Proceed of the XX-th NCGT, Timisoara October 5-7, 1989

### TOPOLOGICAL TRANSVERSALITY AND APPLICATIONS

by.

#### Radu PRECUP

ABSTRACT. A generalized version of the topological transversality theorem due to A. Granas is proved by using Urysohn's lemma in Császár's variant. Some applications are suggested.

## § 1. PRELIMINARIES

Let X be a set and  $\{<_n: n \in \mathbb{N}\}$  a sequence of relations  $<_n \subseteq_2^X \times_2^X$  such that the following conditions hold for every  $n \in \mathbb{N}$ :

- $\emptyset <_{n} \emptyset, X <_{n} X;$
- (2)  $M \leq_n N \text{ implies } M \subseteq N;$
- (3)  $M' \subset M <_n N \subset N' \text{ implies } M' <_n N';$
- (4)  $M_i <_n N_i$ , i = 1, 2 implies  $M_1 \cup M_2 <_n N_1 \cup N_2$  and  $M_1 \cap M_2 <_n N_1 \cap N_2$ ;
- (5) if  $M <_n N$ , there is P with  $M <_{n+1} P <_{n+1} N$ .

DEFINITION 1 ([2]). A function  $f: X \to I$ , I = [0, 1], is said to be associated with the sequence  $\{<_n: n \in \mathbb{N}\}$  if

(6) P, QCI,  $d(P,Q) > 1/2^n$  implies  $f^{-1}(P) <_{n+2} f^{-1}(I \setminus Q)$ , for every  $n \in \mathbb{N}$ , where d(x, y) = |x-y|.

IEMMA 1 ([2]). Let  $\{ \le_n : n \in \mathbb{N} \}$  be a sequence of relations on 2 satisfying conditions (1)-(5). If  $\mathbb{M} \le_0 \mathbb{N}$ , then there AMS Subject Classification: 54 H 25, 54 A 15, 47 H 10.

exists a function f associated with  $\{<_n : n \in \mathbb{N}\}$  such that f(x) = 0 for  $x \in \mathbb{N}$  and f(x) = 1 for  $x \in \mathbb{N} \setminus \mathbb{N}$ .

§ 2. THE TOPOLOGICAL TRANSVERSALITY THEOREM

Let X be a set endowed with a sequence  $\{<_n : n \in \mathbb{N}\}$  of relations on  $2^X$  satisfying conditions (1)-(5), let YCX and  $\emptyset \neq ACY$ . We consider a class of mappings

 $A_{\mathbb{A}}(Y;X)\subset \{T:Y \longrightarrow X:Fix(T)\cap A = \emptyset\},$ 

where  $Fix(T) = \{x \in Y : T(x) = x\}$ .

For a relation < on  $2^{X}$  we shall denote by  $< |_{X}$  the restriction of < to Y([1], (6.19)), i.e.

(7)  $M < |_{Y} N \text{ if } M, N \subset Y \text{ and } M < N \cup (X \setminus Y).$ It is easily seen that the sequence  $\{ <_{n}|_{Y} : n \in N \}$  also satisfies conditions (1)-(5).

DEFINITION 2. A mapping  $T \in \mathcal{A}_{\underline{A}}(Y; X)$  is said to be essential if for each  $T' \in \mathcal{A}_{\underline{A}}(Y; X)$  having the same restriction to A as T, i.e.  $T'|_{\underline{A}} = T|_{\underline{A}}$ , one has  $Fix(T') \neq \emptyset$ . Otherwise, T is said to be inessential.

Let us consider an equivalence relation  $\sim$  on  $\mathcal{A}_{\mathbf{A}}(Y; X)$  such that:

(i) if T' | = T | then T' ~ T;

(ii) if  $T' \sim T$  there exists  $H : I \times Y \longrightarrow X$  such that  $H(0, \cdot) = T'$ ,  $H(1, \cdot) = T$ ,  $\mathbf{U} \{ Fix(H(t, \cdot)) : t \in I \} = Z <_0 X \setminus A$  and  $H(\theta(\cdot), \cdot) \in \mathbf{A}(Y; X)$  for any  $\theta : Y \longrightarrow I$  associated to  $\{ <_n |_{Y} : n \in \mathbb{N} \}$ , with  $\theta(x) = 1$  for  $x \in A$ .

IMMA 2. Let  $T \in \mathcal{B}_{\mathbf{A}}(Y; X)$ . T is inessential if and only if there exists  $T' \in \mathcal{B}_{\mathbf{A}}(Y; X)$  such that  $T' \sim T$  and  $Fix(T') = \emptyset$ .

<u>Proof.</u> The necessity part follows from condition (i). Conversely, assume now that  $T' \sim T$  and  $Fix(T') = \emptyset$  and let H be a mapping as in (ii). If  $Z = \emptyset$ , then  $Fix(H(1, .)) = \emptyset$  and thus

T = H(1, .) is inessential. Suppose that  $Z = \emptyset$ . Since  $Z <_0 X \setminus A$ , we have  $Z <_0 \mid_Y Y \setminus A$  and so, by Lemma 1, there exists a function  $\theta : Y \longrightarrow I$  associated to  $\{<_n \mid_Y : n \in N\}$ , such that  $\theta(x) = 0$  for all  $x \in Z$  and  $\theta(x) = 1$  for all  $x \in A$ . Define

 $H^{\Xi}: Y \longrightarrow X$ ,  $H^{\Xi}(x) = H(\theta(x), x)$  for  $x \in Y$ .

According to (ii),  $H^{\Xi} \in \mathcal{J}_{\Delta}(Y; X)$ . In addition,  $H^{\Xi}|_{\Delta} = H(1, \cdot)|_{\Delta} = \mathbb{I}$   $H^{\Xi}: Y \longrightarrow X$ ,  $H^{\Xi}(x) = H(\theta(x), x)$  for  $X \in Y$ .

THEOREM 1. Let T and T' be in A(Y; X) such that T~T'.

Then T and T' are both essential or both inessential.

<u>Proof.</u> Assume that T is inessential. Then, by Lemma 2, there exists  $T'' \in \mathcal{F}_{A}(Y; X)$  such that  $T'' \sim T$  and  $Fix(T'') = \emptyset$ , whence, since  $T \sim T'$  and relation  $\sim$  is symmetric and transitive, it follows that  $T'' \sim T'$ , where  $Fix(T'') = \emptyset$ . This, again by Lemma 2, shows that T' is inessential too, which completes the proof.

REMARK. The assumption  $Z <_{O} X \setminus A$  in (ii) is satisfied if we require that  $Y \setminus A <_{O} X \setminus A$  and  $Fix(H(t, .)) \cap A = \emptyset$  for all  $t \in I$ . Indeed, this last condition implies that  $Z \in Y \setminus A$  and then, by (3),  $Z <_{O} X \setminus A$ .

# § 3. APPLICATIONS

COROLLARY 1. Let X be a normal topological space, 0 =

= ACYCX, A and Y closed in X. Let

$$\mathcal{A}_{A}(Y; X) \subset \{T : Y \rightarrow X : Fix(T) \cap A = \emptyset\}$$

and ~ be an equivalence relation on \$\mathscr{H}\_{A}(Y; X) satisfying condition (1) and

(ii') if  $T' \sim T$  there exists  $H : I \times Y \rightarrow X$  such that  $H(0, \cdot) = T'$ ,  $H(1, \cdot) = T$ ,  $cl(U\{Fix(H(t, \cdot)) : t \in I\}) \cap A = \emptyset$  and  $H(\theta(\cdot), \cdot) \in \mathcal{A}_A(Y; X)$  for any continuous  $\theta : Y \rightarrow I$  with  $\theta(x) = 1$  for  $x \in A$ .

If T ~T', then T and T' are both essential or both inessential.

Proof. According to classical Urysohn's lemma, condition (12.57) in [1] is satisfied. Consequently, by (12.56) in [1], the topology  $\mathcal{T}_0 = \{<\}$  on X can be derived from a symmetrical topogenenous structure J, i.e.  $J_0 = J^p$ . Moreover, by (12.56) in [1], we may assume that  ${\mathcal T}$  is finer than any other symmetrical topogeneous structure having this property. Let  $T = \{<_0\}$ . Obviously, the constant sequence of relations  $\{<_n: n \in \mathbb{N}\}$ , where  $\leq_n = <_0$  for every  $n \in \mathbb{N}$ , satisfies conditions (1)-(5). Now, if 0 : Y -- I is associated with the constant sequence  $\{<_{0}|_{Y}\}$ , then by (6), it is  $(\mathcal{I}_{0}|_{Y},\mathcal{H})$  - continuous and according to (10.12) in [1] it is  $(T_0|_{Y}, \mathcal{R}^{tp})$ -continuous too. Thus,  $\theta$  is continuous (see (8.59) in [1]). Now, suppose that  $T \sim T'$  and let H be a mapping as in (ii'). We want to whow that  $Z <_0 X \setminus A$ , where  $Z = U \{ Fix(H(t, \cdot)) : t \in I \}$ . To do this, observe that since A is closed, we have X \ A < X \ A and taking into account that cl(Z) =  $CX \setminus A$ , we obtain that  $cl(Z) < X \setminus A$ . Similarly, from  $A \subset X \setminus cl(Z)$ and  $X \setminus cl(Z) < X \setminus cl(Z)$ , we deduce that  $A < X \setminus cl(Z)$ . Now from  $cl(Z) < X \setminus A$ ,  $A < X \setminus cl(Z)$  and the fact that  $\{<_0\}$  is the finest symmetrical topogeneous structure on X satisfying < = < 0 we may infer that  $cl(Z) <_0 X \setminus A$ , whence  $Z <_0 X \setminus A$ , as wished. Thus, Theorem 1 is applicable, which completes the proof.

In the paper [4] we use Corollary 1 to obtain fixed point theorems for several classes of nonlinear mappings.

### REFERENCES

[1] A. CSASZAR, Fondements de la topologie génerale, Akadémiai Kiadó, Budapest, 1960.

- [2] A. CSASZAR, General Topology, Akadémiai Kiadé, Budapest, 1978.
- [3] J. DUGUNDJI and A. GRANAS, Fixed point theory, I, Polska A-kad. Nauk, Polish Scientific Publishers, Warszawa, 1982.
- [4] R. PRECUP, Genralized topological transversality and existence theorems, Studia Univ. Babes-Bolyai, 35(2), 1990 (to appear).