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0. Introduction

Benach's contraction principle in metrie spaces was ge-
neralized in [9] to sets endowed with two metrics as follows :
Jet X be a nonempty set, & and &' two metrics om X
and T:X —» X & mapping. Suppose that

(0.2) & (x,y) < d(x,y) for x,y<€X;
(0.2) [x,8*] is = complets metrie space ;
- (0.3)  T[xa]—[x,d*] is continmous ;
(0.4 &i{Tx,Ty) < a 8(x,y) (x,yeX),

for & certain sc[0,2[.
Ten T has a umique fixed point ¥ and ‘r"x.i'-—x’unn'-bao,
for eny T cil{bere T" stands for the n-th iterate of 7).

s theorem remains true (see[14], Remark 2.5.1} if condi-
tiom (0.1) is replaced by
0.5 S <cexy (xyen ,
foor 8 certmin kEN e C > 0.

Iet us remsrk that we may set instesd of (0.1) :

(0.6 T :[x,e]—[x,8'] is uniformly continuous
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- (for a certain kéN) such that Haia®s theorem remains trus.

The purpose of this paper is to extend this reeult to syn-
topogenous speces. In particular we shall give = vaciant of Gheer -
ghin's theorem of Maia type (see[8]) in quasi-uniform spaces and
we shall deduce from it Perov's theorem referring to contractions
in generalized metrie speces. Also, we shall cbserve that, .:'m a
number of metrical fixed point theorems, generalized contractions
as =
(0.7 arx,?y) < al a(x,™x) + d(3,7y) ] (x,y€X) ,
where ac[o0,1/2[;

(0.8) d(n,_'r,y} < a 2(x,Tx)} + b &(y,Ty) + e d(x,y) (x,y €X),
where &a,b,e are nomegative amd@ a + b+ & <1 3
(0.9} 2(Tx,Ty) < a nax{d(x,Tx),a(y,Ty)) (x,y €X} ,

where mc[o0,i[;

(0.10)  a(Tx,Ty) < a mex(d(x,y),d(x,™x),d(y,Ty) ,
aix,?y),d(y,Tx)} (x,y€X) ,

where = €[0,1[ (see[12] for a collection of various definivions
of coutractive mappings), are ususl contractions with respect o
certain uniform or quesi-uniform structures on X, assoclated to

7. Consequently, the theorems of Maia type on such generaiized con-
tractions in metric spaces, can be deduced from the theorem of Maia
Yype comasm:.ng vsual contractions in uniform or quasi-uniform spa-

ceB. (i
Referring to syntopogenous spaces we shall follow, both in

terminology end notation, the monogrephk [5] , [6] . In adaition we
shall use the terms : Cauchy sequence and sequentially complete syn-
topogenous space. Let [x, 3’] be a syntopogenous spece. We shall say
that the sequence (x,) of elements of X is & Caneny sequence if
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the corresponding sequential filter base -ﬂaa{nn: n=0,1,...]' i
where B.z{zi: i= n} y is Cauchy filter M. The syntopogenous
space X is sequentially complete if eny Cauchy eequence is con-
vergent.

We shall especially use the ordering structures. Let us re-
call (see [5], (12.35),(22.10) snd (12.26)) that for every synto-
pogenous structure < on X, there exists an ordering structure 0]
compatible with & , i.e. & ~ 3’@ and also

(0.11) %N r%¢y$={<?,£;?e@,s>0}.

This is the reamson for which in the sequel we make ro distinction
between the eyntopogencus structures : 50 5 yq) and ?ycp'y whene-
ver O is en ordering structire compatible with o .

Fow, let ¢' be sn ordering strocture on X ecompatible with 50
and ol = QJ — [0,2e[ , ﬂ: q,) "'*(b two mappings. the mepping
T:rX—X iscalled ol- B8~ (IJ - continuoue (see[11]) if for
uver_r?e@an& £ >0 we have :

(0.12) 2 < B implies T L(A) 1wy .

HE <ﬁ(?),8,k(?)
Next let us extend the meppings ol and ,3 to the saturated ordering
structure q)vin the following way : Tor eech Te(b"’\d) we fix a
system fl""’f”neq) soch that ? =[‘f1,...,’/)n] end we put :

(0.13) OL(T) = maw d-(rl)goong oL ( ?n)) 3

.y AP =L ACpydsees LPR ]

RBMARE 0.1, Tf T is o{—£—- O - continuous, then it is
b ;A=

glse ot~ - e eontinuous.
Procf. Let ?eqyr\ ® end let ?1-"‘-?’:;&@ be those
which were chosen in (0.1%) and (0.14). Assume “<,e B. Then, as

in the proot uf proposition (12.20) from [5] , we £ind the sets Ay
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and €3, (i=1,...,m ;k=1,...,n) such that A*Q& »
XI\B= £)1 Gy (1 = 1yenpa) ond
Ay <‘fu5 i\% (32 lyeeep 5 k= 1,e..,m) .
Hence, by (0.12}
Ty <,4(7,L), £/ ) ey
end gince. 4(§y) C;zqv) (k= 1,...,2), we may infer that
7 3(ay) <, /() g S8 X A
whence T™1(A;) <, /() :’%x\cﬂg ;
s, T(Ry) < i), /) Ql 7z 0;,) = THB)
and in consequence
() = 1U:1 gy < ,Bﬂp,ww’-l“” 3
whieh completes the proof. ,
FEWARK 0.2. My oL=A - O - continuous mepping is (5,¢) -

eontinuous.
Proof. If T is ct-/s-q) - continuous, then by remark 0.1,

L g . ,
it is (-4 -Cb - continuous toe. Now the conclusion follows by

(0.11).
to formulate the con -
let X X,YEX md?ae@. In order

traction principle in syntopogenous spsces, we have assigned (see
[13]) to eech L= - $ - continuous mepping T the following fe—

milies of series : .
(0.15) { i L(PI LB (PNeerctlgRP HEACRE XN
b r‘ep"*l(f) AR 5 TRY O

.
.

-
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(0.16) {;d(?)o{(ﬁ(fﬂ)...i(ﬁn(gﬂ))]rn(;:) -]
,rneleml(?); n=0,1,... }

and the following family of sequences :

0.1n {¢ LPILAPN.ee LE PNt - 2,00 )
rnefenﬂ(?) (mo,l,...)}.

nelN °

We say that a femily of sequences of real numbers
{ (l:%.)uE N IEI} converges uniformly to tne family of real num-
bers {a® : 1€T ] if for each £>0 there exists a N(E) (indepen-
dent of i) such thet |al - all< ¢ for all nem(E) amicr.
In this case we say that the family of sequences is mniformly con-
vergent. If in sddition a® = 0 (ieI), we say that the family of
sequences converges wniformly to zero. & family of series is ssid
to be uniformly convergent if the family of the sequences of par -

tial sums is uniformly eonvergent.

1. & theorem of Maia type in syntopogenous spaces

In the paper [11] we have proved a theorem of Bansch type
for eonuwractive mappings in a sequentially complete syntopogenous
space. In the following thecrem the contraction condition will be
formulate with respect to a cerzain syntopogenous structure & 3
while the sequentially completitude will be imposed to an other syn-
topogenous atiructure & , €O&rser in a certain sense them & .

LEMMA 1.1, let [X,Ef]be a syntopogenous space, (I) an orde-

ring structure compatible with & erd T : X —X a X-4- @ -

eontinuous mapping. If for some xX_€X the femily of series (0.15)

is uniformly convergent for each ¢ < @ , then ('I'}"’xﬁ,)nem is a
v

y - Cauchy sequence.

Proof. Consider the filter base X = { Ry n=0,1,... } » where




54

R, ={T1xg. : izn} (n=0,1,...). We must show that for any ?eﬁr
end £ >0 there exists kel suoch that ‘<;¢;£B implies
RpCx\2 or R, CB.

Kssume, = contrario, that there exist jﬂ&d)frlnﬂ £ >0 such
that for each kelN there are &, snd B, satisfying

::1) A Ay <7;,),E By
(1.2) BB £8# XNBYN Ry .

By (1.1), there exists g G? such that
(1.3) 8y (Ay) -<E BN\ g (XINBy) «

On the other hand, (1.2) imptlies that for each fixed k there exist

p,2€N ;3 p,g > k such that '.l'px €A, and ‘_rqz € X \ By. Then, by.

(1.3) we have

(1.4) Et(qua) = Et(fpxo) Z E .

Now, since pE ¢, we have 50 =[ ?’1, ?2‘""’ ?Jnj y Where Epi e@
(i=1,...,n) anu in eonsequence (see [51 , (12.1)) :

Ek = min (hl'...’%) 9

hi.=ﬂﬂx (hil’.."hhi) (l‘siém)
and bije?ije{ifl,...,?n} (1€i<m;1i<isny) .

Suppose  gy(1Px,) = My, (1Px,), where r = (k) €{1,...,a}.

where

Then, (1l.4) yields to
b (t%,) - B (TFx) > € ,

whence, if hr('rqx ) = h (T%,), where 1Sssn,, we obtain
W (rq x,) - b (Fx) =

where hra belongs to P ‘Fi .
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Thus, fur every k € N thers o:iat P;QEM, p,q >k A‘and
& function heu ?i' mhthat H
(1.5) p (%) - b (Px) > €

Let us fix for & moment ¥ € {Py,e0, P, Tey amd keW.
Denote ©=|f (P*%) - £ (®*x)| end seeume 6 ¢ 0. Then, in

the cese when f (7% ) - ¢ (P™)x ) >0, we have

(1.6) Tt*]!. <Y?9 X~ '.!'k""z.l°
and in the opposite ease :
1.7 !’“ax’ <Y’9 I~ -rl""::.
Suppose that (1.6) holds. Then, since 7T is nf.‘-,G -@J - continuous,
we deduce
), T+ 1 :
B ¢ i ey, 0 e gt R e B

whence, since T, € THT'x)) et ¥ Ly ™% )cxnrix,,

- we get ™x < X\'.rk"']te

® Ay, 0(y)

Hence, there exists fkefg(‘f’) such that

£, ) - 20T > 8/ L (y)
or, equivalently
o<t (P - £ (Mlx) < Ly T - B
1f relation (1.7) holds, then similerly to the above, we obtein
o<t (P - 2 (P2 < LUy ) (E(TTY - (T ixg))
vherefore, for every reY and kel there exists (even if @ = 0)
Ty EP(Y] such that

| £ (%) - el < Ly 2,7 y)- rk('r‘: 3l
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Hence, for every rc-yf and q,r € [l

D LY LAY N eee LB (YD) 2ym )52 | 2
i=g-1 a q
e 5 - 2erxy |

for certain Ty eﬁi*l(\r) i =qg-2,...y gtr-2).
Whence, by the uniformly convergence of the family of series (0.&5),

we infer that for each £>0 there erxists qE(Y)El such that
(1.8) | 22272y - 2r% | < €

for every f€y , PN ad g2>q.(y).
If we put q, = max (q, ($3)5000y q; (rn)) s then, elearly, (1.8)
n
holds for fe €N and = .
every ii:__}l?i » T Q=q,

Pinslly, (1.%5) where X is taken equal with L3 end (1.8) yield

® contrediction. This compietes the proof.
LA 1.2. Let.ymﬂy'bQWosyntopogmous stroctures
on ¥ end T : X —-X be a mapping such that 'rk be(y.ﬁd) -

continuous for a certain keMN. If the iterate sequence (% }nem‘
is &~ Ccauehy, t.tmnitlac?—cmnlxyaawel_l.

Proof. Assume that (T"I,)nem jse &- Cauchy sequence and
aenote R={r: new}, where R ={rlx, :i>n] (nem. 1et
<'e &F'. men, since ™ is (¥,7') - continuous, there exists
< € & such that
(1.9) £<'s implies ()1} (T NB) .

On the other hand, the sequence (ﬁc)nc-lr being L Cauchy, for
the order < ¢ & there exists nel such that if ¢ <D then
B, CX\C or R, CD. Hence, by (1.9}
. . ==X 5=t
4<'B implies R ,CXIN(T) (4) er R, C(T)T(B) ,

whence
{1.10) £<'B implies R, CX\A or Ry, CB.

5T

Therefore, for each <'ey' there exists n' =n+kec N satis -
fyirg (1.10). Thie shows that & is &'~ canchy, which completes
the proof.

LEak 1.5. Let o” and & be two syntopogenous structures
on_X, Q an ordering structure compatidle with ¥ and 7 : 3y — x

a ma . S se that

(i) y'aatiat‘i’es the sepsration axioe ('.r.)

(ii) there exists kem mhthatrkbe(y ?)@nunmus
(11i) 2 is -8 - ® - continuous ;

-(iv) for every ?e @ ad x,y€X the family of sequences(0.17)

eonverges wniformly to zers.

Then 7 has at most one fixed point.

Proof. Let x* amd 3y* be fixed points of T. Assume ©* ¥ y%,

Then, oy (i), there exists <'c f' such that P<'yY< y* or

¥ <'x\ 5. Suppose that < T\ y*. Then, accnrdingtn(u),
exists y e q> and® £ > 0 aueh that

(™) Lse B NOP
 whence, since ¥ € (T)™1x™) mt (P Hx\yMC 2ny”
we obtain
(1.21) x ey

Y €
From (1.11), by 2 reasoming like that which has permeted to us to

pass from (1.4) to (1.5), we deduce that there exists am ?e@ such
that

e . ot ol
¥
whence, by (iii) and since ¥, y* are fixed points of T, we have

Feri® < ApLEA) T\ )= 1\ F T

Hence
= <,a () &ip 7.
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Theretvre, there exists fg € /5(?} such that
£
a‘(?)
Repeating this reasoming, we cbtain
£2(y°) - £ cx’)
A oc(y)ntt,s(;m

for a certain flefztfﬂ} and generally

£
e d(y)uc(,a(fn...auﬁ‘tyn

2,5 - L") =

for a certain £ E/Bn"']‘(f) .
Mus, for every REN there exists £ e/g‘“l(?a) such that
oi(;ﬂ)oé(/e(??))...oc(/s'tf))lrn(y'i- r®l= €,
which contrsdicts the uniformly convergence to zero of the family

of sequences (0.17). Therefore, * = y* as desired.
RFMARK 1.4. Lerma 1.3 remains true even if in (ii) we only

require ihat 'I:k be (3’?,5" ) - eontinuous (see [51, (4.T)).
Fow we cen state end prove the main result of this paper.

THECREM 1.5. let ¥ and ff' be two syntopogenous structures

on X . (I) an cordering siructure compatible with 50 snd T : X —X

a mepping. Suppose that the following conditions held :

(1) P! satisfiea the separation axiom (Ty) ;

{i1) ' is sequentially complete ; :
(iii) there exists KEW such that ™ ve (¥ ,y')-contmmm' o

(iv) T ia (39 ,ff } - continuous ;

(v) T is *‘F’d’ - continuous.

Then a) If for a certain X €X the family of series (0.15) is

uniformly convergent for each @ e @ , then the sequence (’1""2")nmI
L

8 %' - eonvergent to a fixed point of T.

9

I in eddition, for every y€ D md x.7exX, the femily
of sequences (0.17) converges nm.tum]q to zero, then T has a
unique fixed point.

®) If for every pe ® end x,yex the femily of series
(0.16) is wniformly cowergant, then for each x_ €X ttm sequence
(r"xm}nel Pl eonvarge_q to the unique fixed point of T.

- Proaf.s) By lemma 1.1 the sequence (T"x,), ., is -Cauchy
and so, eccording to lemma 1.2, it is &'~ Cauchy as well. Hence
since &' is sequentially complete, Tx —~ (') a8 n — oo .
Wherce, by (iv), we obtain (see [5] , (15.16)) Tix~ T X"(")es
B — co . Now using (i) we may infer ( [5], (15.1%5)) tnat TX"= x*.

Hext, under the additional assumption that the family of se-
quences (0.17) cenverges uniformly to zero for every faed) and
x,y€X, the umicity of the fixed point of T follows by lemma 1.3%.

rinally, b) is an immediate consequence of a). This completes
the proof of thecrem l.5.

Iet us =esign to some mapping T : X — X @& relation on the
set of all syntopogenous structures cn X, denoted -<1. and defi -
ned by

&' <, & iff there exists keN such that T be (S ,7')-
continuous. (& end &' being two syntopogenous structures on X).
RBUARK 1.6, The relation —, is reflexive and transitive.

Also, i:r & is finer than &' in the nsusl sense, i.e.
F'=< & , then .9"-<.r3’ with respect to each mapping T. Indeed,
it ¥'~< &, then obviously, the identity mepping T° on X is
(& &' )—continuous and consequently .SP'-<T 5

Therefore, theorem 1.5 is all the more true if econdition
(1ii) is replaced by &' < & .
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j=l=]

REMARK 1.7. The contrsction theorem in syntopogenous spe-

ces, given in [11] , is a comsequence of theorem 1.5.

Indeed, if we take & '= & , then congition (iii) is tri -
vially satisfied, conditiom (iv) is a eonsequence of (v) and ®o ,
theorem 1.5 reduces to the contraction theorem in the space [X,&].

2. & theorem of Maia type in quasi-oniform spaces

Since the category of quasi-uniform speces is isomorphie to
a snbcutagﬁry of that of syntopogenous spates, in this section a
thecrem of Maia type in guasi-wiiform spaces willi be deduced fro=
thevrem 1.5. In uniform speces it ie a varient of Cheorgin's theo-
rem of Maia type (see[8l).

Nert, since each quasi-miformity can be derived from a fa -
mily of quasi-metrics (see[5], (13.45)), by & quasi-uniform space
we shall understsnd hpair[x,Z] of & nonempty set X and a non-
empty femily 5 of quasi-metrics om X (here a quesi-metric on X
is & mapping d: X x X —[0,00[ satisfying: d(x,x) = 0 and
a(x,s) < 4&(x,y) + dly,z) for all x,¥,2€X). Recall that to each
femily J of quasi-metrics on X one attashes a syntopogenous
structure on X, namely J.c\a/i 5& , where 5& ={<d.,£:&>o}d

A<, o B stands for A(x,y)>¢€ for 611 ¥€ A ed y eX\B.
t
Also we may cousider the biperfect syntopogenous structure

. b p
yz '-'( a.YEyd) =(iyz lcfd' ) (aee[S], (1%.7))-
¥ow let [I.Z] be & quasi-uniform space, where Z-—.{di:iei}
and let T be @ mepping from X into X. Consider two meppings
ol ¢t T —+[0,00[ end p: I —T. In order to formulste a contrac-
tiem principle in quasi-umiform spaces, it is imposed to T(see[7])

to satisfy conditions as :
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1)
2) The series

(x,yeX, ieI) ;

2,2 S
(2.2) g-((i}e{(ﬁ(i))...d('e‘(i))m(dﬂm]_(n(x.,n.) A

dﬂm_]_u)(ﬁ.ﬁ.))
is comvergent for each i €I (for a fixed X €X) ;

%) The sequence

(2:3) (LU L(AED... L(NINa ,;4,1{1)(!,1))“,
A

converges to zere for every x,yeX and iel ;
4) Tne series

(2.4) aM:-c(i)adt (i))ees LLAR(A))A
g AW (A7) ,4"*1&){””

is convergent for every x,y €X md i€1.

We shall express these conditions in terms of sn ordering
otmctmd)zon Y. In order to do this, let ms first define for
each &€ X ,thaset?dofmmlrmctim f defined om X

-dﬁchcmberapresentedaa:

(2.5) t=inf (f5 :ic ),
where
(2.6) f5= mex (fﬁ: J= Liecoymy)

and rﬁ hae the forw:

(z.n rﬁ=‘1d'd(xij'.’ +bij »

with a;€{01}, bjER and X €X (1€7 5§ = L.uupmg).

1t is easy to see that ?dia an ordering femily en X (apply a ree-
soning similsr with that from the proof of (12.1) in [5] ) .
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Now let us set

(2.8 : = : .
) s { prael }
IRMHA 2.1, For all d€Y and £ >0 the following equality
(2.9) : £
<a,a fas €
holds.

Proof. First suppose that & <d
x€EA ¥ €X\B, Define

,EB' Then d(x,y)= £ for all

f(x) = int (d(a,x) : aci) (xex).
Since re?d, f(x) =0 for xcA =nd f(x)z £ for xcXI\B ,

* we may inter that & < B. Therefore, < C<

?d’e da,% ?a'."" ¥

nbwasauma A< EB.Thmtlma exists fE? such that
Parr d

f(y) - £(x) 2 € (x€EA, yEX\B)} .

Iet us fix for & moment x€A anf yeI\B mdtaka'?)oguehthat
€>17 . By (2.5) there exists i€J such that f3(x) S £(x) + 7.

Then
M -5@ 2 -Hx)- 9 = E-7 .

By (2.6) there exists J € {1,...,n;} with £35(y) = £3(3). In con -

sequence
;) - f@ S - [ = E-7 >0,

'hmc" mﬁ‘r‘g into momt (Z-'n, we ﬁ.nd that
3(1,3‘) = d(xij|,) - ﬂ(xij,z) ?} £ - 'z

for a certain ;€% Now if we taku?—-o we obtain d(x,y)> E£.

desired.
Thus, ‘<d,& B and econsequently <;‘d’EC <d,E , as desir
IFRMA 2.2+ I:f[ X,Z] is & quasi-uniform space, then
(2,10) 3’ = V y’
¢Z gey ¢4
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Proof. By lemma 2.1 we have y'fd= 3’& and since
2 51, (12.23)) : (2.10) holds evidently.
oy Vs %, (1, , equality
Before passing to a trenscription ef conditions (2.1)-(2.4)
in terms of syniopogencus structure 9’@2 s let us make the conven-
tinnthat_d end A also denote the mappings:

Py—Loeo[ , fo b= <) Gem,
respectively

by — Oy
1mmA 2.5. 1% The mapping 7 satisfies condition (2.1) if
and only if it is o~ B - (I)Z - continuous.

’ ?dil-’ ?cﬁ{i) (i1 .

2® me peries (2.2) is convergent (for some i€l) if and only
if the family of series (0.15) is mniformly cormvergent for ?= ?’di.

5% the sequence (2.3) converges to zero (for some L1 €I) if

- amd cnl;r‘if the family of sequences (0.17) converges uniformly to

ZETD fﬂ r - f ai .
4% The series (2.4) is convergent (for some i€T) if end only

EL-"EE@-LY of series (0.16) is uniformiy convergent for r:ydi.

Froof. 1% 1et T De oL-/S-CDZ- continwous, Let x and ¥y
be any elekents of X and i€T. Assume € = d;(Tx,Ty) > 0. Then
rx(di’e X \ Ty , vhence, since T is d-/B-CDZ - continuous
and by lemma 2.1, we get x<¢'p{i)’5/°‘(i) XNy . Hence

y(xy) > E/oi{i;). as desired.

Tars
P Conversely, assume now that T satisfies condition (2.1) .

_ i
and suppose that T -(A) { T
et m(r ,eB ( PUPa,)s €74 Pa)

hem there exists x €T 1(A) and y ¢ TH(B)  such that

€
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8 g3y (B < E/ (i), whence by (2.1) we get dy (x,7) < € .
On the other hand Tx€A and Ty¢B and since ‘=<aie";"
y
wast have d;(Tx,Ty) > £ , a contradiction.
2% Assume that for P={, the family of series (0.15) is
i

uiformly convergent. If in (0.15) we set ,fn= dﬁn_;]‘(_){x.,-)

i :

ir a

A
ottuwiu, then (0.15) reduces to (2.2).

Conversely, if the series (2.2) is convergent and we observe

ml{i)(xo'ko) = dpml(i)(hc’xo) and fn"’ ﬁl(i)(no") =

that |£,(x) - £,(3)| < mex (dﬁml(i)(x,y}, d;“‘*l(i)("x”

(£, epml(?&in’ then the uniformly convergence of the femily of
seriee (0.15) ie obvions.
The proof of parts 3° and 4% is similar,

THECREM 2.4. let J_ andzl be two families of qmsi-metrics-

on ¥ end T : X——X & mapping. Assume

(1) S’E. is sepersble ; ’

(ii) sz, ie seguentially complete ;

(iii) there existe X €N such that T- be (yz,y.) - conti-
naous ;

(iv) T is(y:,yzl)-eontiuuoua;

(v} T satisfies (2.1).

Then a) If for a certain x_€X the series (2.2) is convergent

for each 1 € IZ 4 thgn the sequence (Tnx")ne!g 5’21 - SONVEer =

gent to & fixed point of T. -

If in sddition, for every ie IZ and X, v€EX, the sequence

(2.3) eonverges to zero, then T hss a unique fixed point.

b) If for every iEIZ end x,yeX the series (2.41 iy

convergent, then for each x e€X the sequence (ﬁo)n €N

50 Z: - eonverges to the unigue fixed point of T.
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Proof. Apply lemma 2,3 and theorem 1.5 tah.ng into account
theorem (15.23) from [5] end remark 1.4.

REMARK 2.5. All the considerations sbout quasi-uniform
structures remsain vaiabl_o_ for uniform structures, with the mention
that in the case of & uniform space [ X, ] (Y being a fauily of
pseudo-metrics) we take P3 the set of all real functions defined
on X Ihichemberemsentdufszinf(ri SR ET Y i

Vticsup(fij:je_li) where tljagijd(xﬁj.)a-bﬁ with

4z <{-1,01),0;¢r ema Xy EX .

3. Perov's fixed point theorem as a eonsequence of
the theorem of Maia type in umniform spaces

In this section we show that Perov's fixed point theorem
uay be deduced from theorem 2.4.

COROLEARY 3.1 (A.I.Perov's theorem). Let[X,d] be » complete
generalized metric space with d ;: X x X — B°_ and let T:X —=X

be a mapping such that

(%.1) a(¥x,Ty) < A d(x,y) (x,y€X) , .

' ghere rew (R,) and

(3.2) A" —0 88 n—voo.

Then T has a unique fixed point Y and T”x.—-!‘un-ga

A

for each Xy EXe

Proof, Denote by d; (i=1,...,r) the pseudo-metrics for which
i
a(x,3) = (4(x,7),--,&.(x,y)) and consider L ={dg: i=1,...,7] .
Also, if Ln=[ni.]] (n€N), we define the pseudo-metrics d; =

2 %;l {jdj (1=1y40.,73 n=0,1,...} and '! consider Z =

={»ain 2 (4,m) € Iy e f1.ae)x n}. It is easy to see that
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conditions (i),(ii),(iii) (with k = 0) and (iv) of theorem 2.4 are
fulfilled. Also T satisfies condition (2.1), where

oz Iy —> [0yl , (i) =1 ( (i,m) € Iy ) &nd

f: Iy ——IE ~ /e(i,n) = (i,m+1) ((i,m) € Iy Y e :

On the other hand, the assumption of part b) of theorem 2.4 is

also fulfilled. Indeed, by (3.2) we have )  A™PHL x@ley gy=1

n=o

= ;
whence ) Ammld(x,y) = AMI(I-A)'ld(x,y). Hence, for all x,yeX
n=o

o0 r e
- : TN o
@ (i,m) € IZ , the series g;%;_;aij Hj(x,y)-xg di'mml{x,y)
which coincides with series (2.4), is convergent. Therefore,all the
sssumptions ef theorem 2.4 being fulfilled, the eonclusion of co -

rollary 3.1 follows by theorem 2.4.

4. Theorems of Mais type for generalized contractions

in metric spaces

In this section we show in what way theorems of Maia iype
concerming generallzed contractions in metrie spaces, cen be dedu-
ced from theorem 2.4,

Let us first refer to generalized contractions (0.8). Let
[I,&] be @& complete metric space and T : ¥ —= X & mapping satis-
fying (0.8). In addition.let us assume that a + bec >0.

We have J

a(rx,7°x) < 8 &(x,Tx} + b &(x,T%x) + ¢ d4(x,Tx) ,

whence

(4.1) a(rx,™x) < r &(x,Tx) (xex),

where = (a+e)/(1-b) and e<>r <1 .

For each nel we define a quasi-metrie on X, namely

n . n
(8.2) & (x,y)= % = [ a(x,mx) + b &(y,2y)] + ealx,y) ,
for x ¥y
=0, for x=y.
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By (0.8} and (4.1) we see that
4.3 2,(Tx,Ty) < &, (x,7) (x,y€X, neN).

4
Fow let us set 2 ={d}; Z={dn: nen}; ot K —[o,00[ ,
ol(n) =1 (neN) and At B —F, Aln) =04l (nenW).
Then it is easy to see that assumptions (i)-(iii) (with k=0) end

(v) of theorem 2.4 are fulfilled. Moreover, the hypothesis of part
b) of theorem 2.4 is also fulfilled. Indeed, for an arbitrary %E[ »

series (2.4 is 2_ & . ..(x,y), which, by (4.2) and by 0ge<1
n=o

and e <P <1, is obviously convergent.

Only sssumption (iv) of theorem 2.4 is nmot fulfilled. But
if we impose to T to satisfy a certsin condition of type (iv} ,
then the following result of Maia type (sece [14] , Remark 2.%.2 and
[2] ) cen be deduced from theorem 2.4:

COROLIARY 4.1. Let d and d* be two metrics on X and

T - X —~X & mopping. Suppose that

(1) [x,a'] is & complete metric space ;

(ii) there exisis ke such thet T%: [x,8] — [x,d*]

be uniformly continuous;

¢iti) 7 :[x,8'] —[x,d8*] is continuous ;
(iv) @& (Tx,Ty) < = d(x,Tx) + b a(y,Ty) + ¢ d(x,y)
for al) x,vE€X, where a >0, b>0, c>0 and a+b+e<1.

Then T has a unique fixed point = and ‘I'”’xc—d—'.— =

88 n — oo , for each x; € X.

Proofe If a + be > 0 then epply theorem 2.4 fo:-):'={a-}

‘a4 ) ={a,: nem}.For a+bc =0 the proof is directly.

let us remark that if ¢ =0 and a=b#0, i.e. T satis-
fies condition (0.7), we cen take instead on a set of only two
quasi-metries (even pseudo-metrics), namely &, = d end di=(1/a)d1'
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In this case we must set o((d) = a, o(d;) = a/(1-a), Al) = di
end A(d;) = &;.

Next les us assume that T satisfies condition (0.10) (=ee
[3] ). We define the following psendo-metrics on X :

(44) &(x,3) = max (&(Tx,7n),a(rly,1y) a(2dx, 13y
1,5 = 0yeeeyn) , for xy¥y
= 0, for x=y
(x,y€X, nem).
In particular, for n = 0 one has 4, = d. since, by (0.10)

ATx, ) < 8 ay(x,y), arly, ) <8 a x,y)
a (rix,ij) < & 4, (x,y)
for a11 x,yeX & i,j €{1,...,n}, it follows that
(4.5) 4 (Tx,Ty) < a d ,(x,y) (x,y€X; newW)
&end elso ‘
(4.6) &,(x,y) = mex (a(x,Tx), a(y,Tly), ax,rly) ,
d’(y,TiI) 2 i = O,.-.,n)

(x,y6X ; neN). :
If, for instemce, 4 (x,y) = d(x,'l‘ix) (wvith I £ i< n), we have

4,(%,7) < 4(x,Tx)+a(Tx,Tx) < A(x, ™) + & & (x,7).
Hence ,(x,7) < 5 &(x,70) < o &,(x,y) -
Generally, we can see that
(4.7 &, (x,7) < g5 44 (x,y) (r,y€X, nem).

Now we are ready to deduce from theorem 2.4 the following.
COROLLARY 4.2. let 4 =and &' be two metrics on X end

T :X—X & mapping., Assume that

(i) [x,d'] is a complete metrie space ;3 7
(ii) ™[ x,a] —[%,d'] ie uniformly eontinuous for a
certain keN; £
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11y 2 :[xa']—[x4'] is continuons ;

(iv) a(rx a mar (d(x d(x,™x),d

a(x,Ty) ,4(y,Tx)) (x.yex),

where IEEOIIE.

Then T heas a unique fixed point I’I.ld!'io-g-'-x' .

R —= co , for each X, €X.

Proof. et ) '={a'}; L ={e: nca}; of: B — [0,00[
o(n) = & (REN) and A H =W, A(n) =nsl (nem). Then, eondi -
tHoms (i) - (v) of theorem 2.4 are fuifilled. Also, by (4.6), the
hypothesis of part b) of this theorem is fulfilled too, Therefore,
®e may apply theorew 2.4.

Let us remark that if T satisfies condition (0.9), then in
the proaf of the sbove corellary, we can tske instead of T a st
Conslsting of only two pseudo-metries, namely d, = ¢ and 4 de-
fined by ;

4(57) = mex (Ax,0), 2y,%y)) , T ray

2 0 for x=y.
In this case we must set o(d) = (&) = =, Ald) = &) and

p(di) = .
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