

− 1 < 0, f ′(x) = −3e−x
− 1 < 0, x ∈ [1, 2], while f ′′(x) = 3e−x > 0, x ∈ [1, 2].

Taking x0 = 1, hypothesis of Theorem 6 apply.
The obtained results are presented in Table 4. The (N–S) iterates are increasing.

It is interesting to note that we get f (x3) = 0 in Example 3, which suggests that x3 = x∗. However, if instead of the
standard double precision we use higher precision (e.g., variable precision arithmetic) for representing x3 from Table 3, the
computation of f (x3) no longer yields 0 (of course, we obtain values with the magnitude comparable to the machine ep-
silon from double precision, ϵ ≈ 2.22e−16). This means that x3 from Table 3 is just a very good approximation (in double
precision arithmetic) to the solution.

Acknowledgment

We are grateful to an anonymous referee for his constructive remarks in improving the presentation of our paper.

References

[1] M.A. Ostrowski, Solution of Equations in Euclidian and Banach Spaces, Academic Press, New York and London, 1973.
[2] M. Frontini, Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations, Calcolo 40 (2003) 109–119.
[3] I.K. Argyros, A new convergence theorem for the Steffensen method in Banach space and applications, Rev. Anal. Numér. Théor. Approx. 29 (2) (2000)

119–127.
[4] S. Amat, J. Blanda, S. Busquier, A Steffensen type method with modified functions, Riv. Mat. Univ. Parma 7 (2007) 125–133.
[5] E. Cătinaş, On some Steffensen-type iterative methods for a class of nonlinear equations, Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995) 37–43.
[6] A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence, Appl. Math. Comput. 217 (2011) 7653–7659.
[7] Hongmin Ren, QingbiaoWu,Weihong Bi, A class of two-step Steffensen typemethodswith fourth-order convergence, Appl.Math. Comput. 209 (2009)

206–210.
[8] P. Jain, Steffensen type method for solving non-linear equations, Appl. Math. Comput. 194 (2007) 527–533.
[9] I. Păvăloiu, Approximation of the root of equations by Aitken–Steffensen-type monotonic sequences, Calcolo 32 (1995) 69–82.

[10] I. Păvăloiu, E. Cătinas, On a Steffensen typemethod, in: Proceedings of SYNASC 2007, 9th International Symposiumon Symbolic andNumeric Algoritms
for Scientific Computing, Timişoara, Romania, September 26–29, IEEE Computer Society, 2007, pp. 369–375.

[11] J.R. Sharma, A composite third order Newton–Steffensen method for solving nonlinear equations, Appl. Math. Comput. 169 (2005) 242–246.
[12] Quan Zheng, Peng Zhao, Li Zhang, Wenchao Ma, Variants of Steffensen-secant method and applications, Appl. Math. Comput. 216 (12) (2010)

3486–3496.
[13] J.F. Traub, Iterative Method for Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
[14] Shaohua Yu, Xiubin Xu, Jianqiu Li, Younghui Ling, Convergence behavior for Newton–Steffensen’s method under Lipschitz condition of second

derivative, Taiwanese J. Math. 15 (6) (2011) 2577–2600.


	On a Newton--Steffensen type method
	Introduction
	Local convergence of the method
	Monotone convergence of the method
	Numerical examples
	Acknowledgment
	References


